Water Megamasers in Galaxies

Violette Impellizzeri (NRAO/JAO)

Jim Braatz, Jim Condon, Fred Lo, Mark Reid, Cheng-Yu Kuo, Christian Henkel, Feng Gao, Lei Hao, Jenny Greene, Anca Constantin, Eugenia Litzinger

Water in the Universe : from Clouds to Oceans

Water masers emission at 22 GHz

Maser emission $(6_{12} - 5_{23})$ from water is seen at 22.2 GHz (rest frame)

Collisional excitation and low radiative deexcitation results in an over populated excited state (eg Neufeld & Melnick 1991)

Amplification through stimulated emission occurs in a coherent (freq/ velocity) gain medium.

Radiation has a very high surface brightness and is beamed to the observer.

Found in regions of dense gas $(10^8 - 10^{10} \text{ cm}^{-3}) => \text{ most luminous } (> 10 L_{\odot})$ are found very close to the super-massive black hole of an AGN.

Probing AGN – jet masers

Broad line (<100 km s⁻¹) emission in the radio jet out to 30 pc from the core.

Due to interaction of the jet with a molecular cloud.

Used to study e.g. shock speeds (~ 300 kms^{-1}) and jet densities (100 cm⁻³) for MRK 348.

Probing AGN – disk masers

Blueshifted, redshifted and systemic components.

Tend to have narrow emission lines (<1--3 km s⁻¹) and variable !

Estimate Black hole mass

NGC 4258 $M_{BH} = 3 \times 10^7 M_{solar}$ (Miyoshi et al. 1995)

With VLBI accurate geometrical distances can be found (e.g. Herrnstein et al. 1999)

NGC 4258 distance = 7.2 ± 0.3 Mpc

Water in the Universe : from Clouds to Oceans

Can be traced to high redshifts... February 2009 35 density (mJy) 30 ~ 160 water masers known locally (1:33) 25 -2000 Velocity (km/s Number 20 Arecibo Survey (26 lensed AGN) z=1.2--3.8 15 z = 0.66 (Barvainis & z = 2.64 (MG J0414+0534) 10 Antonucci 2005) (1:250) (1:6)5 0 0.5 1.5 2 2.50 Redshift

MG J0414+0534 is the most distant water megamaser water ever detected (lensing decreases the integration time needed by ~1150; 1.8 years with Effelsberg)

Distances : NGC 4258 example

- Measure the linear size of the disk via an analysis of disk kinematics from single-dish monitoring (acceleration) and VLBI mapping (rotation curve)
- Compare the angular size of the disk to the linear size to obtain a distance

The angular offset y of the systemic masers from the black hole in the vertical direction, one can obtain the inclination i of the orbit for systemic masers i = cos⁻¹ (y / $\Delta \theta$)

So one can obtain three parameters for the distance measurement from VLBI observation.

The remaining parameter, a, has to be measured from multi-epoch monitoring of maser spectra

The Megamasers Cosmology Project

- Measure H0 using geometric distances
- Constrain models of cosmology and Dark Energy
- Measure "gold standard" M_{BH} in external galaxies M-BH scaling relations, galaxy evolution
- Measure the geometry of the accretion disk and gas on sub-pc scales in AGNs
- I. Survey with the GBT to identify maser disk galaxies
- 2. Image the sub-pc disks with the High Sensitivity Array (VLBA+GBT+EB+VLA)
- 3. Measure accelerations in the disk with GBT monitoring
- 4. Model the maser disk dynamics and determine distance to the host galaxy

Progress with maser surveys

- Discovery of the first Extragalactic H₂O in M33 (Churchwell et al. 1977)
- Discovery of masers in NGC 4258 and NGC 1068 (Claussen & Lo 1984)
- Survey finds NGC 3079 (Henkel+ 1984)
- Large surveys identify masers with type 2 AGN (Braatz+1993)
- Parkes• NGC 4258 fully mapped (1995) NRO
- OVRO Discovery of maser at z=0.66
 Itap. (Barvainis & Antonucci 2005)
 - Discovery of maser at z=2.64 (VI+ 2008)
 - MCP makes first maser-based measurement of H_0 and maps

Water in the Universe : from Clouds to Oceans multiple maser disks (2009+)

Progress with maser surveys

162 galaxies detected out of3000 observed

~ 140 are in AGNs

~ 37 have evidence of being in a disk and are suitable for MBH measurement

~ 10 suitable for distance measurement

Primary sample for surveys: Type 2 AGNs at z < 0.05

Recent GBT disk maser spectra

Single dish spectra

- One method covers all scales out to the size of largest structures
- Maser distances can be used to calibrate other distance methods e.g. Cepheids, SN Ia, Tully-Fisher

- One method covers all scales out to the size of largest structures
- Maser distances can be used to calibrate other distance methods e.g. Cepheids, SN Ia, Tully-Fisher

H₂O Megamaser Disks

Mrk 1419

- Water maser discovered in 2002 with Effelsberg (Henkel+02)
- Sa galaxy w/ LINER nucleus, ~10 times farther than NGC 4258
- Vrot ~330-600 km s⁻¹
- R ~ 0.13 0.43 pc
- dV/dt ~ 2.8 ± 0.5 km s⁻¹ yr⁻¹

Mrk 1419

GBT single dish spectra

Blue-shifted masers strongest ~ 40 mJy

Flare in 2007 in red-shifted portion of the spectrum \sim 300 mJy.

