Description of Telescope Background (OD, λ)

- Express telescope in units of source (3x3 co-added, no pointing correction; 3x3→1x1 + canonical point source correction for absolute fluxes)
- Best sampling with HD161796, no absolute flux
- Second-best sampling with Ceres, variable flux, best absolute standard (model T.M.), but non-linearity (?)
- Pallas good absolute standard (model T.M.) without non-linearity issues, but lower S/N
- Express evolution as linear growth (change per 1000 ODs as fraction of mean flux over mission) + seasonal variation, as function of wavelength, fitted to (60, 75, 120, 150, 180µm) points of HD161796

Description of Telescope Background (OD, λ)

- a) "Map" Ceres-derived mean (over mission) telescope SED onto Pallas-derived mean SED with simple, smooth, fitted correction function, to get absolute fluxes right while maintaining S/N and "features" of Ceres-derived SED
 b) Use Ceres-derived mean (over mission) telescope SED directly
- The resulting mean telescope SED is in the form of 2 tables (for blue and red) of {wavelength[µm], flux[Jy]} with 0.1µm wavelength increment
- For a given OD, the "catch of the day" is obtained by multiplying the tabulated fluxes with the time evolution function (OD, λ)

Time Evolution of Telescope SED

- $\{\,a\rightarrow\texttt{0.00033636616},\ b\rightarrow\texttt{2.9038983},\ c\rightarrow-\texttt{0.014973405},\ d\rightarrow\texttt{0.015114584}\,\}$
- The seasonal variation is fitted to 60µm points, where the effect is strongest, and "phased out" at the transition from blue to red

Time Evolution of Telescope SED (Linear Growth)

 The evolution at each wavelength is linear with OD, but the slope varies with wavelength

Time Evolution of Telescope SED: Linear + Seasonal

- The amplitude of the seasonal variation, originally fitted in the arbitrary units of the HD161796 60µm observations, has been converted to fraction of the mean flux
- The seasonal variation fades out at 100µm
- No seasonal variation in the red band

Comparison of SEDs of Neptune, Ceres, Pallas and Telescope

- Left: "Typical" SEDs of Neptune (blue), Ceres (red), and Pallas (green) [they vary with time]
- Right: Telescope mean SEDs derived from Neptune (blue), Ceres (red), and Pallas (green)
 - At the red end, the difference between Neptune-based and asteroid-based telescope SEDs look systematic - could be non-linearity, but could also be color effect via "ghost" wavelength contamination

Adjusting Telescope (Ceres) to Telescope (Pallas)

- Linear fits to ratios of Ceres-telescope to Pallas-telescope in red and blue
- Use fits as "correction function" to make (higher S/N) Cerestelescope match absolute flux of (non-linearity-free) Pallas-SED

Exported (FITS) Telescope SEDs (Ceres on Pallas)

```
bluetelod =
 Table[{meanbluetel[[n, 1]],
   meanbluetel[[n, 2]] *
     (1 - (100 - meanbluetel[[n, 1]]) / (100 - 60) *
        (0.0139 * Sin[2\pi/365 * Max[180, od] + 0.0773] -
          0.0139 * Sin[2 \pi / 365 * day0 + 0.0773]) +
       evof[meanbluetel[[n, 1]], Max[180, od]])}, {od, 1, 1446},
  {n, Dimensions[meanbluetel][[1]]};
```

redtelod =

```
Table[{meanredtel[[n, 1]],
 meanredtel[[n, 2]] * (1 + evof[meanredtel[[n, 1]], Max[180, od]]) },
{od, 1, 1446}, {n, Dimensions[meanredtel][[1]]};
```

- Data structure is 1446 x n x 2:
 - 1446 ODs, starting at 1
 - n wavelengths (in steps of 0.1µm)
 - data: { wavelength[µm], flux[Jy] }
- Evolution is switched off (flat) below OD180

bluetelod ext.fits

redtelod ext.fits

Telescope SED Model (Ceres on Pallas)

Telescope SED Model -Directly from Ceres as Absolute Flux Standard

Telescope SEDs as Measured -Directly from Ceres as Absolute Flux Standard

Telescope SED Model (without OD 523) -Directly from Ceres as Absolute Flux Standard

Telescope SEDs as Measured (without OD 523) -Directly from Ceres as Absolute Flux Standard

Pointing Effects on Flux in 3x3?

OD 286 OD 485 OD 523 OD 782 OD 947 OD 1237 OD 1420

- The absolute pointing was quite similar for most ODs
- OD 523 is clearly different, but could it explain the outlier in derived telescope SED?
- The fine raster map of ∑3x3 suggests 10% effect for offset of >1" in most sensitive direction

Pointing Correction of Flux in 3x3?

