$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proc	Page 1	

Noise characterization of PACS photometer mini-maps processed with JScanam

U. Klaas¹ & H. Linz¹

¹ Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany

$\mathop{\mathrm{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	Page 2	

Change Record

Version	Date	Changes	Remarks
Issue 0.2	March 20, 2017	first 70 and 160 μm results	first draft for ICC internal discussion
Issue 1.0	June 27, 2018	all 70, 100, and 160 µm test cases including output pixel sizes used in calibration analysis	final version

Reference Documents

[RD1]	Noise characterization of high-pass filtered PACS photometer mini-maps
	PICC-MA-TN-014, Issue 2.0

Contents

1	Intr	oduction	5
2	Ana	lysis overview	5
	2.1	Noise level of the intensity maps	5
	2.2	Noise level derived from standard deviation maps	7
	2.3	Correlated noise correction factors for JScanam maps	7
3	Ana	lysis of 70µm maps	9
	3.1	70 µm: Pixfrac 0.1, Pixsize 1."1	10
		3.1.1 L 2.5 OBSIDs 1342242772+1342242773	10
	3.2	70 μm: Pixfrac 0.1, Pixsize 1."6	12
		3.2.1 L 2.5 OBSIDs 1342242772+1342242773	12
	3.3	70 μm: Pixfrac 0.1, Pixsize 2	14
		3.3.1 L 2.5 OBSIDs 1342242772+1342242773	14
	3.4	70 μm: Pixfrac 0.1, Pixsize 3	16
		3.4.1 L 2.5 OBSIDs 1342242772+1342242773	16
	3.5	70 μm: Pixfrac 0.5, Pixsize 1	18
		3.5.1 L 2.5 OBSIDs 1342242772+1342242773	18
	3.6	70 μm: Pixfrac 0.5, Pixsize 2	20
		3.6.1 L 2.5 OBSIDs 1342242772+1342242773	20
	3.7	70 μm: Pixfrac 0.5, Pixsize 3	22
		3.7.1 L 2.5 OBSIDs 1342242772+1342242773	22
	3.8	70 μm: Pixfrac 1.0, Pixsize 1	24

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps pro	cessed with JScanam	Page 3

		3.8.1 L 2.5 OBSIDs 1342242772+1342242773	24
	3.9	70 μm: Pixfrac 1.0, Pixsize 1"6	26
		3.9.1 L 2.5 OBSIDs 1342242772+1342242773	26
	3.10	70 μm: Pixfrac 1.0, Pixsize 2	28
		3.10.1 L 2.5 OBSIDs 1342242772+1342242773	28
	3.11	70 μm: Pixfrac 1.0, Pixsize 3	30
		3.11.1 L 2.5 OBSIDs 1342242772+1342242773	30
4	Ana	$100 \qquad \text{Pi} (a = 0.4 \text{ Pi} + 1.4 \text{ M})$	32
	4.1	$100 \mu\text{m}: \text{ Pixfrac } 0.1, \text{ Pixsize } 14 \dots \dots$	33
		4.1.1 L 2.5 OBSIDs 1342242770+1342242771	33
	4.2	100 μ m: Pixfrac 0.1, Pixsize 16	35
		4.2.1 L 2.5 OBSIDs 1342242770+1342242771	35
	4.3	100 μ m: Pixfrac 0.1, Pixsize 2 ["]	37
		4.3.1 L 2.5 OBSIDs 1342242770+1342242771	37
	4.4	100 μm: Pixfrac 0.1, Pixsize 3."2	39
		4.4.1 L 2.5 OBSIDs 1342242770+1342242771	39
	4.5	100 µm: Pixfrac 0.5, Pixsize 1."6	41
		4.5.1 L 2.5 OBSIDs 1342242770+1342242771	41
	4.6	100 µm: Pixfrac 0.5, Pixsize 2	43
		4.6.1 L 2.5 OBSIDs 1342242770+1342242771	43
	4.7	100 μ m: Pixfrac 0.5, Pixsize 3."2	45
		4.7.1 L 2.5 OBSIDs 1342242770+1342242771	45
	4.8	100 $\mu m:$ Pixfrac 1.0, Pixsize 1	47
		4.8.1 L 2.5 OBSIDs 1342242770+1342242771	47
	4.9	100 μm : Pixfrac 1.0, Pixsize 1"6	49
		4.9.1 L 2.5 OBSIDs 1342242770+1342242771	49
	4.10	100 μm: Pixfrac 1.0, Pixsize 2	51
		4.10.1 L 2.5 OBSIDs 1342242770+1342242771	51
	4.11	100 μm: Pixfrac 1.0, Pixsize 3."2	53
		4.11.1 L 2.5 OBSIDs 1342242770+1342242771	53
_			
5	Ana	llysis of 160µm maps	55
	5.1	$160 \mu\text{m}$: Pixfrac 0.1, Pixsize 21	56
		5.1.1 L 2.5 OBSIDs 1342242772+1342242773	56
	5.2	160 μm: Pixfrac 0.1, Pixsize 3	58
		5.2.1 L 2.5 OBSIDs 1342242772+1342242773	58
	5.3	160 μm: Pixfrac 0.1, Pixsize 4	60
		5.3.1 L 2.5 OBSIDs 1342242772+1342242773	60

