Analysis of MIRO H₂¹⁶O fines for temperature and velocity profiles

L. Rezac, C. Jarchow, P. Hartogh, M. Hofstadter, S. Gulkis, P. V. Allmen, N. Biver, D. Bockelee-Morvan, J. Crovisier, W. Ip, L. Seungwon, and the MIRO team

Noordwijk, 12-15 April 2016

NAVCAM Mar 1, 2016

Outline

• <u>Goal of this talk:</u> MIRO is a "natural" near nucleus sounder, and proper line shape fitting (16 H_2O) allows one to obtain accurate line-of-sight altitude profiles for T, Vexp.

- MIRO and the measurements
- $H_2^{16}O$ line shape and radial profile information
- Retrieval methodology –approach/self-consitency

Summary

Why is this interesting...?

• Inner region never before probed.

• Inner region fields expected to be highly affected by topography, source distribution, D-G interactions.

• Outer region is expected to be spherical like (Haser like) for typical activity (although ...)

• <u>MIRO unique measurement</u> of a unique region – need to get this information out...

ROSETTA/MIRO

Table 3 Performance parameters of MIRO instrument

	Millimeter	Submillimeter
Telescope		
Diameter	30 cm	30 cm
Beam-width (FWHM)	23.8 arc min	7.5 arc min
Foot-Print (@ 2 km)	15 m	5 m
Spectral characteristics		
Frequency	188.5-191.5 GHz	547.5-580 GHz
IF Continuum bandwidth	550 MHz	1100 MHz
Spectral resolution		44 KHz
Spectral bandwidth		180 MHz
No. channels		4096
Radiometer		
DSB noise temp	800 K	3800 K
Data rates	Combined with submillimeter	0.1–1.92 kbps

• NH₃, CO, and CH₃OH

MIRO measurement

MIRO direct measurable(s)

- Line Doppler shift (expansion velocity along LOS)
 - Great for purely Doppler broadened line (ie, optically thin + rather fast expansion)
- Integrated line area (column density along LOS)
 - Good for optically thin, isothermal gas analytical solution ! Good choice for unresolved coma lines.
 - Numerical fit of line area needs extra care: non-unique solutions are the norm in the [n(r), V(r), T(r)] space.
- Line shape (<u>number density, temperature, velocity radial profiles, albeit</u> <u>smoothed version of reality</u>)
 - Line shape + scanning (slewing) (additional radial information !)
 - Combining line shapes of different molecules + different view angles is the ultimate goal – (allows slicing 3D structure, ensures consistency)

MIRO: natural near nucleus sounder: exploiting line shapes

MIRO line shape information content

- How sensitive is the measurement to the desired parameters (Jacobians)?
- Understand qualitatively and quantitatively information content of MIRO, needed for both: algorithmic and/or parametric fit.

Problem statement

- Obtain T(r), v(r) and n(r)-scaling from measured $H_2^{16}O$ line + $H_2^{18}O$ (scaling only of n(r)).
- Ensure stable inversion of spectra with solid error analysis applicable to all observations.
- Investigate self-consistency on physical examples and the uniqueness of the solution.

Inversion methodology

<u>Method:</u> Solve a constrained LS problem minimizing:

$$J(\mathbf{x}) = (\mathbf{y} - \mathbf{F}(\mathbf{x}))^T \mathbf{S}_{\mathbf{e}}^{-1} (\mathbf{y} - \mathbf{F}(\mathbf{x})) + (\mathbf{x} - \mathbf{x}_{\mathbf{a}})^T \mathbf{S}_{\mathbf{a}}^{-1} (\mathbf{x} - \mathbf{x}_{\mathbf{a}})$$

- Iterate to handle the strong non-linearity
- Regularization is applied (deal with null-space)

$$\begin{split} \mathbf{x_{i+1}} = \mathbf{x_a} + \mathbf{S_a^{-1}}\mathbf{K_i^T}(\mathbf{K_i}\mathbf{S_a^{-1}}\mathbf{K_i^T} + \mathbf{S_e^{-1}}) \\ (\mathbf{F}(\mathbf{x}) - \mathbf{y} - \mathbf{K_i}(\mathbf{x_a} - \mathbf{x_i})) \end{split}$$

Solution covariance matrix

$$\mathbf{\hat{S}}^{-1} = \mathbf{K}^{\mathrm{T}}\mathbf{S}_{\mathrm{y}}^{-1}\mathbf{K} + \mathbf{S}_{\mathrm{a}}^{-1}$$

One more thing: how to represent the radial profile?

- Retrieve set of numbers in radial grid
 - Regularization (numerical)
 - Physics related regularization
- Parametrization of vertical profiles:
 - Power law approaches (fast, but crude)
 - Basis functions
 - EOFs (using physical DSMC results)
 - Polynomial representation

There is a trade off – we want a flexible enough parametrization to capture possible LOS variations in T, v, but still maintain reasonably determined solution by the measurement.

Self-consistency study: 1

Self-consistency study: 2

• Similar story as before; case with lower S/N, less dense grid, slow decay profile, higher density density

- Excellent fit and retrieval quality for both Tkin and Vexp. Temperature can be well determined below 1km within (does depend on S/N).
- Results very weakly dependent on initial profile (next slide)

Initial condition and bias check

* Summary plot for different initial profiles for T, V

- * Density bias of 35% applied
- * Gray profiles: retrieved profiles (initial profile independence + density bias independence)

Summary

- (1) The optically thick 557 GHz water line measured by MIRO contains information on the vertical profile (LOS) for T and Vexp.
- (2) Solving the associated inverse problem is possible in a robust way.
- (3) Since the H₂¹⁶O line is thick (since early on in mission) there are plenty study cases. It is demonstrated that ware are very weakly dependent on knowledge of H₂O density (35-40 % accuracy is sufficient). Also the inversion is weakly dependent on initial profile (good).
- (4) Applying the inversion to many cases we can start deriving science by interpreting the vertical profiles
 - (1) Dust to gas interaction
 - (2) Topography effects on gas flow
 - (3) Locating active areas (high spatial resolution..)
- (5) Finally, while promising this work is a first step: ultimate goal is combining nadir view, nadir + limb, and combining detectable molecules allowing much improved determination of the vertical profiles.

Slicing 3D coma with MIRO (tomography vs 2D inversion)

