Water in the Universe: from clouds to oceans Estec, 15 April 2016

WATER VAPOR ABSORPTION AND EMISSION FROM EXTRAGALACTIC SOURCES

E. González-Alfonso*, J. Fischer, N. Falstad

* Universidad de Alcalá, Depto de Física y Matemáticas (Madrid, Spain)

Based on Herschel/PACS & SPIRE observations

NEAR-IR IMAGES (Scoville+2000, Evans+2002)

Infrared Space Observatory (ISO) (U)LIRGs with high far-IR radiation densities have far-IR spectra (50-200 µm) dominated by absorption in Fischer+1999 molecular lines

ABSORPTION LINES: Herschel/PACS (U)LIRGs with high far-IR radiation densities have far-IR spectra (50-200 µm) dominated by absorption in molecular lines

ABSORPTION LINES

Many hydrides contribute to the far-IR absorptions (OH, OH+, H2O+, H3O+, CH, CH+, NH, NH2, NH3, etc), but H₂O dominates in both absorption strength and number of lines

NGC 4418: 38 H_2O absorption lines Arp 220: 28 H_2O absorption lines

H2O: asymmetric rotor Red: detected in both NGC 4418 & Arp 220 Blue: detected in NGC 4418 Dashed blue: marginal Green: contaminated

González-Alfonso+2012

ABSORPTION LINES

H₂O lines in NGC 4418 & Arp 220 (G-A+2012)

Upper spectra:NGC 4418 Lower spectra: Arp 220

Red: ortho

Blue: para

ABSORPTION LINES

Upper spectra:NGC 4418 Lower spectra: Arp 220

Very high-lying (tentative) absorption lines of H₂O in NGC 4418

Red: ortho Blue: para

Elower=800-1100 K

EMISSION LINES

Galaxies also show H2O *emission* lines in the submm (>200 μm), with upper level energies up to 640 K

Van der Werf+2010: Mrk 231

Rangwala+2011: Arp 220

...with strengths comparable to the CO lines! Note: the ortho-H2O ground-state 110-101 at 557 GHz is not detected

EMISSION LINES

Many local Galaxies show H2O emission lines in the submm

Talk by Chentao Yang at 14:50

ABSORPTION & EMISSION LINES

- A complementary view of the ISM
- -Absorption and emission lines are the 2 faces of the same coin
 -H2O traces the far-IR continuum emission, with an obvious observable: SED
 -Goal: fiting the H2O absorption/emission and the SED simultaneously
 -Advantage: Einstein coefficients are much better known than collisional rates

COLLISIONAL EXCITATION MAY STILL HAVE AN EFFECT!

In far-IR optically thin sources, as the 1(11) and 2(12) are the base-levels

And how do we know observationally that collisions play a role? The 1(11)-0(00) at 269 microns will be seen in *emission*

Observations from Spinoglio+2012 Model from G-A+2014

*Lines 7-8 not detected: optically thin far-IR

How models work...

González-Alfonso et al (2012, 2013, 2014)

Models for the emission H₂O lines: ortho/para=3 (G-A+14)

The far-IR continuum (G-A12)

The emission lines with E<400 K require a more extended region (and less thick) than the absorption lines

The nuclear regions probe the transition from the mid- to the far-IR

H2O emission/absorption probes the The far-IR continuum (G-A+12) source structure (G-A+12)

*The optically thick and compact nuclei are responsible for the high-lying H2O absorption lines.

*The more optically thin, more extended Cextended dominate the emission in the submm H2O emission lines

> We understand better the SEDs... from the lines!

The nuclear and extended regions may have different SEDs

Caveats:

- 1) Line opacity effects
- 2) Line excitation
- 3) Several components contributing to the absorption
- 4) Line blending
- 5) Baseline uncertainty

We investigate whether the observed H2O line ratios are consistent with the high Tspin OPR value of 3, or whether there is evidence for departure from this value.

High-lying H₂O lines

Upper spectra:NGC 4418 Lower spectra: Arp 220

Labels Red: ortho Blue: para

The *observed* OPR is not 3, but...