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proc	essed with JScanam	Page 4

	5.4	160 μm: Pixfrac 0.1, Pixsize 64	62
		5.4.1 L 2.5 OBSIDs 1342242772+1342242773	62
	5.5	160 μm: Pixfrac 0.5, Pixsize 3"2	64
		5.5.1 L 2.5 OBSIDs 1342242772+1342242773	64
	5.6	160 μm: Pixfrac 0.5, Pixsize 4	66
		5.6.1 L 2.5 OBSIDs 1342242772+1342242773	66
	5.7	160 μm: Pixfrac 0.5, Pixsize 6	68
		5.7.1 L 2.5 OBSIDs 1342242772+1342242773	68
	5.8	160 μm: Pixfrac 1.0, Pixsize 2	70
		5.8.1 L 2.5 OBSIDs 1342242772+1342242773	70
	5.9	160 μm: Pixfrac 1.0, Pixsize 3	72
		5.9.1 L 2.5 OBSIDs 1342242772+1342242773	72
	5.10	160 μm: Pixfrac 1.0, Pixsize 4	74
		5.10.1 L 2.5 OBSIDs 1342242772+1342242773	74
	5.11	160 μm: Pixfrac 1.0, Pixsize 64	76
		5.11.1 L 2.5 OBSIDs 1342242772+1342242773	76
6	Res	ults for 70 µm maps	78
	6.1	Measurement of flux standard deviation in source-free areas	78
	6.2	Measurement of flux standard deviation by histogram method	79
	6.3	Determination of mean flux standard deviation from associated standard deviation map \ldots .	81
	6.4	Final photometric noise values and determination of correlated noise correction factors	82
7	Res	ults for 100 µm maps	83
	7.1	Measurement of flux standard deviation in source-free areas	83
	7.2	Measurement of flux standard deviation by histogram method	84
	7.3	Determination of mean flux standard deviation from associated standard deviation map \ldots .	86
	7.4	Final photometric noise values and determination of correlated noise correction factors	87
8	Res	ults for 160 µm maps	88
	8.1	Measurement of flux standard deviation in source-free areas	88
	8.2	Measurement of flux standard deviation by histogram method	89
	8.3	Determination of mean flux standard deviation from associated standard deviation map \ldots .	91
	8.4	Final photometric noise values and determination of correlated noise correction factors	92

9 Conclusions

$\operatorname{PACS}_{\operatorname{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	Page 5	

1 Introduction

We investigate the noise properties of L2.5 mini-maps for point source photometry processed with JScanam (Graciá-Carpio et al. 2015, arXiv:1512.03252v1 [astro-ph.IM]) and how they vary depending on

- a) the mapping parameter **pixfrac** (ratio of drop size to input pixel size used for the drizzling algorithm [c.f. Fruchter, A.S. & Hook, R.N., PASP, 114,144] employed within the photProject mapper), and
- b) the **output pixel size (outpix)** in the final map.

We compare the noise measured by us in the intensity maps with the standard deviation (stddev) values in the stddev map product created by the PACS pipeline.

Furthermore, we compare the results with the noise values of high-pass filtered (HPF) mini-maps [RD1] for the same OBSIDs. For HPF maps a noise model has been worked out by Popesso et al. (2012, arXiv:1211.4257v1 [astro-ph.IM]) and implemented in the PACS pipeline to create error maps that represent the true level of noise in the associated HPF intensity maps (see [RD1]). In particular, the effects of noise correlation, that artificially lower the noise in the intensity maps, have been quantified and correction factors have been derived to provide the user with the true uncertainties in the intensity maps. For JScanam maps no such systematic noise model based on establishing a cross-correlation matrix has been worked out. In this study, we therefore attempt to determine empirical correlated noise correction factor for JScanam maps under the assumption that the final corrected noise value is the same for HPF and JScanam maps.

For that study two pairs of mini-maps on the intermediate bright standard star β Gem, OBSIDs 1342242770+1342242771 (only 100 µm analysis) and 1342242772+1342242773 (70 µm and 160 µm analysis) (cf. Table 1), were processed with the ipipe mapper script "JScanam" and combined to the L2.5 product with the photProject task for the combination of mapping parameters as listed in Table 2. The used HIPE version was 14.2.0, equivalent to build number 14.0.3597. For details of the data processing, please refer to the PACS data reduction guide photometry.

