SPICA – a joint infrared space observatory Mission overview and status

Peter Roelfsema SAFARI Principal Investigator SPICA Collaboration lead SPICA Science Study Team lead

Netherlands Institute for Space Research

Netherlands Organisation for Scientific Research

SPICA SAFARI

Overview

- The goal a big cold IR facility; SPICA
 - ...a long and winding gestation process
 - Now under development as a joint ESA(M5)-JAXA mission

SPICA – mission overview

- M5 mission concept
- The M5 context 'we are not alone'
- Updates already in the pipeline...
- Instruments, capabilities
- Next steps towards selection in 2021

SPICA science

SAFARI

SRON

- The 'core' and mission driving science
- ... examples of what we can, and will do

2

...SPICA's long history

- 1995-2000 Japanese HII/L2 project
- 2007 M-class JAXA mission with ESA telescope
- 2010 HIIB to HIIA launcher \rightarrow smaller telescope
- 2011/2012 'Risk Mitigation Phase'
 - Too big for Japan alone \rightarrow ESA partnership needs to increase \rightarrow M4 mission?
- 2014 ESA/JAXA consider SPICA not viable under M4
 - Late 2014 joint JAXA/ESA CDF study \rightarrow M5 concept, but a (too) 'small' mirro
 - Mission lead moves from Japan to Europe
- 2015 viable concept with 2.5m telescope/SAFARI-grating
- 2016 M5 mission proposal submitted
- 2017 delays in M5 decision process... project in a 'holding pattern'
- 2018 ESA/M5 candidate mission

2019 – Phase-A study underway

2021 – mission selection

...SPICA's long history of ups and downs

4

A collaboration with long history

- Most day-1 partners are still on-board
- Very motivated and enthusiastic partners
- Most have 'space experience'

SRON

- Continuous remote interaction
- Bi-annual collaboration meetings

March 2011

5

The SPICA 'sweet spot' – the dusty universe

A unique observatory

looking through the veils, enabling transformational science

...imagine going *a factor 100+ deeper* than Hershel!

What is so unique?

SAFARI

SRON

- A COLD, big mirror
 - → true **background limited** Mid/Far-IR observing
- ~20 to ~350 μ m *inaccessible* for any other observatory
 - → the wavelength domain where obscured matter shines fill the blind spot between JWST and ALMA @ R~ few 1000

SPICA sensitivity/speed – a huge leap forward

The SPICA mission configuration

8

SPICA – the basic concept for M5

'PLANCK configuration'

- Size Φ4.5 m x 5.3 m
- Mass 3450 kg (wet, with margin)
- Mechanical coolers, V-grooves
- 2.5 meter telescope, < 8K
 - Warm launch
- 12 230 µm spectroscopy
 - FIR spectroscopy SAFARI ____
 - MIR imaging spectroscopy SMI
 - FIR polarimetry B-BOP
- `standard' Herschel/Planck SVM
- Japanese H3 launcher, L2 halo orbit
- 5 year goal lifetime

SAFARI

SRON

...phase 0 showed this is not a trivial goal

esa

1,540

•

Cesa

Telescope – monolithic 2.5m Ritchy-Chrétien

Herschel heritage

SAFARI

SRON

• Preliminary design from ESA/industry studies

- 20 µm diffraction limited performance
- M1: 2.5m F/1, M2: ~0.6m, M1-M2 ~2m

Conceivable (?) alternate configuration: off-axis

- Potential for larger area/margin
- Optics more challenging ...but SPICA is primarily spectroscopy

...might be looked into

10

Cryogenics to cool telescope and instruments

- Active cooling to 4K and 1.7K
 - Detector modules at 50mK with dedicated mK coolers (SAFARI, B-BOP)
- V-grooves passive cooling to 40K
- Detachable support struts

SRON

The SPICA project

ESA

SPICA Project

Observatory harvesting and governance

- International mission \rightarrow international oversight/cooperation
 - SPICA Science Study Team (ESA installed) represent science community
 - SPICA collaboration \equiv 3 instrument consortia + overall SPICA (science) consortium
 - Later; Science advisory committee, SPICA executive board

SAFARI

SRON

Heritage – Herschel and Planck taught us well

Examples of heritage being put to good use:

- H/W
 - Telescope
 - Cryo configuration with V-grooves
 - SVM elements
 - INAF as common instrument control unit supplier
 - Instrument cooler concepts
- Operations
 - Autonomous operations
 - Distributed ground segment
 - Likely; science operations concepts and possibly even tools
- Experience
 - ...the same faces all over the place

M5 – plans and progress

SRON

The M5 competition

SPICA

- Envision (UK)
 - Why did Earth and Venus evolve

so differently?

