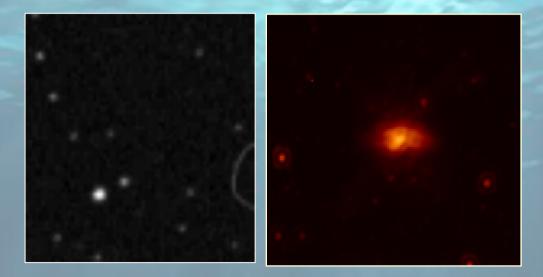


Herschel observations of water in AGB and post-AGB stars

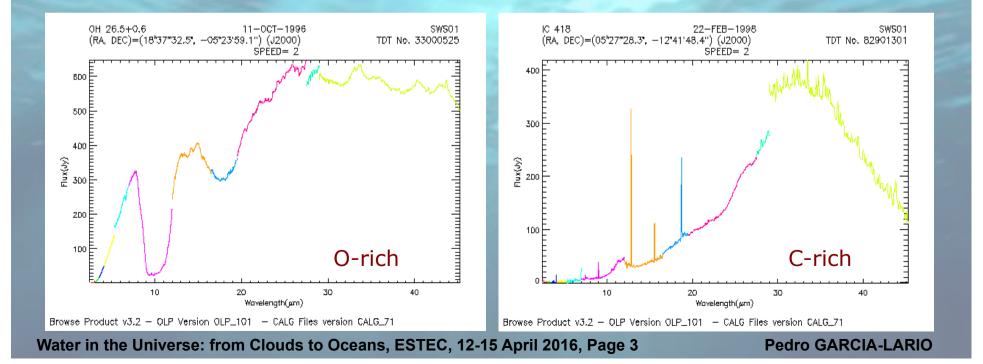
Pedro García-Lario¹, Jesus Ramos-Medina², Carmen Sánchez-Contreras²

¹ European Space Astronomy Centre / ESA, Madrid, Spain ² INTA-CSIC, Centro de AstrobiologÍa, Madrid, Spain

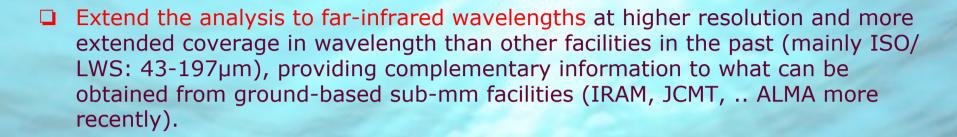

Water in the Universe: from Clouds to Oceans, ESTEC, 12-15 April 2016, Page 1

Introduction (I)

- □ Low- and intermediate-mass evolved stars (1-8 M_☉) in the transition from the late AGB (Asymptotic Giant Branch) phase to the PN (planetary nebula) stage are among the brightest sources in the sky in the infrared, before they become white dwarfs.
- Strong mass loss (10⁻⁴ 10⁻⁵ M_☉/yr) as a consequence of periodic thermal pulses at the end of the AGB generates thick circumstellar shells of gas and dust, which sometimes completely obscure the light coming from the central star in the optical, associated to high velocity outflows that can help developing bipolar/complex morphologies


Water in the Universe: from Clouds to Oceans, ESTEC, 12-15 April 2016, Page 2

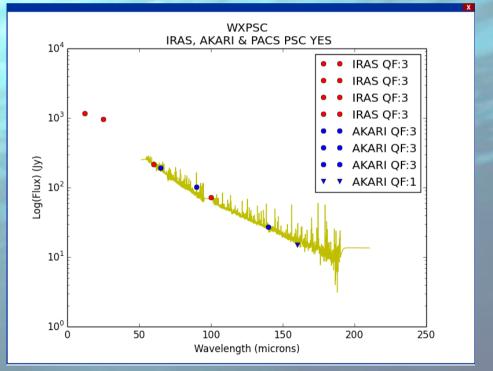
Introduction (II)



- Chemical composition of the shell reflects the nucleosynthesis experienced by the central star. Of major importance here is the C/O ratio, as it determines the formation of totally different chemical species and dust grains (C-rich vs. O-rich chemistry)
- Previously studied with ISO/SWS, Spitzer/IRS and AKARI/IRC, mainly at midinfrared wavelengths, resulting in significant progress on the understanding of how molecules form and evolve to complex structures (e.g. PAHs, fullerenes) and the detection of many new dust features (crystalline silicates, HACs, ..)

What can we learn with Herschel?

- □ All instruments onboard Herschel can contribute: PACS (57-210µm, with R=1000-5000), SPIRE (194-672µm, with R=40-1000) and HIFI (157-212µm, 240-625µm with R as high as 10⁷!)
 - Thermal continuum emission of the cool dust component mass loss history
 - Important molecular lines (CO, OH, H₂O,..) specially those formed at the warm inner layers of the shell
 - Solid state dust spectral features extension of ISO/Spitzer findings
 - Kinematics, from HIFI spectroscopy high velocity outflows


Water in the Universe: from Clouds to Oceans, ESTEC, 12-15 April 2016, Page 4

THROES: A caTalogue of HeRschel Observations of Evolved Stars

- □ A catalogue of fully reprocessed, homogenously reduced PACS/SPIRE spectra of all evolved stars observed with Herschel (more than 200 sources, originally part of more than 40 different research programmes)
- Covering the whole evolutionary stage from the AGB to the PN stage, including some massive red supergiants and LBVs, all chemistries
- Complemented with ancillary data taken by other facilities (IRAS, AKARI photometry, when available)
- Will be made publicly available through the Herschel Science Archive and also through a dedicated web-based interface

THROES: A caTalogue of Herschel Observations of evolved stars

THROES Catalogue

First THROES Catalogue V1.0

Home Data retrieval News Documentation Help-Desk

esa

RA (?)	DEC (?)	Radius (?)	Search Reset	
3.254: :	72.52:	360.(: :	all results 🗾 default vert	osity (Maximum Search Radius allowed: 360 degrees)

[-] Hide additional search fields

Name (?)	
RA (hh:mm:ss) (?)	-
dec (dd:mm:ss) (?)	-
AOT (?)	
#Obs (?)	
Object class (?)	
Mass Classification (?)	•

272 data found.

