

Maryvonne Gerin

"Interstellar hydrides with Herschel: from the 20th to the 21th century"

Designing the mission : spectroscopy

 T.G. Phillips in ESA, From Ground-Based to Space-Borne Sub-mm Astronomy p 221-228 (SEE N91-21986 13-89)

Figure 3. The anticipated spectrum of a 30K, dense interstellar cloud, showing the dust spectrum, heavy and light molecule rotation spectra and atomic fine-structure lines. Fine structure lines : ISO & KAO before Herschel & SOFIA

KAO : DR21

- KAO : [OI] in DR21 (*Poglitsch et al. 1997*)
- ISO : SgrB2, W49 at "high" spectral resolution (FP) (Vastel et al. 2000, Lis et al. 2001) :

 Detection of absorption in [CII] and [OI] 63µm

 Limited velocity resolution → Difficulty in determining the opacity and for disentangling narrow and features ISO : SgrB2

[CII] with HIFI & PACS towards W49N

- HIFI : Load chop observations with "ref" position 1.5° OFF the Galactic plane
- PACS : Chopped with 6' OFF. Correction for OFF contamination
- Complex line profiles with prominent absorption from foreground gas
- PACS with low spectral resolution : absorption in the central pixel → can contribute to the [CII] deficit ?

Determination of the diffuse gas pressure distribution

From FUV : Jenkins & Tripp 2011

From FIR with Herschel : Gerin+2015, Velusamy+2017

Median pressure : log(p) = 3.58 + - 0.175p ~ nT ~ 3800 Kcm⁻³ within a factor 1.5 Variation of pressure with Galactic radius : 6900 Kcm⁻³ At the mean Galactic radius of 5 kpc Good agreement for the same sources

N⁺ absorption as a tracer of the WIM

 $N(N^{+}) \simeq 1.5 \ 10^{17} \ cm^{-2} - N(C^{+})/N(N^{+}) \simeq 40$

Diffuse ionized gas with n(H⁺) ~ 0.1 – 0.3 cm⁻³ and T ~ 8 000 K \rightarrow Warm Ionized Medium (WIM) C/N ~ 3 – 4 ; \rightarrow about 10% of the C⁺ absorption is associated with the WIM

GOT C+ [CII] Distribution in the Milky Way

Goldsmith, Langer, Pineda, Velusamy+

The CNM/WNM fraction from Herschel GotC+ survey

Pineda, Langer, Velusamy, and Goldsmith: A Herschel [Cu] Galactic Plane Survey

[CII] fine structure line at 158 μm is the main coolant of the CNM. The Comparison of HI and [CII] emission enables the separation of the CNM and WNM

Pineda+2018 [CII] in M51

Large scale [CII] maps : Star formation rate Feedback effect from massive stars Pabst+2019 [CII] in Orion / L1630

Preparation for Herschel/HIFI observations : molecules

- 1/ Choosing the species :
- Hydrides from the main elements (C, N, O)
- Hydrides with specific properties (F, Cl)

2/ Choose the targets :

- Use SWAS & ODIN + VLA subset of strong FIR sources with known foreground absorption

3/ Define the observations :

- Expected abundances from models ?
- Constant sensititivity : S/N = 100 on continuum
- Frequencies & line strengths ? Ask spectroscopists

Figure 4.1 "The Astronomer's Periodic Table".

