Let's discover our ORIGINS

How does the universe work?

How did we get here?

Are we alone?

Discovery of new phenomena

x1000 more sensitive than anything before

★ 5.9m aperture non-deployed cold aperture (4.5K)

Low-risk development, testing, and deployment

★ Mid and Far - IR has rich chemical and physical information

Margaret Meixner (STScl/JHU) **Community Co-Chair, Origins Science and Technology Definition Team**

http://origins.ipac.caltech.edu @OriginsTele

Large Mission Studies for Decadal

Origins Space Telescope Margaret Meixner (STScI/JHU) Asantha Cooray (UC Irvine)

Lynx Ferval Ozel (U. Arizona) Sara Seager (MIT) Alexey Vikhilin (Harvard/CfA) Scott Gaudi (OSU)

Habex

LUVOIR Debra Fischer (Yale) Brad Peterson (OSU)

Origins: Spitzer-like minimal deployable design

wavelength coverage: 2.8-588 μ m Telescope:

diameter: 5.9 m

area: 25 m² (=JWST area)

diffraction-limit: $30 \,\mu m$

temperature: 4.5 K

Cooling: long life gyro-coolers

Observatory Mapping Speed: 60" per second Launch Vehicle:

Large, SLS Block 1, Space-X Starship Lifetime: 5 years, 10 year propellant **Orbit:** Sun-Earth L2

Three Instruments

OSS: Origins Survey Spectrometer -25-588 μ m R~300, survey mapping -25-588 µm R~43,000 -100-200 µm R~325,000

MISC-T: Mid-Infrared Spectrometer Camera Transit -Ultra-Stable Transit Spectroscopy -2.8-20 µm R~50-295

- FIP: Far-infrared Imager Polarimeter
 - 50 or 250 μ m, Large area survey mapping - 50 or 250 μ m, polarimetry

Observatory Integration and test re-uses Johnson Space flight Center Chamber A: end-to-end, "test as you fly"

Technologies

Detectors: tall pole and we have a plan Far-IR: improved sensitivity increase pixel count (~10⁴) KIDs, TES Mid-IR: improved relative spectral stability, 5 ppm state of art: 20-50 ppm HgCdTe, Si:As, TES

Cryocoolers: almost there -4.5 K: Thanks JWST + Hitomi! -50 mK: NASA Dev.

NGAS JWST/

SHI Hitomi/

Origins Mission Development Timeline

How does the universe work?

How did we get here?

Are we alone?

Discovery of new phenomena

Origins/FIP Surveys: Billion Galaxies!

1000²deg, 45mJy@250µm

LSST = Origins FIP ~10 years 1000hrs.

18,000²deg, 1mJy@250*µ*m

Herschel 2-D surveys are confusion limited...

⁰ billion ^{years ago}

Origins/OSS surveys are not: "Infrared SDSS" Millions of galaxies z<8

Herschel HerMES: Amblard et al.

NUCLEAR ACTIVITY

SUPER-NOVAE AND EVOLVED **STARS**

OUTFLOW

STAR FORMATION

OUTFLOW

Protostars

Our solar system

Protoplanetary disks

Debris disks

Origins Uniquely Follows the Trail of Water

Bins of Gas Temperature, E_{μ}/k (K)

Origins definitively measures gas mass of planet forming disks

Origins definitively measures D/H (HDO/H2O) in >200 comets & asteroids

Origins definitive measurements of water trail

Water content (Earth oceans)

Geometry of Transiting Exoplanets

- Primary Transits
 - Phase = 0 & 1
 - Transmission spectrum
- <u>Secondary Eclipses</u>
 - Phase = 0.5
 - Dayside emission spectrum
- <u>Thermal Phase Curves</u>
 - Phase = 0 to 1
 - Phase-resolved emission spectrum

Why M Dwarfs?

- M dwarfs are common ightarrow
 - 75% of stars within 15 pc are M dwarfs
- Rocky planets are common
 - Expect to detect about a dozen HZ exoplanets transiting mid-to-late M dwarfs within 15 pc
 - Four such planets are already known (TRAPPIST-1d,e,f and LHS-1140b)
- Advantages of small (rocky) planets transiting M dwarf stars
 - Larger transit depths
 - Closer habitable zones (5 100 days)
 - Increased transit probability in HZ

T. Henry, RECONS Survey

Origins MISC-T: IR wavelengths rich in biologically interesting molecules

Tier 3 Search for bio-signatures (O_3+N_2O, O_3+CH_4) with additional transits of temperate worlds

Tier 2 Eclipse observations of clear planets to determine if they are temperate

Tier 1 Transit observations to determine which planets have tenuous, clear or cloudy atmospheres

Pre-select terrestrial M-dwarf planets based on: (i) Planet radius and equilibrium temperature. (ii) Relative rank based on suitability for detailed atmospheric characterization. (iii) Pre-Origins observations with JWST, ELTs etc.

Origins builds on JWST and ELT successes

Discovery Space of Origins Expectations from modern astrophysics

H2 mapping with Origins vs JWST in near-by galaxies (in 12 hours)

15" scale maps of dust polarization to bridge Planck (2') & ground (1")

Measure sizes to all KBOs > 10 km in a few hundred hour survey

And lots and lots more!

Study dust in debris disks!

Time variability in protostellar accretion (Time-domain panel)

Thanks to Origins Study Team

Full team list: asd.gsfc.nasa.gov/firs/

Now is the time to do Origins!

- science drivers are NASA astrophysics:
 - How does the Universe work?, How did we get here?, Are we alone?
- Vast Discovery space
- x1000 in sensitivity
- 4.5 K, 5.9 m telescope + sensitive Far-IR detectors
- Agile observatory mapping 1000s deg²
- exoplanet transit spectroscopy high precision 2.8-20 μ m spectrograph, <5 to 20 ppm
- Builds on technical heritage, e.g. Herschel
- Origins' design is low-risk (minimal deployments) and robust.
- Technology maturation is achievable (3-4 years). https://origins.ipac.caltech.edu
 - https://asd.gsfc.nasa.gov/firs/