Table 1: Properties of the mini-maps. The 160 μm maps of OBSIDs 1342242770 and 1342242771 are not used in the analysis presented in this report.

OBSID	λ	scan speed	orientation	# scan legs	leg length	leg separation
	(μm)	("/s)	(o wrt. S/C y-axis)		(')	(")
1342242770	100 + 160	20	70	10	3	4
1342242771	100 + 160	20	110	10	3	4
1342242772	70 + 160	20	70	10	3	4
1342242773	70 + 160	20	110	10	3	4

2 Analysis overview

2.1 Noise level of the intensity maps

A representative 1- σ noise level per pixel depending on the mapping parameter combination of pixfrac and outpix, σ_{pix} (pixfrac, outpix), of the L2.5 intensity maps is derived in two ways:

- 1) The standard deviation is determined in two rectangular boxes located in source-free and clean areas of the map close to the central position with the source. A mean $\sigma_{\text{mean}} = \frac{\sigma_{\text{box1}} + \sigma_{\text{box2}}}{2}$ is determined for further analysis.
- 2) A flux histogram is constructed for all output pixels of the image map, where the corresponding coverage map indicates that $cover_{pix} \gtrsim \frac{1}{2} cover_{max}$. A Gauss fit is performed to the histogram but restricted

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proc	cessed with JScanam	Page 6

Table 2: Combination of mapping parameters used for the study. The combinations high-lighted in bold face are used in the Standard Product Generation (SPG). The combinations in italics were typical for the PACS photometric flux calibration analysis.

blue	(70 µm) filter	
pixfrac	output pixel size	
0.1	11	
0.1	$1''_{6}$	
0.1	$2''_{\cdot}4$	
0.1	$3''_{2}$	
0.5	16	
0.5	$2''_{\cdot}4$	
0.5	$3''_{2}$	
1.0	1''. 1	
1.0	16	
1.0	24	
1.0	$3''_{2}$	
green	$(100 \mu m)$ filter	
pixfrac	output pixel size	
0.1	14	
0.1	1.6'	
0.1	$2''_{4}$	
0.1	$3''_{2}$	
0.5	$1''_{6}$	
1.0	1".4	
1.0	$1.''_{6}$	
1.0	$2''_{\cdot}4$	
1.0	$3''_{2}$	
red	$(160 \mu m)$ filter	
pixfrac	output pixel size	
0.1	21	
0.1	$3.^{\prime\prime}2$	
0.1	4."8	
0.1	$6''_{}4$	
0.5	$3''_{2}$	
0.5	48	
0.5	6.''4	
1.0	2'' 1	
1.0	$3''_{2}$	
1.0	48	
1.0	$6''_{}4$	

to the part with fluxes below the flux bin associated with the peak of the histogram, which is a good approximation of the mean background level. In this way we ensure that the derived σ_{hist} represents the noise of the background level only and is not contaminated by flux of faint sources. (In fact, to optimize the quality of the fit, typically about 10 histogram bins to the right of the peak of the histogram are included in the fit).

For a photometric measurement, the noise inside the measurement aperture must be determined from the noise per pixel σ_{pix} (pixfrac, outpix). This is given by

$$\sigma_{\text{aperture}} = \sqrt{N_{\text{outpixinaper}}} \times \sigma_{\text{pix}}(\text{pixfrac, outpix})$$
(1)

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proc	essed with JScanam	Page 7

with N_{outpixinaper} being the number of output pixels inside the measurement aperture.

2.2 Noise level derived from standard deviation maps

The noise from the associated standard deviation maps is determined as median and mean inside the same boxes used in method (1) for the image maps.

2.3 Correlated noise correction factors for JScanam maps

For the determination of correlated noise correction factors for JS canam map parameter combinations pixfrac and outpix, $f_{\rm corr}^{\rm JS}$ (pixfrac, outpix), we use the following relation:

$$f_{\rm corr}^{\rm JS}({\rm pixfrac, outpix}) = \frac{\langle \sigma_{\rm aperture, corr} \rangle_{\rm wmHPF}^{\rm ref}}{\sigma_{\rm aperture}^{JS}({\rm pixfrac, outpix})},$$
(2)

where $\langle \sigma_{\text{aperture,corr}} \rangle_{\text{wmHPF}}^{\text{ref}}$ is a weighted mean (wm) reference noise from high-pass filtered maps corrected for noise correlation and $\sigma_{\text{aperture}}^{JS}$ (pixfrac, outpix) is the noise inside the measurement aperture as defined in Eq. 1. This approach is justified, since both HPF and JScanam mappers use the photProject task for the map projection. The best suited reference values for each filter appear to be the weighted means from a variety of map parameter combinations, as determined in [RD1], sections 6.8, 7.8, and 8.8, respectively.