RA (ICRS) (deg)	DEC (ICRS) (deg)	RA (ICRS) (hh:mm:ss)	DEC (ICRS) (dd:mm:ss)	Name (?)	AOT (?)	#Obs (?)	Mass Classification (?)	Object class (?)	SED (?)	CSV (?)	FITS (?)
191.2826	45.4402	12:45:07.830	45:26:24.90	Y_CVn	PacsLineSpec/PacsRangeSpec	3	Evolved low-intermediate mass star	C rich AGB	SED	CSV	FITS
240.6632	47.2403	16:02:39.170	47:14:25.30	X_HER	PacsRangeSpec	3	Evolved low-intermediate mass star	O rich AGB	SED	CSV	FITS
76.3488	1.1776	5:05:23.720	1:10:39.50	W_Ori	PacsLineSpec/PacsRangeSpec	3	Evolved low-intermediate mass star	C rich AGB	SED	CSV	FITS
207.2583	-28.3676	13:49:02.000	-28:22:03.50	W_HYA	PacsRangeSpec	4	Evolved low-intermediate mass star	O rich AGB	SED	CSV	FITS
288.8476	-7.0471	19:15:23.440	-7:02:49.90	W_AQL	PacsRangeSpec	2	Evolved low-intermediate mass star	S star	SED	CSV	FITS
16.6082	12.598	1:06:25.980	12:35:53.00	WX_PSC	PacsRangeSpec	2	Evolved low-intermediate mass star	O rich AGB	SED	CSV	FITS
259.8745	-45.6399	17:19:29.900	-45:38:23.90	WR_90	PacsRangeSpec	1	Evolved massive star	WR star			
160.4096	-58.7718	10:41:38.320	-58:46:18.70	WR_23	PacsRangeSpec	1	Evolved massive star	WR star			
308.0125	41.2556	20:32:03.020	41:15:20.50	WR_144	PacsRangeSpec	1	Evolved massive star	WR star			
305.4347	37.3751	20:21:44.350	37:22:30.60	wr_142	PacsRangeSpec	1	Evolved massive star	WR star			
305.1165	43.8545	20:20:27.980	43:51:16.30	WR_140	PacsRangeSpec	1	Evolved massive star	WR star			
272.1186	-21.2531	18:08:28.470	-21:15:11.20	WR_111	PacsRangeSpec	1	Evolved massive star	WR star			
116.2117	-31.921	7:44:50.830	-31:55:15.80	WR8 knot	PacsLineSpec	2	Evolved massive star	WR star			
122.3831	-47.3365	8:09:31.950	-47:20:11.70	wr11	PacsRangeSpec	1	Evolved massive star	WR star			
73.7936	-68.3416	4:55:10.480	-68:20:29.80	WOH_G64	PacsLineSpec/PacsRangeSpec	2	Evolved massive star	Red Supergiant star			
162.9052	-21.25	10:51:37.250	-21:15:00.30	V_HYA	PacsRangeSpec	2	Evolved low-intermediate mass star	post-AGB	SED	CSV	FITS
310.3261	48.1413	20:41:18.270	48:08:28.80	V_CYG	PacsRangeSpec	2	Evolved low-intermediate mass star	C rich AGB	SED	CSV	FITS
280.4766	17.6856	18:41:54.390	17:41:08.50	V821_Her	PacsLineSpec	2	Evolved low-intermediate mass star	C rich AGB			
258.6657	11.0694	17:14:39.780	11:04:10.00	v438_oph	PacsRangeSpec	1	Evolved low-intermediate mass star	O rich AGB	SED	CSV	FITS
167.1669	-60.7143	11:08:40.060	-60:42:51.70	V432_Car	PacsRangeSpec	1	Evolved massive star	Blue supergiant star			
51.6229	47.5301	3:26:29.510	47:31:48.60	V384_Per	PacsLineSpec/PacsRangeSpec	3	Evolved low-intermediate mass star	C rich AGB	SED	CSV	FITS
280.6028	-2.2903	18:42:24.680	-2:17:25.20	V1417_Aql	PacsLineSpec	2	Evolved low-intermediate mass star	C rich AGB			

THROES: A caTalogue of Herschel Observations of evolved stars

(Maximum Search Radius allowed: 360 degrees)

THROES Catalogue

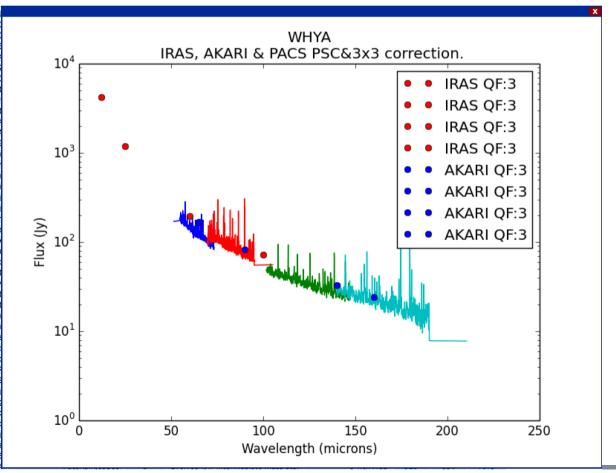
First THROES Catalogue V1.0

Home Data retrieval News Documentation Help-Desk

esa

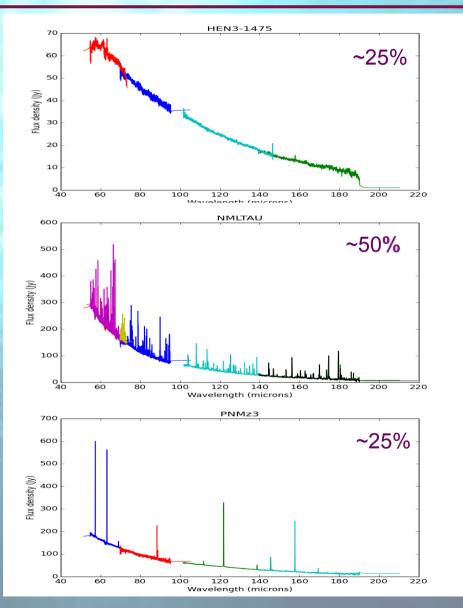
RA (?) DEC (?) Radius (?)

Search Reset


default verbosity.

[-] Hide additional search fields

Name (?)	
RA (hh:mm:ss) (?)	
dec (dd:mm:ss) (?)	-
AOT (?)	
#Obs (?)	
Object class (?)	•
Mass Classification (?)	


272 data found.