• THESEUS (Italy)

SAFARI

SRON

- How did the Universe begin and what is it made of?
 - Complete census of the Gamma-Ray Burst (GRB) population in the Early Universe

... in principle all are equally strong candidates

- ...and in the US there is OST
 - Regular, good contact between SPICA and OST

Evaluation/evolution of SPICA in Phase 0/A

Main conclusion – overall a valid proposition

- It fits... however, Mass is a worry \rightarrow track that carefully in Phase A
- It fits... however, downlink requires (planned) upgrades (QPSK or 8PSK /SCCC)
- Cannot do small Lissajous L2 orbit \rightarrow large halo more "earth-constraint"
- Cryogenics Module/SVM configuration being optimized weight/thermal

SPICA Science Study Team

Establish/maintain SPICA science drivers and requirements

- Represents full science community
 - Europe: Elbaz, Griffin, Kamp, Martin-Pintado, Spinoglio
 - Japan: Honda, Kotaro, Nagao, Nomura
 - PI's: Kaneda, Roelfsema (chair), Sauvage
 - ESA/JAXA study scientists: Tauber, Onaka
- Outputs
 - Now: SPICA science requirements document (for ITT)
 - For mission selection: SPICA Yellow Book
- Five topical science work groups \rightarrow open for participation
 - PPD's, galaxy evolution, nearby galaxies, ISM, solar system
 - Science (cases) to be documented in set of `white' papers
- Meetings; October, January, next one in June

Next steps – the schedule

	Event	Date	Objective
	Mission Definition Review (MDR)	21/11/2018	Check readiness for Phase A
	Phase A ind. ITT	Jan. 2019	
	Phase A ind. KO	June 2019	
Next real review: MCR ~ MSR dress rehearsal (or turkey shoot?!?)	Phase A Mission Consolidation Review (MCR)	June 2020 (TBC)	Close Mission and System-level trade-offs
MSR documents deadline: ~February 2021!!	Release Yellow book	Apr. 2021	Provide to Selection advisory board
	Mission Selection Review (MSR)	Apr. 2021	Technical/programmatic part. Confirm mission is within M5 boundaries
SAFARI			
SPICA - a joint infrared space observatory – Madrid 13/5/2019 - P. Roelfsema			

The SPICA Instruments

SAFARI – evolution dictated by science

Original design: Imaging Fourier Transform Spectrometer

Fast/efficient large area spectroscopic mapping
 ...but fundamentally limited in maximum sensitivity due to photon noise

SAFARI V2.0: highly sensitive grating spectrometer

- Basic R~300 mode → 1hr/5σ -5-7×10⁻²⁰ W/m² (4.6 m²)
 Will improve with (likely) better TES performance
- Martin Puplett Interferometer to provide R~3000 mode
- 4 bands covering 35-230 micron limited imaging capability: 3 pixels on-sky
- Critical technologies in very good shape
 - Detectors: goal sensitivity achieved
 - FDM 176pix/channel achieved
 - FTS mechanism close to TRL4
 - Cooler EM built and tested

SAFARI

SRON

With Japanese coolers: ~SPICA-ATHENA synergy

21

TES NEP - SAFARI requirement within reach

- SAFARI stated requirement: $\sim 2 \times 10^{-19} \text{ W}/\sqrt{\text{Hz}}$
- Ongoing TES research: achieve best possible device layout
 - Working towards larger array sizes
 - Production process

SAFARI

SRON

Optical characterization

Cooler – Frequency Domain Multiplexing

• Cooler EM built and tested, also with JAXA coolers

- FDM 176 pix/channel demonstrated
 - Requirement: 160 pix/channel

SAFARI

SRON

High Resolution - Martin-Puplett interferometer

- Mechanism as in original SAFARI concept
- Sensitivity factor of ~2 below R=300 mode
- Compact layout achieves R~11000-2000
- Development by ABB (Canada)
 - 'EM' unit already fabricated
 - \rightarrow cryogenic tests; e.g. metrology achieves ~15nm

SAFARI V1.0 concept

Current concept *ABB proprietary*

The Mid-infrared Instrument SMI

- SMI/LR-CAM large area low resolution surveyor
 - 17 36 μm, R = 50 120
 - 4 slits (10' long) with prism
 - Detector: Si:Sb
 - Camera mode 10'x12' FoV
- **SMI/MR** medium resolution mapper
 - 18 36 μm, R = 1200 2300,
 - 1 slit (1' long) with grating
 - Detector: Si:Sb
- **SMI/HR** molecular physics/kinematics
 - 12 18 μm, R = 28,000
 - 1 slit (4" long) with immersion grating
 - Detector: Si:As
- Japanese consortium

SAFARI

SRON

• PI: H. Kaneda/Nagoya U., ISAS

SMI functional block diagram

SMI optical layout

SRON

Observing with SMI

Slit viewer

For large area surveys. Telescope scan with 90 steps (1 step length = 2" $\sim 0.5 \text{ x}$ slit width) produces a spectral map and a 34 μ m broad-band image of 10' x 12' area, <u>simultaneously</u>.

