

 Jupiter's deepest and freshest clouds

> Michael H. Wong (UCB) Gordon L. Bjoraker (NASA GSFC) Imke de Pater (UCB) Máté Ádámkovics (UCB) Sushil K. Atreya (UMich.) Paul N. Romani (NASA GSFC)

WATER IN THE UNIVERSE, NOORDWIJK APRIL 15 2016

Motivation: studying water in Jupiter

COSMOCHEMISTRY

- Planet formation: core accretion vs. gravitational instability
- Chemical enrichment of the disk
- Planetesimal composition: clathrates, amorphous ice, SCIPs

JANG-CONDELL+BOSS 2007

ATMOSPHERIC DYNAMICS

- Volatiles and clouds trace dynamical flows
- Water abundance and convection: episodic vs. steady

DE PATER++2011

[2]

Jupiter's composition

Galileo Probe mass spec measured volatiles and noble gases...

Jupiter's composition

Jupiter's composition is a constraint for planet formation models

Jupiter's O/H ratio

Measurement technique	Jovian O/H relative to solar		Strongly affected	Strongly affected	
	Anders & Grevesse (1989) ¹	Grevesse et al. (2005) ¹	by model assumptions? ²	by H ₂ O spatial distribution? ³	References
GPMS	0.29 ± 0.09	0.48 ± 0.16		×	Niemann et al. (1998), Wong et al. (2004)
5-µm spectroscopy (gas)	0.02	0.03		×	e.g., Bjoraker et al. (1986a,b), Roos- Serote et al. (1999, 2000), also see text
5-µm spectroscopy (clouds)	subsolar, or ≥ 1	subsolar, or ≥ 1.7	×	×	Roos-Serote et al. (2004), also see text
Clouds at $P \ge 4$ bar	> 0.2	> 0.3			Banfield et al. (1998), Gierasch et al. (2000), Li et al. (2004)
Internal CO source	2.3, or 0.2-9	3.8, or 0.3-15	×		Fegley and Lodders (1994), Bézard et al. (2002)
Depth of lightning	> 0.7	> 1.2	×		Little et al. (1999), Borucki and Williams (1986)
Depth of lightning	> 9	> 15	×		Dyudina et al. (2002), Dyudina et al. (2004), see text

Table 1. Summary of measurements relating to the determination of Jupiter's water abundance.

¹Solar O/H = 8.53×10^{-4} in Anders and Grevesse (1989) and protosolar O/H = 5.13×10^{-4} in Grevesse et al. (2005).

²See text for details about how these measurements are modeled to infer water abundances.

³Observations are biased towards regions with lower water vapor mixing ratios, so the deep well-mixed abundance of water is not measured.

WONG++2008 (in Oxygen in the Solar System)

Jupiter's O/H ratio

O/H uncertain, many indirect constraints

 1 Solar O/H = 8.53×10^{-4} in Anders and Grevesse (1989) and protosolar O/H = 5.13×10^{-4} in Grevesse et al. (2005).

²See text for details about how these measurements are modeled to infer water abundances.

³Observations are biased towards regions with lower water vapor mixing ratios, so the deep well-mixed abundance of water is not measured.

WONG++2008 (in Oxygen in the Solar System)

Jupiter's O/H ratio

Measurement technique	Jovian O/H relative to solar		Strongly affected	Strongly affected	
	Anders & Grevesse (1989) ¹	Grevesse et al. (2005) ¹	by model assumptions? ²	by H ₂ O spatial distribution? ³	References
GPMS	0.29 ± 0.09	0.48 ± 0.16		×	Niemann et al. (1998), Wong et al. (2004)
5-µm spectroscopy (gas)	0.02	0.03		×	e.g., Bjoraker et al. (1986a,b), Roos- Serote et al. (1999, 2000), also see text
5-µm spectroscopy (clouds)	subsolar, or ≥ 1	subsolar, or ≥ 1.7	×	×	Roos-Serote et al. (2004), also see text
Clouds at $P \ge 4$ bar	> 0.2	> 0.3			Banfield et al. (1998), Gierasch et al. (2000), Li et al. (2004)
Internal CO source	2.3, or 0.2-9	3.8, or 0.3-15	×		Fegley and Lodders (1994), Bézard et al. (2002)
Depth of lightning	> 0.7	> 1.2	×		Little et al. (1999), Borucki and Williams (1986)
Depth of lightning	> 9	> 15	×		Dyudina et al. (2002), Dyudina et al. (2004), see text

Table 1. Summary of measurements relating to the determination of Jupiter's water abundance.