Mrk 1419 flare

Flare lifetime ≈ 300 days Cloud size ≈ 100 AU

Water in the Universe : from Clouds to Oceans

Mrk 1419 accelerations

redshift

Mrk 1419 accelerations a = (2.1 ± 0.2) km/s/yr

blueshift

redshift

Mrk 1419 dynamic spectra

Mrk 1419 VLBA observations

Six VLBI (VLBA+GBT+EFF) epochs, 12 h each

rms of each epoch ~0.8 mJy/beam

Two epochs also with (phased) VLA

-Blue-shifted part of disk extremely warped -Red-shifted part thick?

Distance to Mrk 1419 – method 1

Method 1 : plotting the data on a PV diagram

Distance to Mrk 1419 – method 2

Method 2 : Bayesian approach

Bayesian analysis allows one to use all prior information for the model parameters to constrain the fitting.

- We fit a model (15 global parameters) with a Markov chain Monte Carlo approach, and use the Metropolis-Hastings algorithm to choose successive trial parameters
- We model the disk with a warp (position angle and inclination angle) and can fit eccentric orbits.
- Inputs: (x, y, v, a) for each maser spot
- Provide V_{pec} and fit H0 directly
- Code developed by Mark Reid (CfA)

Rather than seeking a single (best) solution and formal uncertainties, the Bayesian approach can directly probe the probability distribution of parameters without the assumption that the uncertainties follow the Gaussian distribution

Distance to Mrk 1419 – method 2

Method 2 : Bayesian approach

VIsr = 4882 + - 2 km/s, 91. inclination angle Dist = 72 + - 14 MpcBH mass = $0.9 + - 0.2 \text{ M}_{solar}$

Mrk 1419 H₂O Masers

Estimation of H₀ from Geometric Distances

 $H_0 = 67.6 \pm 4.0 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (6%)

- UGC3789 49.6 \pm 5.1Mpc H₀ = 69 \pm 7 (Reid et al. 2013)
- NGC6264 137±19 Mpc H₀= 68±9 (Kuo et al. 2013)
- NGC6323 107±42 Mpc H₀= 73±26 (Kuo et al. 2015)
- NGC 5765b 126±11 Mpc H_0 = 66±6 (Gao et al. 2016)
- Mrk 1419 $H_0 = 69 \pm 14$ (Impellizzeri et al in prep)
- IC 2560 $H_0 = 68 \pm 12$ (Wagner et al. in prep)
- Our measurement is in agreement with Planck prediction and supports the base $\Lambda\,\text{CDM}$ cosmology
- Including new galaxies being studied, we expect to improve the measurement to < 4%.

Improving the MCP measurement of H₀

- Improving VLBI sensitivity
- Improving acceleration monitoring
- Measuring additional galaxies
- IC 2560
- NGC 1194
- NGC 2273
- ESO558-G009
- NGC 5765b
- J0437+2456
- Improving our acceleration measurement to
- Incorporating "blind analysis" methods

 H_0 [km s⁻¹Mpc⁻¹] Update to Fig. 16 Ade et al. 2013 (Planck paper XVI)

Black hole masses from megamasers

GALAXY	M _{BH} (M _{sun})
Mrk 1419	1.1 x 10 ⁷
NGC 1194	6.6 x 10 ⁷
NGC 2273	7.6 x 10 ⁶
NGC 6264	2.5 x 10 ⁷
NGC 6323	1.0 x 10 ⁷
UGC 3789	1.1 x 10 ⁷

$M_{BH} = k^2 D/G$

Previously Published BH masses

GALAXY	M _{BH} (M _{sun})
NGC 4258	3.8 x 10 ⁷
NGC 1068	8.6 x 10 ⁶
Circinus	1.7 x 10 ⁶
NGC 3393	3.1 x 10 ⁷
NGC 3079	2.0 x 10 ⁶

Galaxy	M _{BH} (M _{sun})
NGC 4388	1.5 x 10 ⁷
NGC 5728	2.3 x 10 ⁶
IC 2560	2.0 x 10 ⁶
Mrk 1	in hand

BH masses from MCP

Galaxy	M _{BH} (M _{sun})
Mrk1210	1.3 x 10 ⁷
J0437+2456	1.3 x 10 ⁷
ESO 558	1.5 x 10 ⁷

Kuo et al. 2011

Water in the Universe : from Clouds to Oceans

By measuring BH masses we can see how Galaxies evolve

Water in the Universe : from Clouds to Oceans

M- σ relation (megamasers black hole masses only)

Water megamasers in the ALMA era

H2O molecule has multiple masing transitions in the sub-mm

• We are beginning an exploratory program to look for sub-mm masers in disks with ALMA

Thank you for your attention