1-D Beam-steering mirror

HR

- For spectral mapping of small areas. e.g., covering 2' x 2' by 60 step scan with I-D BSM and I telescope scan
- For fine adjustment of target peak positions

B-BOP – the far IR imager/polarimeter

- **B-BOP** imager polarimeter
 - 3 bands with polarization sensitive bolometers •
 - 3 bands: 70, 220,350 μm
 - observe same field simultaneously
 - FPA architecture designed and tested •
 - Readout analogous to PACS system •
 - European consortium (in statu nascendi) •
 - PI M. Sauvage/CEA Saclay

Spiral thermistors with absorbing dipoles

Size of 100 μm Airy disc

SPICA's science *Unveiling dusty matter in the universe*

Science Objectives – mission design drivers

• What processes govern **star formation**

across cosmic time

- what starts it, controls it, and stops it?
- What are the major physical processes in the most obscured regions of the universe?
- How is this related to the enrichment of the universe with metals
- What is the origin and composition of the first dust, how does this relate to present day dust processing?
- What is the thermal and chemical history of the building blocks of planets – connecting planet forming systems with our own solar system
- What is the role of magnetic fields

in dust filaments?

...all described extensively in the SPICA white papers

High-velocity AGN-driven outflows - Mrk 231

km s⁻¹, ~100 M_{sun} yr⁻¹ sr⁻¹), dashed light blue: low velocity outflow, green: low excitation

Gonzalez-Alfonso 2014, A&A 561

10-30 Jy... Mrk 231 is too bright for SPICA/SAFARI \rightarrow SPICA will do this for many objects out to $z \sim 1.5-2!$ SRON SPICA - a joint infrared space observatory - Madrid 13/5/2019 - P. Roelfsema 34

Charting the unknown – SMI LR/CAM surveys

Large area blind survey

- $10 \text{ deg}^2 \sim 600 \text{ hr}$
- 300 x 2 hr/field (10'x12')
- Galaxy population
- Dust in galaxies

For comparison:

SRON

SAFARI

- Stars with debris disks
- follow up with **SAFARI** \rightarrow and **SMI/MRS**

The first galaxies – H_2 and dust at ~1 Bn yr

SPICA - a joint infrared space observatory – Madrid 13/5/2019 - P. Roelfsema

HD – probing the mass of planetary disks

- HD 56/112 μ m lines in the SAFARI bands
 - Direct tracer of gas mass in PPD's
 - Opens new domain of disk masses

Ice histories: Pristine versus disk origin

standard T Tauri disk model from Woitke et al. (2016) with MCMax (Min et al. 2009, 2016) – consistent ice opacities [Kamp, Scheepstra, Min, Klarmann in prep

SAFARI

SRON

Magnetic fields – driver in star formation in ISM filaments?

B-BOP will probe the link between magnetic field, low-density filaments (striations) and dense star-forming filaments *characteristic filament width of 0.1 pc observable out to d ~ 350 pc*

SRON

not accessible to ALMA, neither to ground-based SCUBA2-Pol, NIKA2-Pol, neither to SOFIA, nor to balloon-borne Super BLAST-Pol

Mineralogy – e.g. debris discs

The mineralogy of micron-sized dust particles in discs directly probes the composition of their parent bodies

- SPICA provides access to the far-IR resonances of several minerals, allowing a precise determination of their composition and structures
- The the composition of refractory dust in its exo-comets and make a direct comparison with our Solar System

SRON

69 μ m feature for β -Pic (de Vries et al. 2012)

Solar-System Science with SPICA

Uniquely suited to study the *cold outer Solar System*, Saturn and out

(thermal emission peaks at SAFARI wavelengths)

- Many spectral features unique to SPICA:
 - HD: direct handle on D/H

SAFARI

SRON

- Mg/Fe in silicates (comet atmospheres, asteroids, ...)
- Water ice: comets, asteroids, ...
- Trans-Neptunian Objects, our "debris disk" (follow-up to Spitzer/Herschel)

Summary

SAFARI

SRON

- SPICA: a mid-far infrared space observatory
 - 2.5 m diameter mirror, actively cooled to 8 K
 - Junprecedented sensitivity in mid/far IR
- SPICA focus: spectroscopy of the obscured universe, straddling the gap between JWST and ALMA
- SPICA joint ESA-JAXA project
 - Mission final selection 2021 ~TRL5 milestone
 - **Phase 0/A -** started re-iteration of capabilities and design •
 - Science goals/capabilities to be revisited/upgraded
 - \rightarrow SPICA science conference in Crete next week

www.spica2019.org

SPICA information: www.spica-mission.org P.R.Roelfsema@sron.nl