Models for H₂O: ortho/para=3

Upper spectra:NGC 4418 Lower spectra: Arp 220

Labels Red: ortho Blue: para

...this is attributable to very high H2O columns: consistent with OPR=3

(G-A+12)

Models for H₂**O: ortho/para=3**

Upper spectra:NGC 4418 Lower spectra: Arp 220

Labels Red: ortho Blue: para

Elower=800-1100 K

(G-A+12)

No significant departure from an ortho-to-para H₂O ratio of 3 (high-temperature limit) is found

Upper spectra:NGC 4418 Lower spectra: Arp 220

Labels Red: ortho Blue: para

(G-A+12)

Upper spectra:NGC 4418 Lower spectra: Arp 220

Labels Red: ortho Blue: para

NGC 4418: 16O/18O=250-500 Arp 220: 16O/18O=70-130

(G-A+12)

Emission lines in Mrk 231 (G-A+10)

PACS: Talk by Jackie Fischer at 14:30

Component→	Hot ^a (H _C)	Warm (W_C)	Extended (E_C)
Radius (pc)	23	120	610
$T_{\rm dust}$ (K)	400-150	95	41
$\tau_{100 \ \mu m}$	0.4	1.0	0.5
$L(L_{\odot})$	7.5×10^{11}	1.9×10^{12}	9.6×10^{11}
Gas Mass ^b (M_{\odot})	1.9×10^{6}	5.9×10^{8}	7.7×10^{9}
$N({\rm H_2O}) ({\rm cm^{-2}})$	_	5.2×10^{17}	2.0×10^{16}
$V_{\rm turb} (\rm km s^{-1})$	<u></u>	60^d	40
$n(H_2)^c$ (cm ⁻³)	1000	1.5×10^{6}	5×10^{5}
$T_{gas}^{c}(\mathbf{K})$	10.00	150	100

OH and H2O in IRAS 08572+3915, G-A+in prep

H2O/OH decreases in strong AGNs → H2O formed in surrounding SB?

Emission & absorption lines in Zw049 (Falstad+15) Poster by Niklas Falstad (P10)

H2O lines in Arp299a (Falstad+16, submitted)

Poster by Niklas Falstad (P10)

THE OH 65µm HERSCHEL/PACS SPECTRA

Single component models: assuming coexistent OH65 and [CII]

Composite models: optically thick (OH65) and thin [CII]

(G-A+15)

Population diagram of H₃O⁺ (metastable levels) in Arp 220

Similar to Sgr B2 (Lis+2012) Formation pumping?

(G-A+13)

Chemical models by Simon Bruderer (G-A13)

Conclusions

* Dozens of H2O absorption lines, and up to 8 H2O emission lines, are observed in the far-IR and submillimeter spectra of bright infrared galaxies with buried nuclei.

* H2O absorption/emission probes the structure and properties of the source: absorption lines are produced towards very warm (Tdust~>100 K), optically thick (tau100>~1) compact (R~10-100 pc) cores, and emission lines (Eupper<400 K) are generated towards more extended (R~a few x 100 pc) surrounding regions.

* H2O absorption/emission probes the SEDs at far-IR wavelengths, where the bulk of the galaxy luminosity is generated. H2O (and other hydrides) absorption trace the transition from mid- to far-IR.

* Very high columns and abundances of H2O are inferred in the nuclear regions of buried galactic nuclei, with $X(H_2O) \sim 10^{-6} - 10^{-5}$.

* The OPR of H2O is consistent with the high-temperature limit of 3, or Tspin>~35 K.

* Nuclear regions are very optically thick and dusty, so UV photons are absorbed in small volumes around the heating sources while these regions are warm: high molecular abundances.

* 2 modes of star formation in galaxies have been proposed: "disk-like" and "starburst". High-lying H2O absorption represents the most extreme mode of starburst, with Σ_{IR} ~(10¹³ -10¹⁴) Lsun/kpc²

* How is H2O formed? Hot molecular chemistry:

-Mechanical heating (shocks, dissipation of turbulence)

-X/Cosmic rays (high columns of excited OH+, H2O+, and H3O+ are found)? Disfavoured.

-Undepleted chemistry, with high abundance of Oxygen in the gas phase (Tdust is high). In some sources, complex molecules are found, similar to hot cores (NGC 4418).

* How is H2O destroyed? -X/Cosmic rays

* In "four" words: Giant Shock-Hot-Cosmic-Rays Dominated Regions