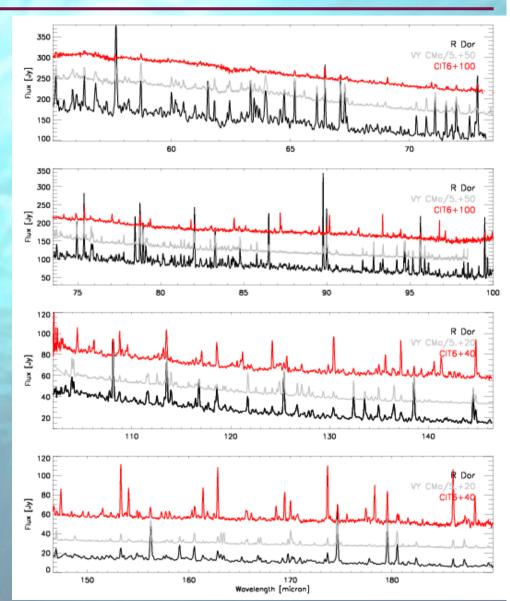
Name (?)	DEC (ICRS)	RA (ICRS)	DEC (ICRS)	RA (ICRS)
	(dd:mm:ss)	(hh:mm:ss)	(deg)	(deg)
Y_	45:26:24.90	12:45:07.830	45.4402	191.2826
X_	47:14:25.30	16:02:39.170	47.2403	240.6632
W	1:10:39.50	5:05:23.720	1.1776	76.3488
W_	-28:22:03.50	13:49:02.000	-28.3676	207.2583
	-7:02:49.90	19:15:23.440	-7.0471	288.8476
WX_	12:35:53.00	1:06:25.980	12.598	16.6082
W	-45:38:23.90	17:19:29.900	-45.6399	259.8745
W	-58:46:18.70	10:41:38.320	-58.7718	160.4096
WR_	41:15:20.50	20:32:03.020	41.2556	308.0125
wr	37:22:30.60	20:21:44.350	37.3751	305.4347
WR_	43:51:16.30	20:20:27.980	43.8545	305.1165
WR_	-21:15:11.20	18:08:28.470	-21.2531	272.1186
WR8	-31:55:15.80	7:44:50.830	-31.921	116.2117
1	-47:20:11.70	8:09:31.950	-47.3365	122.3831
WOH_	-68:20:29.80	4:55:10.480	-68.3416	73.7936
V_	-21:15:00.30	10:51:37.250	-21.25	162.9052
V_	48:08:28.80	20:41:18.270	48.1413	310.3261
V821	17:41:08.50	18:41:54.390	17.6856	280.4766
v438	11:04:10.00	17:14:39.780	11.0694	258.6657
V432	-60:42:51.70	11:08:40.060	-60.7143	167.1669
V384	47:31:48.60	3:26:29.510	47.5301	51.6229
V1417	-2:17:25.20	18:42:24.680	-2.2903	280.6028

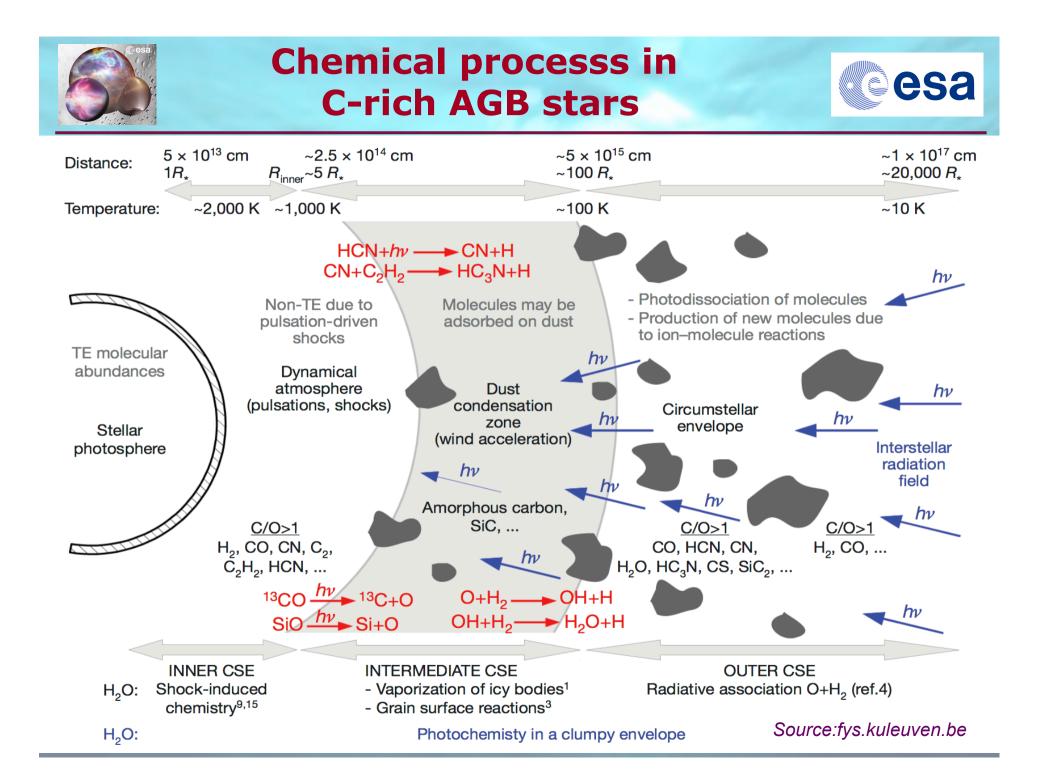
THROES: A caTalogue of HeRschel Observations of Evolved Stars

- 124 sources observed full-SED with PACS
 - O-rich AGB stars (24)
 - C-rich AGB stars (16)
 - S-type AGB stars (6)
 - OH/IR stars (16)
 - Post-AGB stars (32)
 - Planetary Nebulae (30)
- 87 sources observed with SPIRE
 - O-rich AGB stars (14)
 - C-rich AGB stars (8)
 - OH/IR stars (6)
 - Post-AGB stars (22)
 - Planetary Nebulae (37)
- Among them, 60 with both PACS and SPIRE spectra available

