HIFI beams and efficiency parameters

R.Moreno

Observations on Mars

- → Maps of Mars with 7x7 fast dbs raster during 2 runs:
- OD330-331 (8.5") and OD390-414 (5"), in Apr. and Jun/Jul 2010
- \rightarrow SAA: -14 and SAA = +17/27

Mars Maps

Mars' Model

Brightness temperature map at first frequency

Right ascension(arcsec)

http://www.lesia.obspm.fr/perso/emmanuel-lellouch/mars/

Because of Mars convolution at High frequencies, the Tb used is the mean brightness temperature/beam

Beam : data analysis

Fit of a 2D Gaussian (see Michael Olberg report)
→ Amplitude, FWHM

Numerical convolution with mars model maps to retrieve the HPBW (PSF)

HPBW numerical deconvolution fits the analytic relation between FWHM and planet diameter (θ s) HPBW = sqrt[FWHM²-(ln2/2* θ s)²]

Theoretically for tha HIFI antenna:

HPBW = $2/pi^{1.6} + 0.021 * \text{Te} (dB)^{3}/D$

With Te, the edge taper

HPBW

Difference of the fitted Te between run 1 and 2 →Translate a variation of the HPBW measurements (pointing quality due to SAA ?). But Mostly at low frequencies

Possible explication :Random effect

Simulation of low sampling(7x7) maps convolved with Mars + SNR=50 \rightarrow relative error larger at low V than at high V (\rightarrow point-like at low V but not at high V)

Random effect \rightarrow we can simply fit both run 1/2

HPBW : H almost equal V

HPBW- All data

Fit the derived HPBW over all the bands \rightarrow Te=8.01 ± 0.41 dB

HPBW residuals- All data

HPBW residuals (arcsec)

Beam effiency: Beff

 The antenna temperature Ta measured on a planet depend of the beam convolution, between a Gaussian beam and a disk, with the so-called Geometrical dilution factor (Fd):

 $Fd=1/(1-2^{-(\Theta s/\Theta t)^2})$

- With θs and θt the angular diameter of the source and of the telescope beam (HPBW), respectively
- Ta = Tmb*Beff/Feff and Tmb=Trj/Fd
- With Ta the antenna temperature measured, Trj the Rayleigh-Jeans temperature of the planet, and with Beff and Feff the beam and forward efficiencies. Feff =0.96.
- In practice the Beff is computed by the following equation :
 Beff = Ta/Tmb*Feff

Beam and Aperture efficiency

The aperture efficiency (ηa) depends of the antenna surface accuracy (σ) and wavelength (λ):

Ruze formula:

 $\eta a = \eta a 0 \exp(-(4pi\sigma/\lambda)^2) = Ageo/Aeff$

and for HIFI

Beff = 1.015 η_{a}

2D calculation of the illumination pattern taking into account the full blockage by Urs Graf (Kosma)

Good reproducibility between run 1 and 2 (\pm 1 σ) Very good fit : Beff accuracy \pm 2.3 % But for some bands (4,5,7) can be up to 4%

Beff: V

but for some bands (1,4,6,7) can be up to 10%

Beff: H+V

Beff accuracy ± 4 %

Point source sensitivity: χ_{pss}

From C. Kramer report :

Xpss=Sv/Ta = 2k/Ageo Feff/ ηa

Compute Sv from Mars model and HPBW. fit the measured Sv/Ta on Mars with Xpss taking the derived $\eta a0$ and λ with Beff

+ scaling factor K0.

Xpss:H

Very good fit : Xpss accuracy ± 2.3 % - K0=1.125

Xpss:V

Xpss accuracy ± 5.5 %

Xpss:H+V

Xpss accuracy ± 4.5 %

H/V imbalance

Imbalance possible reasons between H and V polarization:

- •H/V Beff
- •H/V Relative pointing (known) + APE
- •H/V HPBW (should be OK, same FIT)
- •H/V sideband ratio (for lines)

•Convolution with source brightness distribution (point-like, extended)

H/V Bands 1-6 < 5-7% $\pm 2\% \rightarrow$ measurable H/V Band 7: up to 10% but linear and reproducible

Comparison with Mars S.Scan

S. Scan : Band 1-3 : weak slopes measured → Instrumental origin ?
S. Scan : Band 4,5 : shows large difference (continuum unstability ?)
S. Scan : Band 6,7 : Too noisy

Summary

- Mapping of Mars with all bands and polarizations have allowed
- HPBW retrieved with an averaged fit rms of ± 0.75"
- Beff and Xpss retrieved H $\pm 2\%$ V $\pm 5\%$ HV $\pm 4\%$
- \rightarrow H is much better than V
- Mars model initially ± 5% in absolute (now with WMAP ± 1%?)
- Beff and Xpss H/V ratio retrieved 5-7% up to 10% for band 7
- It would be useful to have more measurements on Mars to improve the statistics and check the long term reproducibility