The Astronomer's Periodic Table ; B. Mc Call

Table 1 Main astrophysical hydrides^{a)}

Formula	Name	Spectral domain ^{b)}	Ref.	
H ₂	Molecular Hydrogen	UV-Visible, IR, FIR	Carruthers (1970b)	
H_3^+	Protonated molecular hydrogen	IR	Geballe & Oka (1996)	
CH	Methylidyne	UV-Visible, (sub)mm, cm	Swings & Rosenfeld (1937)	
CH ₂	Methylene	FIR, (sub)mm	Hollis, Jewell & Lovas (1995)	
CH ₃	Methyl	IR	Feuchtgruber et al. (2000)	
CH ₄	Methane	IR	Lacy et al. (1991)	
CH^+	Methylidynium	UV-Visible, FIR, (sub)mm	Douglas & Herzberg (1941)	
CH_3^+	Methylium	IR, (sub)mm	Roueff et al. (2013) ^c	
NH	Imidogen	UV-Visible, (sub)mm	Meyer & Roth (1991)	
NH ₂	Amidogen	(sub)mm	van Dishoeck et al. (1993)	
NH ₃	Ammonia	(sub)mm, cm	Cheung et al. (1968)	
NH_4^+	Ammonium	(sub)mm	Cernicharo et al. (2013) ^{d)}	
OH	Hydroxyl radical	UV-Visible, FIR, cm	Weinreb et al. (1963)	
H_2O	Water	FIR, (sub)mm, cm	Cheung et al. (1969)	
OH^+	Hydroxylium	UV-Visible, (sub)mm	Wyrowski et al. (2010)	
H_2O^+	Oxidaniumyl	UV-Visible, (sub)mm	Ossenkopf et al. (2010)	
H_3O^+	Hydronium	FIR, (sub)mm	Phillips, van Dishoeck & Keene (1992)	
HF	Hydrogen fluoride	FIR	Neufeld et al. (1997)	
SH	Mercapto radical	UV-visible, FIR	Neufeld et al. (2012)	
H_2S	Hydrogen sulfide	(sub)mm	Thaddeus et al. (1972)	
SH ⁺	Sulfanylium	(sub)mm	Benz et al. (2010); Menten et al. (2011)	
HCl	Hydrogen chloride	UV-visible, (sub)mm	Blake, Keene & Phillips (1985)	
HCl ⁺	Chloroniumyl	FIR	De Luca et al. (2012)	
H_2Cl^+	Chloronium	(sub)mm	Lis et al. (2010a)	
ArH ⁺	Argonium	(sub)mm	Barlow et al. (2013)	

^{a)}Adapted from The Astrochymist (www.astrochymist.org); ^{b)} The corresponding wavelength ranges are : UV-Visible 100 – 1000nm, IR : $1 - 20 \ \mu m$, FIR 20 – 300 μm ; (sub)mm 0.3 – 4 mm; cm 1 - 20 cm; ^{c)} A tentative detection of the isotopologue CH₂D⁺ is reported; ^{d)} The detection of the isotopologue NH₃D⁺ is reported.

Element	Ionization Potential	Endothermicity (Kelvin equivalent = $\Delta E/k_B$) for			Driver
	(eV)	$X + H_2 \rightarrow XH + H$	$X^+ + H_2 \rightarrow XH^+ + H$	$X + H_3^+ \rightarrow XH^+ + H_2$	
Не	24.587	No reaction	Exothermic, but primary channel is to He + H + H ⁺	29000	
С	11.260	11000	4300 🗹		Warm gas
N	14.534	15000	230	10000	Cosmic rays
0	13.618	920 🗹	V	\checkmark	Warm gas or cosmic rays
F	17.423	\checkmark		10000	None needed
Ne	21.564	No reaction	Exothermic, but primary channel is to Ne + H + H ⁺	27000	
Si	8.152	17000	15000		Warm gas
Р	10.487	19000	13000		Warm gas
S	10.360	10000	10000 🗹		Warm gas
Cl	12.968	515			UV with hv > 12.97 eV
Ar	15.760	No reaction		6400	Cosmic rays