Water in the Universe: from Clouds to Oceans, ESTEC, 12-15 April 2016, Page 8

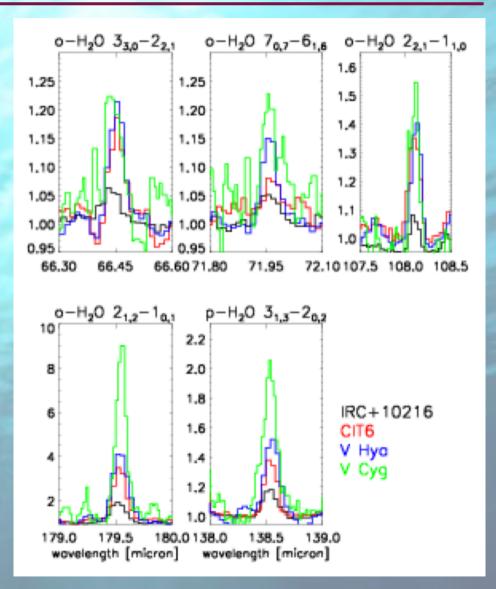
Pedro GARCIA-LARIO


esa

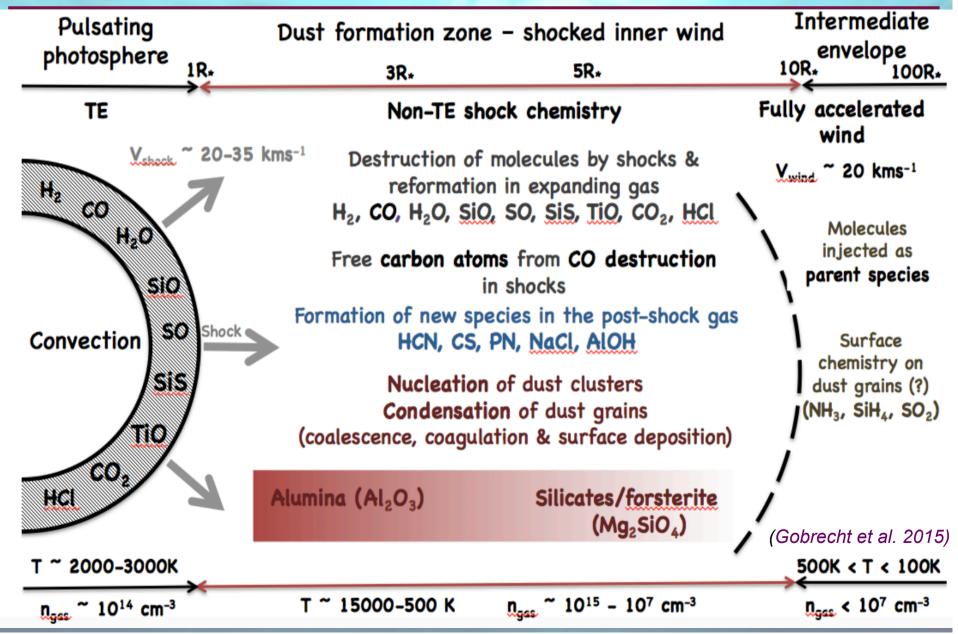


Molecular lines in evolved stars

- To date, more than 70 molecules identified in evolved stars (mainly IRC+10216)
- Wealth of molecular lines, mainly CO (high-J rotational lines), OH and H₂O; HCN in C-rich stars
- Hundreds of lines need to be modelled simultaneously; non-LTE needed
- Evidence for new effects that need to be considered in the modelling
- Strikingly homogeneous spectra!

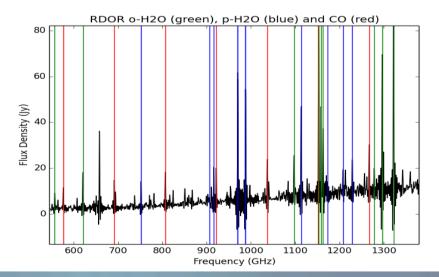


Water in C-rich AGB stars



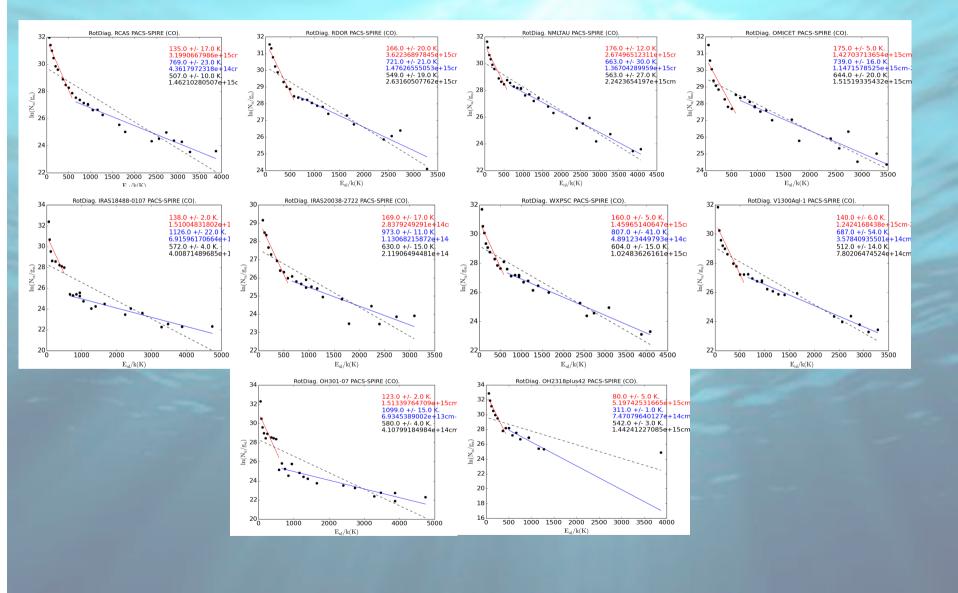
- Detection of warm water vapour in C-rich AGB stars (Decin et al. 2010) suggests a non-equilibrium shocked chemistry in the inner regions of the circumstellar shell (Cherchneff 2011)
- -Originally thought to be produced via photochemical processes in the outer envelope; now clear with Herschel that water and other O-rich molecules originate in the inner layers of C-rich stars
- -Water vapour is now detected in ALL (but one)-C-rich stars observed by Herschel
- Abundances anticorrelated with mass loss rate (Lombaert 2016)

Chemical processes in O-rich AGB stars



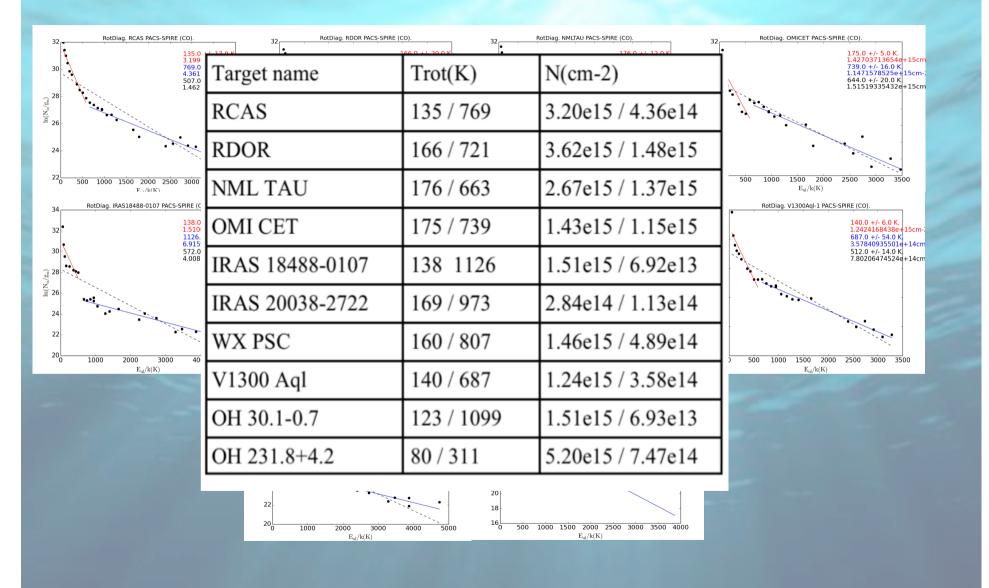
Water in O-rich AGB stars

- Many similarities with C-rich AGB stars
- Most O-rich AGB stars observed also display high-J CO lines + many ortho- and para- lines of warm water vapour
- Again, it suggests a non-equilibrium shocked chemistry in the inner regions of the circumstellar shell
- Rotational diagrams of CO and H₂O cannot be fit with one single temperature component
- Different lines form at different regions of the envelope



