## The ionization rates of galactic nuclei and disks: HIFI observations of $H_2O$ , $H_2O^+$ , and $OH^+$

#### Floris van der Tak, Axel Weiss, Lijie Liu, Rolf Güsten



A&A, submitted



Netherlands Institute for Space Research





MAX-PLANCK-GESELLSCHAFT

Netherlands Organisation for Scientific Research

## Physical conditions in ISM of galaxies

#### SFR tied to ISM conditions

density sets free-fall time
temperature sets mass scale
dusty media: need long
wavelengths

#### Water ions: trace ionization rate

- dynamical importance of B-field
- major gas heating mechanism
- top-heavy IMF?

Today: pilot study of 5 nearby AGN / starbursts  $L = 2 \times 10^{10} \dots 2 \times 10^{12} L_0$  $d = 3 \dots 72$  Mpc: 20'' = 0.35 - 7 kpc

# SRON



## The two ways to make H<sub>2</sub>O in cold gas



Use  $OH^+$  /  $H_2O^+$  ratio to infer  $H/H_2$  ratio (Neufeld et al 2010)



3

#### **NGC 4945: Dust-enshrouded Seyfert nucleus**



### NGC 253: Starburst nucleus



## Arp 220: Ultraluminous merger with SMBH



## M 82: Semi-automatic rifle & Michigan highway



#### M 82: Starburst disk



Single narrow absorption in both species

*V*<sub>0</sub>: origin between NE lobe and central CO peak (Weiss et al 2010)



#### **Cen A: Radio AGN**





Red absorption + blue emission = infall signature

*narrow line: origin in "extended thin disk"* (Israel et al 2014)

9



# **Estimating column densities**

- Absorption features: assume excitation negligible
  - only ground state populated
  - ortho/para ratio of 3 (as observed by Flagey / Schilke et al 2013)
- Emission features: model collisional excitation
  - radiative rates: from CDMS/JPL spectroscopy
  - collisional rates H<sub>2</sub>O, OH<sup>+</sup> known (*cf talk Alex Faure*)
- For H<sub>2</sub>O<sup>+</sup> use scaled radiative rates
  - assuming strong coupling  $H_2$  ion
- Use RADEX for  $T_k = 10-100 \text{ K} \& n(H_2) = 10^4 10^6 \text{ cm}^{-3}$ 
  - find  $T_{ex} = 5-10 \text{ K}$

Alternative: radiative pumping ( $T_{ex} \sim 100 \text{ K}$ )

- lowers column density by  $\sim 15x$ 



#### Results

Column densities range from  $\sim 10^{13}$  to  $\sim 10^{15}$  cm<sup>-2</sup>

- absorption ~ emission: nucleus does not contribute much
- low  $H_2O / H_2O^+$  ratio: origin in diffuse gas
- OH<sup>+</sup> / H<sub>2</sub>O<sup>+</sup> ratio:  $f(H_2) \sim 11\% \sim 3x$  Galactic average



# The two ways to make H<sub>2</sub>O in cold gas





### The ionization rate

• Steady state:

$$\epsilon \zeta_{\rm H} = \frac{N(\rm OH^+)}{N(\rm H)} n_{\rm H} \left[ \frac{f_{\rm H_2}}{2} k_4 + x_e k_5 \right]$$

- diffuse absorbers: take  $x_e = 1.5 \times 10^{-4}$ ;  $n_H = 35 \text{ cm}^{-3}$
- adopt Galactic ionization efficiency  $\epsilon = 7\%$  (Indriolo et al 2012)

#### One parameter left:

• the atomic H column

$$f_{\rm H_2} = \frac{2x_e k_7/k_4}{N({
m OH^+})/N({
m H_2O^+}) - k_6/k_4}$$



## The HI column

- Matched-beam data exist for M82 (Yun) & Cen A (v.d. Hulst)
  - *N*(H) 3-5x below *N*(H<sub>2</sub>)
  - integrated over LOS, most gas is dense
- But  $OH^+/H_2O^+$  ratio indicates  $f(H_2) \sim 11\%$ 
  - locally in  $H_nO^+$  absorbers, most gas is diffuse
  - OH<sup>+</sup> & H<sub>2</sub>O<sup>+</sup> profiles similar to H<sub>2</sub>O & HI: phases mixed
  - absorption in 'bubbles' in sea of dense gas





### Discussion

Find  $\zeta_{H} = 6 \times 10^{-17} \dots 8 \times 10^{-16} \text{ s}^{-1}$ 

- like Galactic disk, 1/10 of Galactic center (Goto et al 2014)
- 1/100 of AGN estimates from  $H_3O^+$  (González-Alfonso et al 2013)

#### Low excitation & ionization: disk not nucleus

- physically distant from AGN/SB?
- more likely shielded by dust
- infall/outflow motions support

#### Ionization rates are not constant across galaxies

- variation ~10x between disk & nucleus
- as seen before in our Galaxy
- active nuclei with normal disks





