The Herschel view of the cool ISM reservoirs in luminous radio AGN

3C273

Clive Tadhunter University of Sheffield Collaborators: Dan Dicken, Manu Bernhard, Raffaella Morganti, Cristina Ramos Almeida,

Supermassive black holes: the energy source for active galactic nuclei

Quasar: $L_{bol} > 10^{38} W$ $> 0.2 M_{\odot} yr^{-1}$ $> 2x10^{6} M_{\odot} in 10^{7} yr$

0.003pc!

Event Horizon Telescope Collaboration (2019)

Quasars triggered at the peaks of major, gasrich mergers (e.g. Sanders et al. 1988)

Investigating triggering mechanisms

Radio-loud AGN

Giant elliptical host galaxies $M* > 10^{11} M_{\odot}$

Lobes of synchrotron-emitting relativistic electrons interact with, and heat, hot ISM/IGM

Powerful radio AGN: P_{1.4GHz}>10²⁵ W Hz⁻¹

NASA, ESA Baum, O'Dea, Perley, Cotton

Correlations between optical and radio classifications

Optical spectra

Radio morphology

3500

4000

4500

5000

Multi-wavelength observations of the 2Jy sample

- Complete sample of 46 southern (δ < +10°) radio sources with S_{2.7GHz} > 2 Jy, intermediate redshifts (0.05 < z < 0.7), steep radio spectra (α > 0.5), high radio powers (10²⁵ < P_{1.4GHz}<10²⁸ W Hz⁻¹)
- Most sources are have nuclei of quasar-like luminosity, but covers a range of AGN luminosities

• Best observed of all radio AGN samples in terms of the depth and completeness of its multi-wavelength data

Deep Gemini imaging of the 2Jy sample

95% of quasar-like SLRG show evidence for tidal features at high surface brightness levels, but only 27% of WLRG.

Ramos Almeida et al. (2011,2012)

The large-scale environments of radio AGN

Ramos Almeida et al. (2013)

Whereas quasar-like SLRG typically in galaxy groups, WLRG are in moderate to rich cluster environments.

Far-IR (70µm) derived star formation rates for 2Jy radio galaxies

- Star formation rates in radio galaxies typically low $(0.1 30 M_{\odot} \text{ yr}^{-1})$
- Evidence that WLRG have lower SFR than SLRG
- ➔ Unlikely that the majority of powerful radio galaxies triggered at the peaks of *major*, *gas-rich* mergers

Investigating triggering mechanisms

Herschel "must do" observations of the 2Jy sample: measuring the cool ISM reservoirs

- Deep PACs 100, 160µm observations of all 46 objects (100% detection at 100µm, 90% detection at 160µm)
- Deep SPIRE observations of 19 far-IR bright objects
- Use SED fitting to SPIREobserved objects to test assumptions of modelling approach
- Dust masses precise to factor ~2 just using just 100 and 160µm data

Tadhunter et al. (2014) Dicken et al. (2019)

Potential non-thermal contamination

Contamination by steep spectrum lobe emission in Herschel beam

Contamination by flat spectrum core emission in Herschel beam

Extreme contamination by flat spectrum core emission in Herschel beam

How massive is the gas/dust reservoir?

- Define quasar to have $L_{bol} > 10^{38}$ W (M_B < -23)
- Black hole must accrete > 0.2 M_{\odot} yr⁻¹ to maintain activity
- Typical quasar lifetimes: ~10⁶ 10⁸ yr
 →Mass accreted by SMBH over lifetime: ~2x10⁵ 2x10⁷ M_☉
- But, on the basis of the black hole mass/host galaxy correlations, for every 1 M_{\odot} accreted by the black hole, ${\sim}1000~M_{\odot}$ stars must be formed in the bulge of the host galaxy...

→ The *total* gas reservoir for a particular quasar triggering event is ~2x10⁸ - 2x10¹⁰ M_☉
 → For typical quasar lifetime of ~10⁷yr predict dust mass ~2x10⁷ M_☉ for M_{gas}/M_{dust}=100

Determining dust masses using Herschel data for the 2Jy sample

- Assume a *single* temperature modified BB fit
- Fits to SEDs and colourcolour plots (objects with SPIRE data) → β~1.2
- Determine dust temperatures (T_d) from F_{160}/F_{100} ratio and β =1.2
- Dust masses follow from:

$$M_d = \frac{S_v D^2}{\kappa_v^m B(v, T_d)}$$

 Dust mass determination precision: ~factor 2 (for given κ₁₆₀)

Dust mass results

- Typical radio AGN dust masses ~10x lower than ULIRGs, but >10x higher than elliptical galaxies
- <15% of elliptical galaxies have M_{dust} >10⁶ M_☉
- Only requires ~2xLMC cool ISM to trigger quasar
- → In most cases triggering mergers are relatively minor (although ~10-20% of SLRG consistent with more major mergers)

Tadhunter et al. (2014) Dicken et al. (2019)

Dust masses and radio AGN sub-classes

Evidence that WLRG/FRI have lower dust masses on average than SLRG/FRII, consistent with different triggering mechanisms

2Jy and PG quasar sample comparison

PG quasar sample (z < 0.5) – representative of local, luminous, radioquiet AGN – shows a similar range of dust masses to 2Jy radio AGN

Conclusions

- Dust masses of 2Jy radio AGN are intermediate between those of quiescent elliptical galaxies and ULIRGs
- Combined with information on detailed morphologies, environments and star formation properties, consistent with SLRG radio AGN in local universe being triggered in relatively modest mergers
- Radio-quiet PG quasars have similar cool ISM reservoirs to 2Jy radio AGN, consistent with similar triggering mechanism
- Lower dust masses of WLRG/FRI compared with SLRG/FRII, suggest different triggering mechanisms