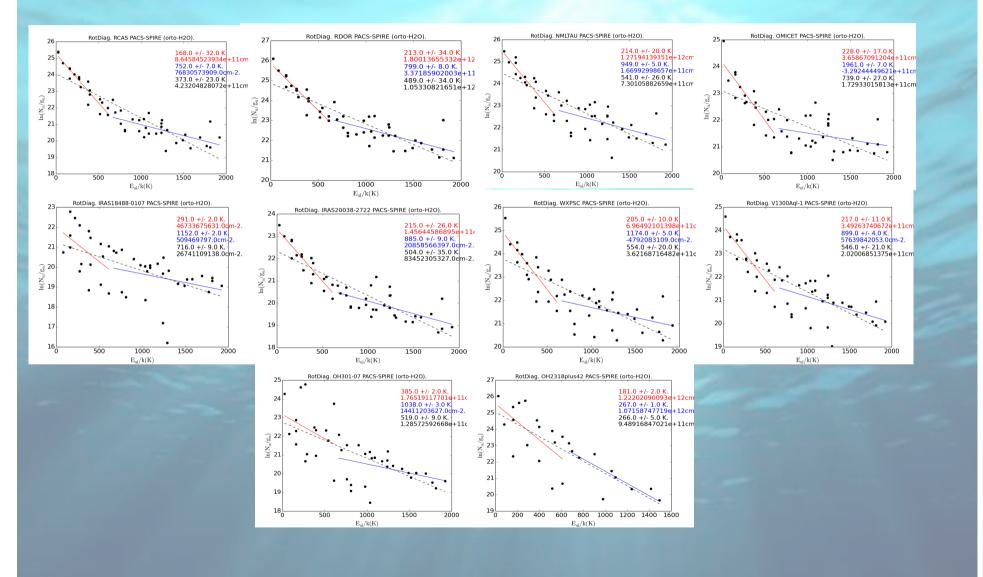
Water in the Universe: from Clouds to Oceans, ESTEC, 12-15 April 2016, Page 13

CO rotational diagrams



Water in the Universe: from Clouds to Oceans, ESTEC, 12-15 April 2016, Page 14

CO rotational diagrams

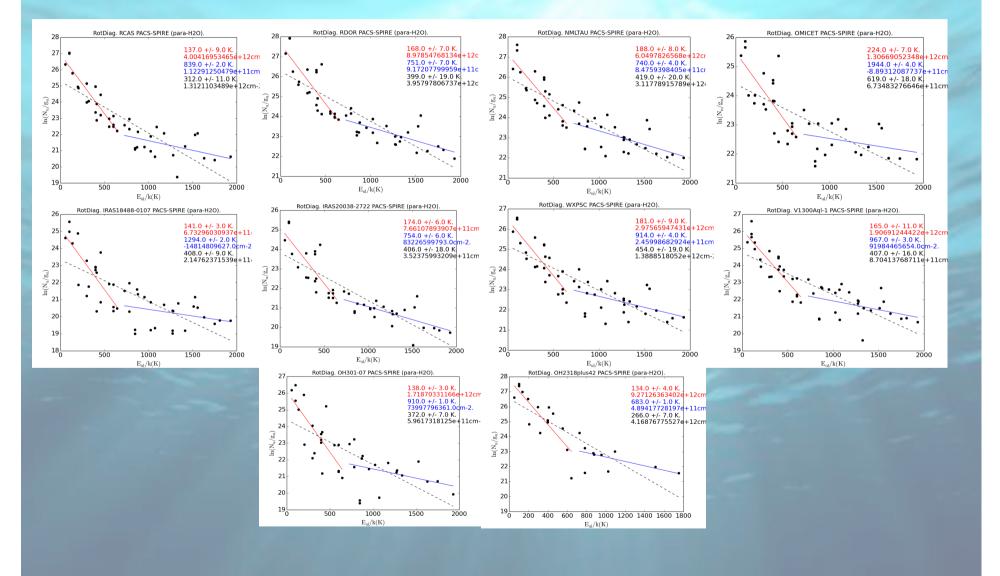


Water in the Universe: from Clouds to Oceans, ESTEC, 12-15 April 2016, Page 15

o-H₂O rotational diagrams

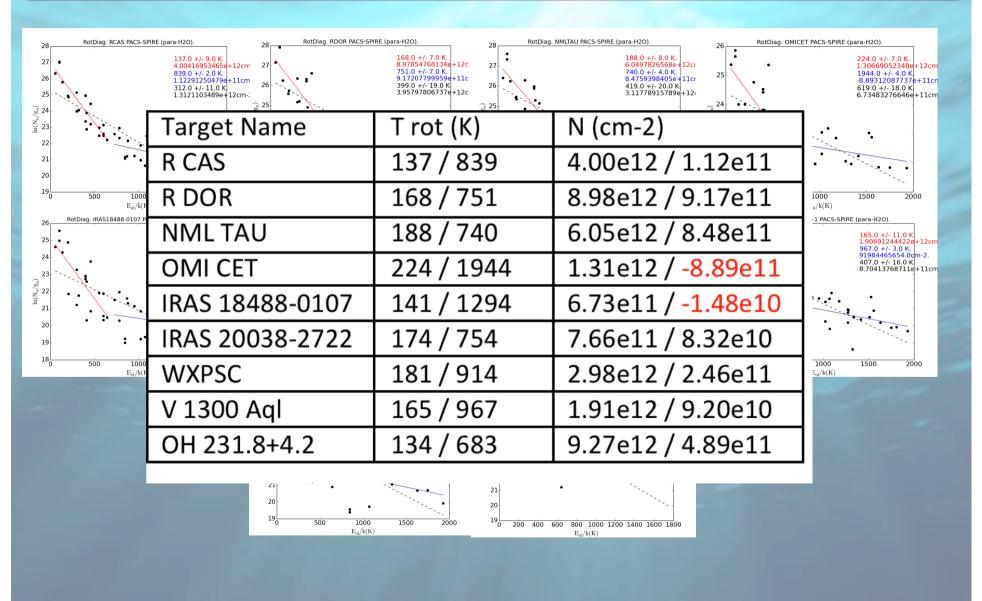
Water in the Universe: from Clouds to Oceans, ESTEC, 12-15 April 2016, Page 16