Gerin, Neufeld & Goicoechea ARAA 2016

SOFIA new detection

Other telescopes *No detection yet*

ALMA

Warm And Dense ISM

```
HeH<sup>+</sup>
He
                                                           CH, <sup>13</sup>CH, CH<sup>+</sup>, <sup>13</sup>CH<sup>+</sup>, CH<sub>2</sub>, CH<sub>3</sub>, CH<sub>3</sub><sup>+</sup>, CH<sub>2</sub>D<sup>+</sup>, CH<sub>4</sub>, C, C<sup>+</sup>
NH, <sup>15</sup>NH NH<sub>2</sub>, NH<sub>3</sub> (o & p), <sup>15</sup>NH<sub>3</sub>, ND, NH<sub>2</sub>D, ND<sub>2</sub>H, ND<sub>3</sub>, NH<sub>3</sub>D<sup>+</sup>, NH<sup>+</sup>, N<sup>+</sup>
OH<sup>+</sup>, H<sub>2</sub>O<sup>'+</sup> (o & p), H<sub>3</sub>O<sup>+</sup>, H<sub>2</sub>O (o & p), H<sub>2</sub><sup>18</sup>O, HDO, D<sub>2</sub>O, OD
С
Ν
0
 F
                                                            HF, DF
C
                                                            HCl, HCl<sup>+</sup>, H<sub>2</sub>Cl<sup>+</sup>
                                                            SH, H_2S, SH^+
S
Ar
                                                            ArH<sup>+</sup>
                                                                                                                                                                                                                              ISO
                                                                                                                                                                                                                              Herschel new detection
                                                                                                                                                                                                                              Herschel observations
```

Molecular absorption profiles : from SWAS & ODIN to Herschel & SOFIA

Plume+ 2004

Gerin,Neufeld, Goicoechea ARAA 2016

PCA analysis of hydride absorption spectra

Separation of different families :

- "HI" : ions like CH⁺, OH⁺ & H_2O^{+} Gas with a low fraction of hydrogen in H_2
- CH & H₂O for diffuse molecular gas : trace the H₂ column density
- H₂S & NH₃ molecular gas with lower filling factor (higher density). Similar behavior as CN & HNC

Gerin, Neufeld & Goicoechea 2016 ARAA

Tracing the H₂ fraction

Local value $f(H_2) = 2n(H_2)/(n(HI)+2n(H_2))$ $\not\equiv$ Integrated value $f(H_2) = 2N(H_2)/(N(HI)+2N(H_2))$

- Global tracers = molecules with a nearly constant abundance relative to H₂ (well mixed) : CH, HF, OH, H₂O, HCO⁺, CCH,...
 - Provide the integrated H₂ column along the line of sight for each velocity feature
 - Abundance uncertainty \leq factor of 2
 - Characteristic scales probed are ~ few pc for local sight-lines, up to ~ 100pc for Galactic Plane sources
 - Averaging effect along the line of sight \rightarrow better accuracy for long sightlines
- Local H₂ tracers = species with enhanced abundance in a special range of H₂ fraction :
 - molecular ions formed and destroyed by H₂ reach a peak abundance at a given f(H₂) (which may depend on the conditions) (e.g. OH⁺, H₂O⁺, ArH⁺)
 - Trace only the gas close to this optimum f(H₂)
 - The local H₂ fraction may therefore be different from the global value

CH , HF & H_2O

- HF : formed exothermically in the F + H_2 reaction \rightarrow HF tracks H_2
- CH is shown from observations and models to track H_2 with a. constant abundance CH/ H_2 = 3.6 10⁻⁸

N(HF) / N(CH) ~ 0.4 → HF/H₂~ 0.6 – 2.4x10⁻⁸ H₂O/HF ~2 → H2O/H2 ~ 2.5x10⁻⁸

Consistent with chemical models & direct measurement towards stars

Good understanding of the chemistry Molecular probes of the H/H₂ transition

Other Molecules tracing H₂

- Species with strong absorption lines at lower frequencies (~ 100GHz) where the sky is more transparent : HCO⁺, CCH, HOC+, CF+
- Nearly constant abundances over a decade in N(H2) with a real dispersion (0.2 dex or a factor 1.6)
- Includes the regime of CO-dark H2 with N(H2) ~ 5x10²⁰ cm⁻²
- Choice of species to cover a range in N(H2) : HF is the most sensitive probe in the THz domain HCO⁺ is the most sensitive probe in the mm domain HCO⁺ n-H O & OH (THz) probe the same range

