Water vapor in PDRs: the Herschel/HIFI view

Y. Choi^{1,2,3}, F. F. S. van der Tak^{3,2}, E.A. Bergin⁴, and the HEXOS team

¹School of Space Research, Kyung Hee University, Korea ²Kapteyn Astronomical Institute, University of Groningen, The Netherlands ³SRON Netherlands Institute for Space Research, The Netherlands ⁴Department of Astronomy, University of Michigan, USA

Classical Photodissociation Regions (PDRs)

Hollenbach & Tielens 1997

 A classical PDR includes large columns of warm O, C⁺ (outer part), and CO and vibrationally excited H₂ (deeper into the cloud).

PDRs including grain chemistry

Figure by M. Kaufman

• The PDR structure has changed, including grain chemistry (freeze-out and desorption; Hollenbach et al. 2009).

Water - H₂O

н

-

- Plays an important role in star-forming regions and protoplanetary disk.
 - a natural chemical filter
 - large abundance variation between cold dust (freeze-out) and warm gas (enhancement)
 - a crucial reservoir of oxygen
 - control the chemistry of oxygen-bearing molecules
 - a useful astrophysical tool
 - asymmetric molecule: rich line spectrum
 - line ratios for probing temperature and density
- Ortho-to-para ratio (OPR) of H₂O
 - the OPR of H₂O is expected to be ~3 at high temperature
 (> 40 K) and lower at low temperature.

H₂O Chemistry

Orion PDRs

Trapezium Stars

Orion Bar

- Distance: ~420 pc
- Mean density: ~10⁵ cm⁻³
- Average temperature: ~85 K
- Nearly edge-on morphology
- Clumpy structure

Orion S

- Active star-forming region
- Located I' southwest from Trapezium clusters
- Ionization front & face-on PDR

Questions

• What is the ortho-to-para ratio (OPR) of H_2O in the Orion PDRs and how is it related to the formation of water?

 What drives the oxygen chemistry in PDRs - thermal or radiative processes?

The ortho-to-para ratio (OPR) of H₂O in the Orion PDRs

Methods

LTE Calculations

- We assume that
 - the lines are optically thin (non-detection of $H_2^{17}O$ lines).
 - the gas is not warm (< 100 K, non-detection of excited state lines of $H_2^{18}O$).
- We derive the column densities for different excitation temperature ($T_{ex} = 50-100$ K)

Non-LTE Calculations
The RADEX code (van der Tak et al. 2007)
A grid of models with values of T_{kin} = 20, 60, and 100 K, values of n(H₂) = 10⁴, 10⁶, and 10⁸ cm⁻³

Results: the Orion Bar

- Assuming LTE, an OPR of ~0.3
- For non-LTE calculations, an OPR of ~0.1-0.5
- The derived OPR of ~0.1-0.5
- Unexpectedly low given gas temperature of ~85 K
- Much lower than the dust temperature of ~49 K

Results: Orion S

- We derived the column density for the absorption component of p-H₂¹⁸O I₁₁-0₀₀ using the optical depth.
- Assuming LTE, an OPR of ~0.1
- For non-LTE calculations, an OPR~0.3-3
- The derived OPR is strongly sensitive to the assumed physical conditions.

Further Analysis: Orion S

For further constrains on the OPR in Orion S, we estimate the intensity (T_{peak}) of o-H₂¹⁸O 2₁₂-1₀₁ line (1656 GHz) assuming that this line appears in absorption.

If OPR=I $\rightarrow T_{\text{peak}}$ = -	0.5 K
If OPR=2 $\rightarrow T_{\text{peak}} = -$	0.9 K
If OPR=2.5 \rightarrow T_{peak} = -	I.I K
If OPR=3 $\rightarrow T_{\text{peak}} = -$	-1.3 K

- The observation data are consistent with OPR = 1 and 2, but not with OPR = 2.5 and 3.
- The OPR of H₂O in Orion S is below 2.

OPR of H₂O in the Orion PDRs

- The OPR of H_2O is subthermal in the Orion PDRs.
- Cannot be explained by gas-phase formation of water.
 - H_3O^+ dissociative recombination is exothermic (OPR~3).
- Water formation on the grains, recent evaporation?
 - dust temperature is too low (< 100 K).
- Effect of photodesorption?
 - recombination of H + OH \Rightarrow H₂O (OPR~3)
 - kick-out mechanism
 - the relative importance: ice thickness & ice temperature
 - The original ice OPR is partially preserved into the gas phase through the kick-out mechanism (Arasa et al. 2015).
 - Some laboratory experiments are ongoing (e.g., Hama, Kouchi, & Watanabe 2016).

Summary

- What is the ortho-to-para ratio (OPR) of H_2O in the Orion PDRs and how is it related to the formation of water?
- ➡ The ortho-to-para ratios of H₂O is ~I in the Orion PDRs (photodesorption).

- What drives the oxygen chemistry in PDRs thermal or radiative processes?
- ➡ H₂O chemistry is dominated by photodesorption in the Orion Bar.