o-H₂O rotational diagrams

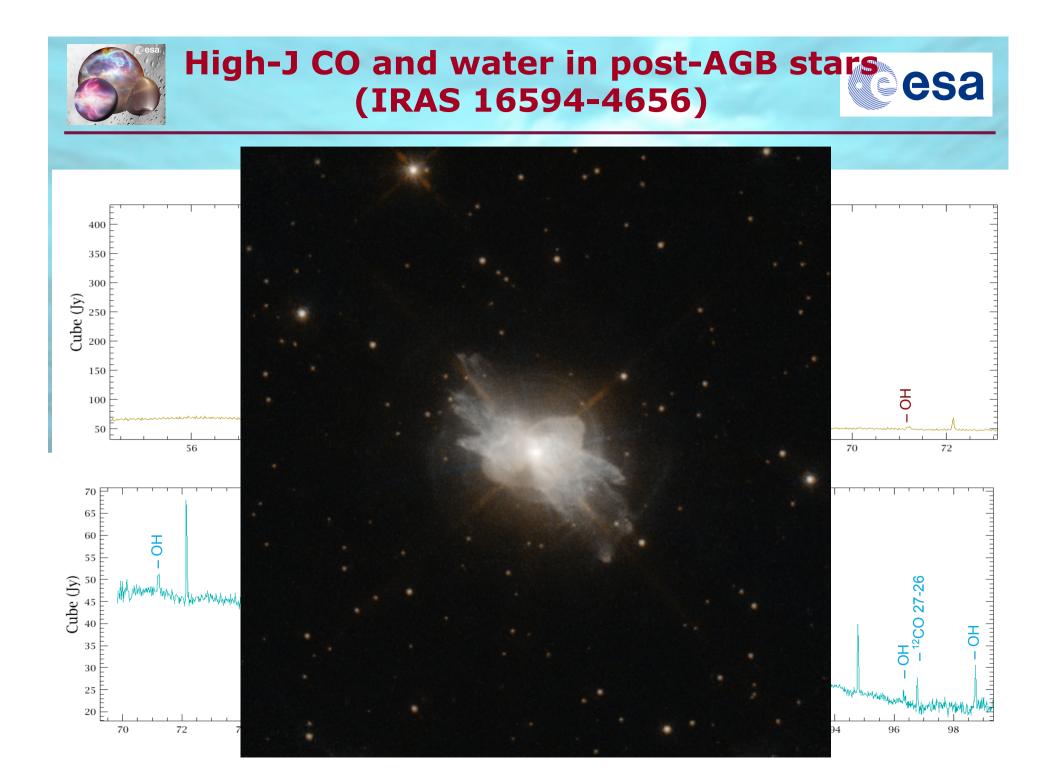

26 RotDiag, RCAS PACS-SPI	RE (orto-H2O). 27 RotDiag. RDOR PACS-S	PIRE (orto-H2O). 26 RotDiag. NML	TAU PACS-SPIRE (orto-H2O). 25 RotDiag. OMICET PAG	S-SPIRE (orto-H2O).
25	168.0 +/- 32.0 K 8.64584523934e+11cm 26	213.0 +/- 34.0 K 1.80013655332e+12 25	214.0 +/- 20.0 K 1.27194139351e+12cm	228.0 +/- 17.0 K 3.65867091204e+11cm 1961.0 +/- 7.0 K -3.29244449621e+11cr
24 23 	Target Name	T rot (K)	N (cm-2)	739.0 +/- 27.0 K 1.72933015813e+11cm
(²⁵⁰ / ²	R CAS	168 / 752	8.65e11 / 7.68e10	
20 - • • •	R DOR	213 / 799	1.80e12 / 3.37e11	
18 0 500 1000 E _{ul} /k(K)	NML TAU	214 / 949	1.27e12 / 1.67e11	1500 2000
23 RotDiag. IRAS18488-0107 PA	OMI CET	228 / 1961	3.66e11 / - <mark>3.29e11</mark>	S-SPIRE (orto-H2O). 217.0 +/- 11.0 K 3.49263740672e+11cm 899.0 +/- 4.0 K
21	IRAS 18488-0107	291 / 1152	4.67e10 / 5.09e10	57639842053.0Cm-2. 546.0 +/- 21.0 K 2.02006851375e+11cm
(²⁰ / _N) ^{/N} () ¹¹ 19	IRAS 20038-2722	215 /885	1.46e11 / 2.09e10	
18 -	WXPSC	205 / 1174	6.96e11 / <mark>-4.79e10</mark>	· · · · · · · · · · · · · · · · · · ·
16 0 500 1000 E _{ul} /k(K)	V 1300 Aql	217 / 899	3.49e11 / 5.76e10	1500 2000 ()
	OH 30.1+0.7	385 / 1038	1.77e11 / 1.44e10	
	OH 231.8+4.2	181 / 267	1.22e12 / 1.07e12	
		21	· · · · · · · · · · · · · · · · · · ·	
	2 ²⁰ 0 500 1000 E _{ul} /k(K	1500 2000 ^{***} 0 200 400 600)	800 1000 1200 1400 1600 $E_{\rm ul}/k(K)$	

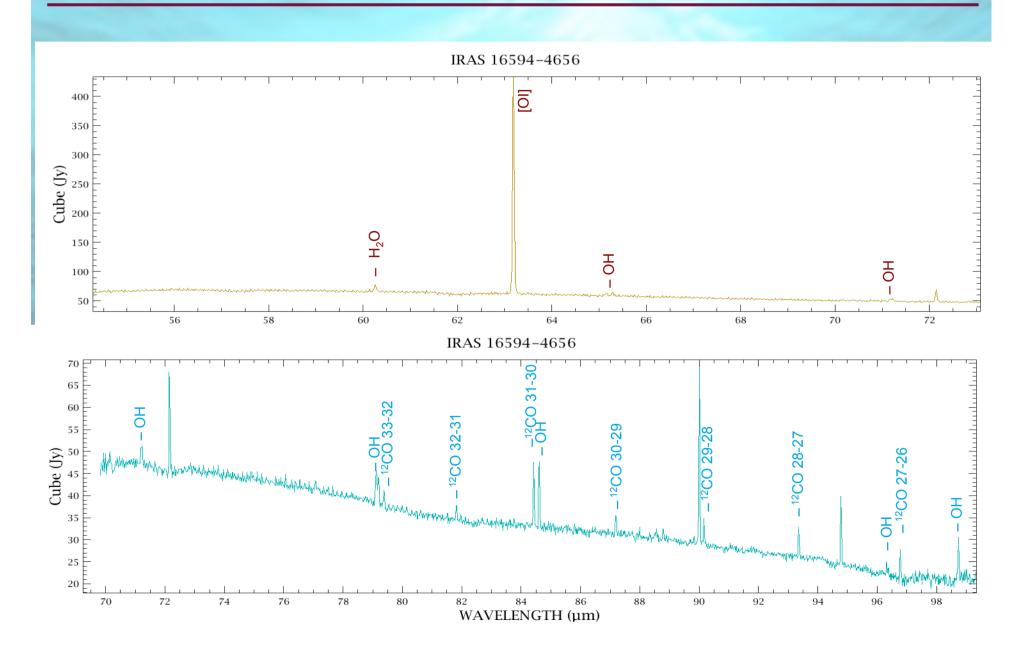
Water in the Universe: from Clouds to Oceans, ESTEC, 12-15 April 2016, Page 17

