

Water released in a protostellar accretion burst

Per Bjerkeli

J. K. Jørgensen, E. A. Bergin, S. Frimann, D. Harsono, S. K. Jacobsen, M. Persson, J. Lindberg, N. Sakai, E. F van Dishoeck, R. Visser, S Yamamoto

Noordwijk 2016-04-13

National Gallery of Denmark

Outline

- 1. Background / Episodic accretion
- 2. Observations of IRAS15398 with ALMA
- 3. Conclusions

If accretion rate constant

- Protostars at same evolutionary stage should have roughly the same luminosity.
- Protostars in different evolutionary stages should have different luminosities.
 - episodic accretion
 - d*M*/d*t* decrease with time

The mode of accretion has a large impact on the physical and chemical evolution of the system

Material falls towards the disk. The accretion from the disk towards the protostars occurs in a series of burst events! A possible solution to the luminosity problem.

Observational evidence

- FU Orionis objects (accretion bursts)
- Periodic shocks along protostellar jet axis
- Chemical traces
- Linked to disk instabilities

Simulations

Credit: S. Frimann

Sublimation of CO as a tracer of episodic accretion

Basic idea

The protostar is surrounded by gas and dust

CO is in gas phase for T > 30 K CO is frozen out for T < 30 K

t = 0 yr

CO

Sublimation of CO as a tracer of episodic T = 30 K accretion

When luminosity increase the 30 K radius moves outward

0 yr < t <≈ 100 yr

Credit: S. Frimann

CO

CO

CO

CO

CO

CO

CO

CO

When luminosity increase the 30 K radius moves outward

The dust grains loose their ice mantles on time scales < 1yr

0 yr < t <≈ 100 yr

Credit: S. Frimann

Sublimation of CO as a tracer of episodic accretion

Basic idea

The protostar is surrounded by gas and dust

CO is in gas phase for T > 30 K CO is frozen out for T < 30 K

When luminosity increase the 30 K radius moves outward

The dust grains loose their ice mantles on time scales < 1yr

CO stays in the gas-phase when luminosity decreases

0 yr < t <≈ 10⁴ yr

Credit: S. Frimann

CO extents toward 16 protostars compared to their current luminosity

Observations of IRAS15398 ALMA & SMA

Detected species

 ¹²CO, ¹³CO, C¹⁷O, C¹⁸O, C³⁴S, C₂H, CH₃OH, HCO⁺, H¹³CO⁺, N₂H⁺, N₂D⁺

Observations of IRAS15398 ALMA & SMA

Signs of episodic accretion

- HCO⁺ ring
- "Knots" in the jet
- Distribution of HDO?

Data consistent with a scenario where the star increased its luminosity by up to two orders of magnitude 100 – 1000 years ago.

Observations of IRAS15398 ALMA

Observations of IRAS15398 RADMC-3D

Shock origin?

- $nt > 10^{11} \text{ cm}^{-3} \text{ K}$ to excite the H₂¹⁸O line
- FWHM < 1 km s⁻¹
- Only emission close to the protostar

Ice sublimation during recent accretion burst?

- 1. Water sublimation in a spherical envelope?
- 2. Water sublimation close to protostar and shifted by outflow motions?
- 3. Water sublimation in low-density outflow?

Observations of IRAS15398 RADMC-3D

1. Water sublimation in a spherical envelope?

- 100 K radius lower than 200 AU. We see HDO out to 500 AU.
- 2. Water sublimation close to protostar and shifted by outflow motions?
 - Timescale of around 2000 years (too long)

3. Water sublimation in low-density outflow?

- 100 K radius shifted to 500 AU.
- Consistent with non-detection of H₂¹⁸O

X

X

Conclusions

- Presence of HDO consistent with burst scenario
- HDO emission not attributed to shock chemistry
- A lower density outflow can shift the 100 K radius out to 500 AU