¹Solar O/H = 8.53×10^{-4} in Anders and Grevesse (1989) and protosolar O/H = 5.13×10^{-4} in Grevesse et al. (2005).

²See text for details about how these measurements are modeled to infer water abundances.

³Observations are biased towards regions with lower water vapor mixing ratios, so the deep well-mixed abundance of water is not measured.

WONG++2008 (in Oxygen in the Solar System)

5-µm spectroscopic technique

Team: Gordon L. Bjoraker (NASA GSFC), Imke de Pater, Michael H. Wong, and Máté Ádámkovics (UC Berkeley)

Technique: Use high resolution spectroscopy to measure molecular line shapes in Jupiter's thermal infrared spectrum.

Significance of the equivalent width: The CH₃D lines are more broadened at higher pressures. Where the width is small (like in the zone spectrum marked (\mathbf{A}) , it is because a water cloud is present, blocking thermal emission from the deeper atmosphere. The hot spot spectrum (marked (B)) carries the fingerprint of deep emission-a large equivalent width-so no thick water clouds are found there.

Finding: Jupiter's water cloud deck is highly uneven. Our technique peers through upper clouds to find thick water clouds in the major zones.

Reference: Bjoraker et al. (2015), Astrophysical Journal 810, 122. doi:10.1088/0004-637X/810/2/122 2016-04-15

[8]

Observation geometry

в

•

А

0

2013-01-21 Keck NIRSPEC + NIRC2

- "Feature C" on slit has a deep water cloud
- "Feature A" obviously samples inhomogeneous area
- 2016B: proposing simultaneous Gemini 5-µm imaging + Keck/IRTF hi-res spectroscopy (+Juno)

A

+10.7° Lat.

Determining cloud top pressures

Cloud height and O/H

²⁰¹⁶⁻⁰**3-35** [13] 🙂

Clouds and volatiles: dynamical tracers

Uplift: cloudy, humid

Subsidence: clear, dry

Jupiter's cloud layers

2016-04-15 [15]

Galileo Probe site clouds

Galileo Probe Nephelometer measured aerosol opacity during descent

RAGENT++1998

AMNH Dark Universe planetarium show (2013)

Galileo Probe site clouds

Clouds and volatiles: mapping dynamics

-30

vertical flows 0.5-8 bar

DE PATER++2016 (EMBARGOED !!)

DE PATER++2010

Thermal IR: Use clouds to trace vertical flows Radio: Use NH₃ gas to trace 0.5–2 bar

Juno: Longest λ channels sensitive to H2O gas, should detect same features seen in VLA C band (3.5–7.5 cm) map above

Regional/global context for Juno

2016-04-15 [19] 2016-04-15

H₂O ice signatures

44- μ m H₂O ice signature detected in Voyager IRIS spectra

Locations consistent with vigorous convection, or equatorial wave

H₂O ice signatures

SUGIYAMA++2014

ي 2016-04-15 [21] 2016-04-15

Episodic vs. steady convection

SÁNCHEZ-LAVEGA++2008

Science in Argentina

2016-04-15 [22]

Conclusions

COSMOCHEMISTRY

- O/H ≥ 1.2x solar, based on spectroscopic determination of cloud heights
- Depth of lightning places similar lower limit
- Other volatiles ~3x solar
- Still need Juno to figure out what the O/H is !!
- But, we know 0.12x solar from Galileo Probe cannot be representative of bulk O/H

JANG-CONDELL+BOSS 2007

ATMOSPHERIC DYNAMICS

- Standard cloud chemistry may be wrong for H₂S chemical sink
- Juno should see significant spatial variation, at least due to equatorial wave
- Convective style may vary among planets, controlled by H₂O abundance

DE PATER++2011

2016-04-15