OD 485 OD 523 OD 782 OD 947 OD 1237 OD 1420

OD 286

- Heidelberg recipe for pointing determination based on signal
- With known pointing offset, correction of ∑3x3 should be possible fairly accurately
- Could/should offset be determined per OD/OBSID/ wavelength bin? S/N?

Telescope SED as Measured -Directly from Pallas as Absolute Flux Standard

Exported (FITS) Telescope SEDs - Absolute Ceres

```
bluetelodcer =
 Table[{meanbluetelcer[[n, 1]],
   meanbluetelcer[[n, 2]] *
    (1 - (100 - meanbluetelcer[[n, 1]]) / (100 - 60) *
        (0.01497 * Sin[2\pi/365 * Max[180, od] + 0.01511] -
          0.01497 * Sin[2 \pi / 365 * day0 + 0.01511]) +
       evof[meanbluetelcer[[n, 1]], Max[180, od]])}, {od, 1, 1446},
  {n, Dimensions[meanbluetelcer][[1]]};
```

redtelodcer =

```
Table [{meanredtelcer[[n, 1]],
 meanredtelcer[[n, 2]] * (1 + evof[meanredtelcer[[n, 1]], Max[180, od]]) },
{od, 1, 1446}, {n, Dimensions[meanredtelcer][[1]]}];
```

- Data structure is 1446 x n x 2:
 - 1446 ODs, starting at 1
 - n wavelengths (in steps of 0.1µm)
 - data: { wavelength[µm], flux[Jy] }
- Evolution is switched off (flat) below OD180

bluetelod ext cer.fits

redtelod ext cer.fits

Comparison of 3x3 to Total Conversions

- For the derivation of the "telescope background", the central 3x3 spaxels were added up, the fraction of the central/3x3 fluxes calculated/interpolated with the fitted beams from the Neptune rasters, and the thus calculated central flux corrected with the canonical central-to-total conversion law. This corresponds to the 3x3-to-total correction depicted by the blue curve in the right panel.
- The v60 cal file for direct 3x3-to-total conversion is shown as the red curve
- There are discrepancies at the few percent level

Comparison of 3x3 to Total Conversions

- For the derivation of the "telescope background", the central 3x3 spaxels were added up, the fraction of the central/3x3 fluxes calculated/interpolated with the fitted beams from the Neptune rasters, and the thus calculated central flux corrected with the canonical central-to-total conversion law. This corresponds to the 3x3-to-total correction depicted by the blue curve in the right panel.
- The v64 cal file for direct 3x3-to-total conversion is shown as the red curve
- Good agreement, except above 180µm. The cal tree curve looks more "credible".

Comparison of Central/3x3 with Original Derivation from Neptune Beam Rasters

- Neptune fine raster
- The conversion 3x3 to 1x1 originally derived from the Neptune beam maps has been transferred correctly for the telescope BG determination

Comparison of Central/3x3 (Original Derivation from Neptune Beam Rasters, CalFiles) with Ratios Derived from Published Beams (by EPu)

- Original Neptune and v64 agree, again, except for λ >180µm
- Re-derived ratios (from interpolated beam tables as published) are generally lower - even lower than v60 (in R band)!

Comparison of Central/3x3 from Neptune Beam Rasters – Coarse/Fine; Fitted/Observed Peak; Synthetic Beams

- Left: 1x1/3x3. Right: 1x1/3x3 normalized to mean of coarse fit, fine fit and fine observed
- For the 3x3 to 1x1conversion in v64, the "fitted" coarse + fine raster values have been used to derive polynomial approximation as function of wavelength

Comparison of Central/3x3 from Neptune Beam Rasters – Coarse/Fine; Fitted/Observed Peak; Synthetic Beams

- Left: 1x1/3x3. Right: 1x1/3x3 normalized to mean of coarse fit, fine fit and fine observed
- For the 3x3 to 1x1conversion in v64, the "fitted" coarse + fine raster values have been used to derive polynomial approximation as function of wavelength

Comparison of Coarse/Synthetic and Fine Beams Y- and Z-Cut (Central Spaxel) @ 168µm

Fine raster and synthetic beams agree well along one axis but differ noticeably along the orthogonal axis!

Comparison of Coarse/Synthetic and Fine Beams (Central Spaxel) @ 168µm

Fine raster and synthetic beams have different ellipticity!

Color: fine raster contour plot B/W: fitted elliptical Gaussian Color: synthetic beam contour plot B/W: fine raster fitted elliptical Gaussian Black: highlighted fine raster contour Blue: highlighted synthetic beam contour

Comparison of 3x3 to Total Conversions

- Ratio of 2 recent cal file values for direct 3x3-to-total conversion over the method used for the telescope background calculation
- v64 should be used to be consistent (for standard processing and for derivation of telescope models!)

Comparison of 3x3 to Total Conversions and of 3x3 to Central Conversions in v64

 Deviation between CalTree and AlPog traceable to (small) difference in 3x3 to 1x1 conversion