p-H₂O rotational diagrams

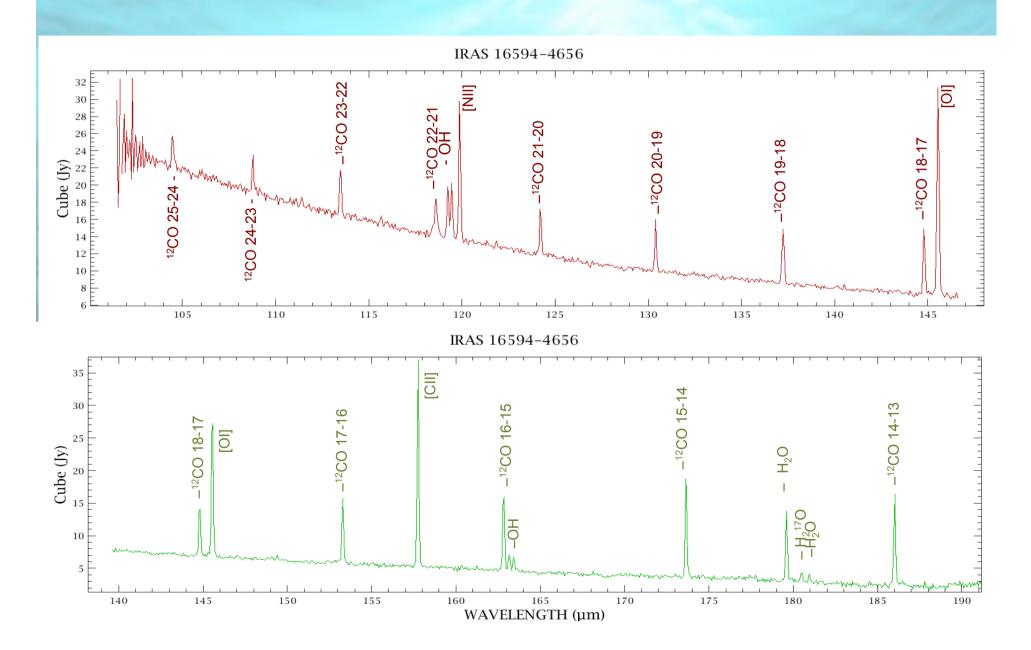


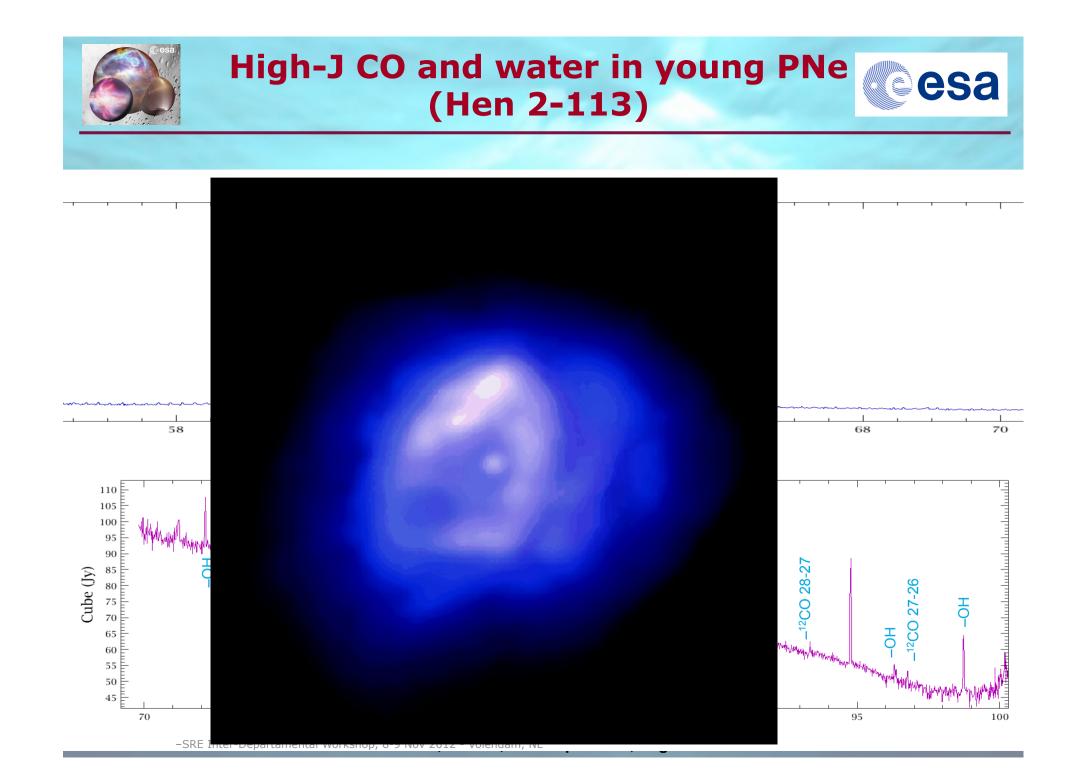
Water in the Universe: from Clouds to Oceans, ESTEC, 12-15 April 2016, Page 18