 HCO^+ , $p-H_2O$ & OH (THz) probe the same range of H_2 columns

CH & CCH allow to reach higher H_2 columns where HCO^+ is saturated

Determination of the Cosmic Ray ionization rate

New probes of CRIR ; Higher value in diffuse gas than in dense & cold clouds $\zeta(H) = (2.3+/-0.6) \times 10^{-16} \text{ s}^{-1} (H_2)$; $\zeta(H)/n_{50} = (4.6+/-0.5) \times 10^{-16} \text{ s}^{-1} (H \text{ clouds})$

Neufeld & Wolfire 2017, Le Petit+2016

 H_3O^+ absorption in metastable states : Hot H_3O^+ !

Different behavior from other ions & neutrals : Chemical pumping of the metastable stables at the molecule formation & slow relaxation

Lis +2014

- U line in HIFI & PACS spectra → Identified as ArH⁺
- Specific chemistry : ArH⁺ abundance maximum when $f(H_2) \simeq 10^{-4}$ to 10^{-3}
- ArH⁺ abundance relative to H ~ 10⁻¹⁰ to 10⁻⁹
- Now detected at high redshift

Barlow et al. 2013, Schilke et al. 2014

Cl chemistry in the ISM : an illustration of the collaboration between spectroscopy, models & observations

HCl in the ISM discovered in 1985 (Blake et al 1985) Herschel/HIFI discovery of H_2Cl^+ (Lis et al. 2010) and HCl⁺ (De Luca et al. 2012).

Two Reactive ions : CH⁺ and SH⁺

Endothermic formation pathway (C⁺ + H₂ \rightarrow CH⁺ + H Δ E 4300K) : use the energy of ion-neutral velocity drift for enhancing the formation in diffuse gas

Diagnostic of turbulence properties

Godard+2012,2014

The surprise of detecting extended CH⁺ emission

CH⁺ in PDRs : Efficient formation with vibrationally excited H₂ Other possibility : irradiated Shocks

> Agundez+2010, Parikka+2017

25

Tracers of UV irradiated molecular cloud surfaces

$CH^+ J=1-0$ emission scales with G_0 in OMC-1

Detecting the full CO spectral line energy distribution

Orion Bar : Good fit with constant pressure PDR model, with detailed accounting of the heating processes

The maximum pressure scales with G0

Joblin+2018

A new hydride : HeH⁺ in NGC 7027

- Evidence for efficient radiative association
- HeH+ is the starting point of chemistry in the Early universe (with a somewhat different chemical network)

 $\mathrm{He}^{+} + \mathrm{H} \rightarrow \mathrm{HeH}^{+} + h\nu$

 $\mathrm{HeH}^{+} + e^{-} \rightarrow \mathrm{He} + \mathrm{H}$

 $HeH^+ + H \mathop{\rightarrow} H_2^+ + He$

Güsten+19

Hydrides at High redshift : use ALMA & NOEMA

Muller+2017, Falgarone+2017

A lot of Challenges for Models :

- ISM Chemistry : Cl ; C⁺/C/CO transition ; CH⁺ & SH⁺
- PDR physics : explaining the CO SLED and the relationship between G0 and Pressure
- Understanding Feedback processes for galaxy evolution
- Understanding the intricacy of ISM phases : toward GUSTO
- Cosmic Rays origin and propagation

General remarks

- Early preparation :
 - Laboratory work (spectroscopy, molecular processes, dust properties ..
 - Theory (collisional cross sections, reactivity ; ..)
 - Source Models : PDR, MHD, radiative transfer
 - Use archives + ground based observations
- Many surprises :
 - do not trust models at 100%
 - Systematic approach in observations (limit in S/N ; broad spectral coverage) as in guaranteed time allows to open the discovery space
- Legacy for the future : unique wavelength coverage & range of spectral resolution

ESA Voyage2050 FIR workshop : Paris June 14th

Contact Martina Wiedner (martina.wiedner@obspm.fr) & me