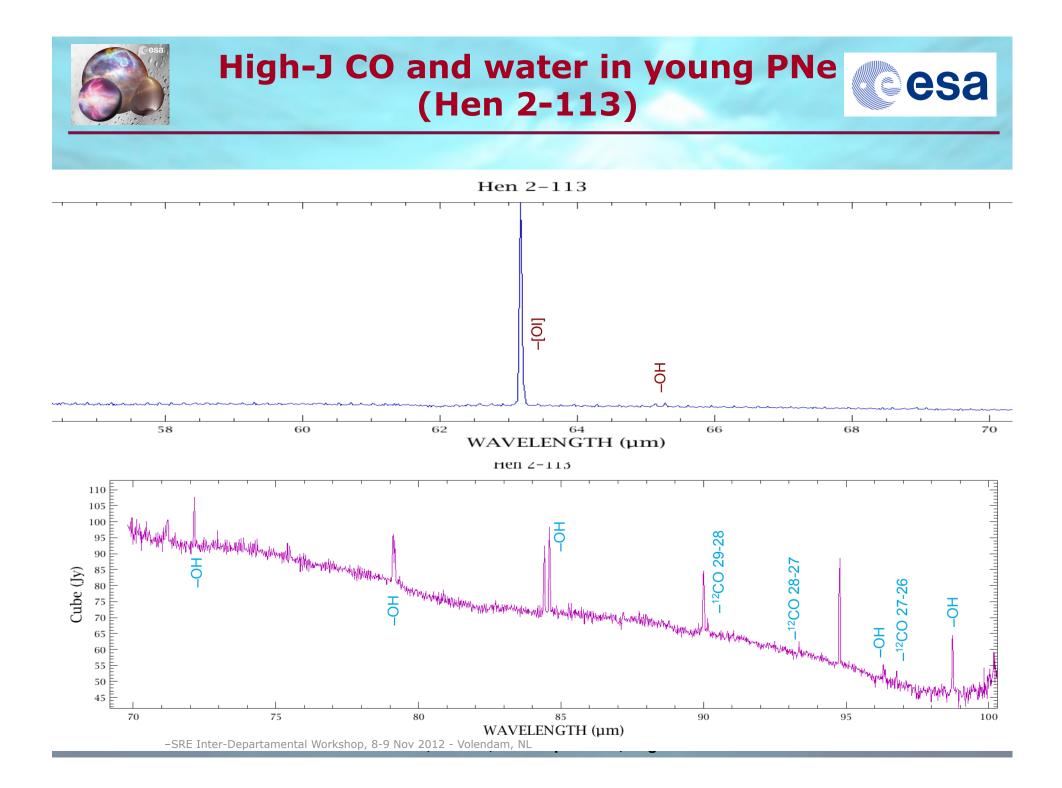

p-H₂O rotational diagrams

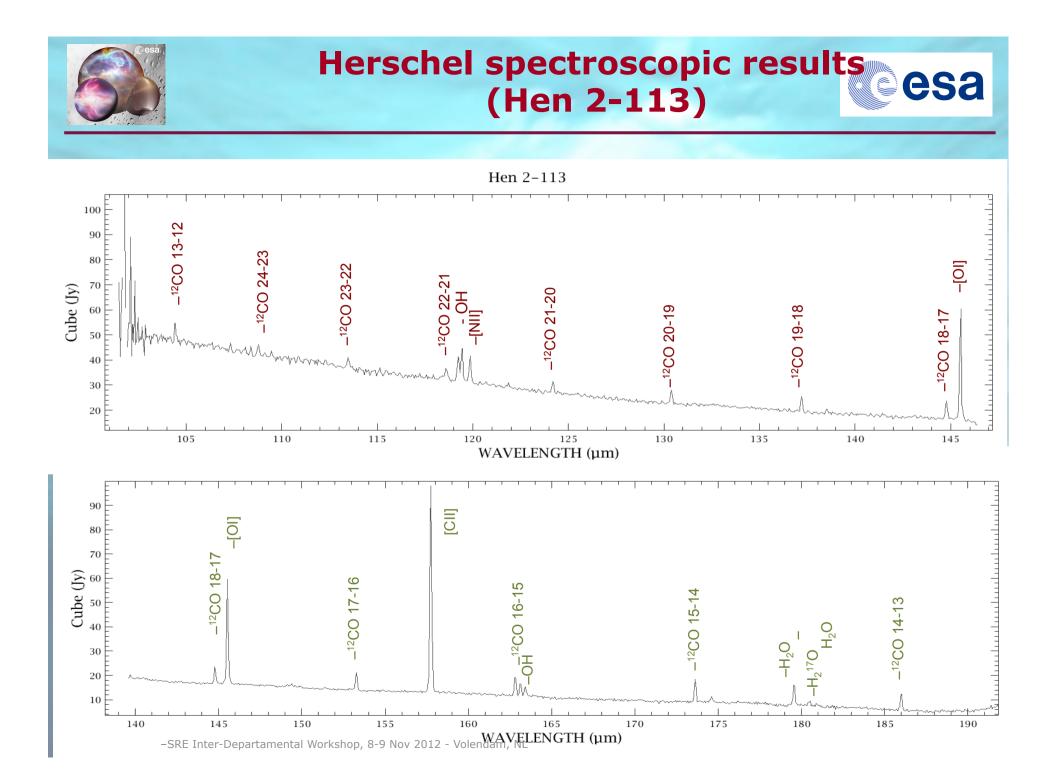

Water in the Universe: from Clouds to Oceans, ESTEC, 12-15 April 2016, Page 19

Pedro GARCIA-LARIO


esa




High-J and water in post-AGB stars (IRAS 16594-4656)



- We have presented the detection of a large number of water vapour emission lines in the Herschel spectra of evolved stars, including high-excitation lines which can only be explained if the water is formed in the warm inner regions of their envelopes. The high-J rotational CO lines detected in these sources seem to trace the same inner regions of the circumstellar envelope.
- A plausible explanation for the warm water observed appears to be the out-of-equilibrium shock chemistrydominating in the regions close to the central star induced by their pulsation, while photodissociation in the outer regions of the envelope by the interstellar UV field may be responsible for the formation of the lower excitation water emission associated to lower temperatures.
- The analysis of a large sample of evolved stars with THROES may provide the wide picture missing if we restrict our analysis to only a few individual sources; it is important to determine the relevance of the dominant chemistry, mass loss rate and evolutionary stage in the water abundances observed.
- It would be interesting to further investigate the anti-correlation of the water abundance with mass loss in connection with a scenario in which the formation of SiO and H₂O are competing in the presence of shocks. SiO would form preferentially at higher mass-loss rates. These shocks could also be the responsible to transform amorphous silicate into crystalline silicate in the envelopes of O-rich AGB stars.

Water in the Universe: from Clouds to Oceans, ESTEC, 12-15 April 2016, Page 26

Appendix: solid state features

12

10

HD161796

- Herschel/PACS overlaps with ISO/ LWS range, providing much higher S/N and better spectral resolution
- However, so far, only the detection of forsterite at 69µm has been confirmed in most O-rich transition sources observed
- Variable shape and central wavelength used as a dust thermometer and to determine the content of Fe in these grains (de Vries et al. 2011)
- Other features not found so far
 - Crystalline water ice at 61µm
 - Hibonite at 78µm
 - Calcite at 92.6µm
 - PAHs?

Normalized flux (Jy) NGC6543 67.5 68.0 68.5 69.0 69.5 70.0 70.5 $\lambda (\mu m)$ 700 700 600 600 [cm²/gr] 500 500 50 K, 0% iron 50 K, 2% iron 50 H 400 400 300 300 200 200 100 100 69 70 69 wavelength [micron] wavelength [micron]

Water in the Universe: from Clouds to Oceans, ESTEC, 12-15 April 2016, Page 27