The standard high-pass filter radius used for mini-maps in the standard product generation (SPG) is relatively compact (with values of 15 for 70 and 100 μ m, and 25 for 160 μ m). However, when selecting suitable reference values from [RD1] for the use in Eq. 2, it turned out that the weighted mean values of the smoother high-pass filter (larger HPF radius, i.e. HPF radius = 30 for 70 and 100 μ m and HPF radius = 50 for 160 μ m, see [RD1] for a definition) appear to be better matched.

For the 160 μ m filter, there would be two combinations, where the correlated noise correction factors $f_{\rm corr}^{\rm JS}$ (pixfrac, outpix) would be smaller than 1.0, if the weighted means of the smaller HPF radius 25 were used as reference noise value. It appears un-plausible that for some JScanam map parameter combinations the final noise would be smaller than measured (i.e. a reduction of noise by correlated noise correction), while for others the correlated noise correction would increase the final noise as expected.

Also, according to Popesso et al. (2012, arXiv:1211.4257v1 [astro-ph.IM]), the projection in the drizzle method implemented in photProject is related to a correlated noise factor $f_{projection}$

$$f_{\text{projection}} = \begin{cases} \frac{r}{1 - \frac{1}{3r}} & \text{for} \quad r \ge 1\\ \frac{1}{1 - \frac{r}{3}} & \text{for} \quad r \le 1 \end{cases}$$
(3)

where r is the ratio of the drop size and the ouput pixel size. $f_{projection}$ therefore gives a lower boundary limit for f_{corr}^{JS} (pixfrac,outpix), in particular for pixfrac = 1.0. We list $f_{projection}$ in Table 3 for the pixfrac and output pixel size combinations used in our analysis. Taking these numbers as lower limit references, then also for the 70 and 100 µm filters the weighted means of the smoother HPF radius = 30 give the more consistent results.

A possible explanation for this behaviour lies in the iterative application of the $\frac{1}{f}$ -noise reduction by employing a multi-spatial-scale approach in the JScanam processing. Hence, also noise correlation over larger scales than the standard HPF window may, to a certain extent, be woven into the final JScanam maps. In this regard, JScanam compares better to a milder HPF filtering in case of the HPF algorithm. The reference noise values $< \sigma_{aperture,corr} >_{wmHPF}^{ref}$ for each PACS filter applied in Eq. 2 are listed in Table 4.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proc	cessed with JScanam	Page 8

Table 3: Calculated noise correction factors $f_{projection}$ due to the projection in the drizzle method implemented in photProject as the lower limit of the final f_{corr}^{JS} (pixfrac,outpix) according to Eq. 3. Drop size is the product of pixfrac and input detector pixel size, which is 3."2 at 70 and 100 µm and 6."4 at 160 µm.

70 and 100 μ m filter						
			output pixel size			
pixfrac	drop size	1.1	1.4	1.6	2.4	3.2
	(")	(")	(")	(")	(")	(")
0.1	0.32	1.107	1.083	1.071	1.047	1.035
0.5	1.60	1.887	1.613	1.500	1.286	1.200
1.0	3.20	3.286	2.676	2.400	1.778	1.500
160 µm filter						
			outp	out pixel	size	
pixfrac	drop size	2.1		3.2	4.8	6.4
	(")	(")		(")	(")	(")
0.1	0.64	1.113		1.071	1.047	1.035
0.5	3.20	1.951		1.500	1.286	1.200
1.0	6.40	3.422		2.400	1.778	1.500

Table 4: Reference noise values $\langle \sigma_{aperture,corr} \rangle_{wmHPF}^{ref}$ from high-pass-filtered (HPF) and correlated noise corrected maps. The weighted means of the 2 combinations with HPF = 30 at 70 and 100 µm and the 2 combinations with HPF = 50 at 160 µm are used (cf. [RD1]).

$ \begin{array}{c} {\rm filter} \\ (\mu {\rm m}) \end{array} $	$<\sigma_{\rm aperture, corr} >_{\rm wmHPF}^{\rm ref}$ (mJy)
70	$1.29{\pm}0.02$
100	$1.51 {\pm} 0.005$
160	$3.27 {\pm} 0.05$

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proces	ssed with JScanam	Page 9

3 Analysis of 70µm maps

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	essed with JScanam	Page 10

3.1 70 μ m: Pixfrac 0.1, Pixsize 1."1

$3.1.1 \quad L\,2.5 \ OBSIDs \ 1342242772 {+} 1342242773$

Figure 1: 70 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 0.1 and output pixel size of 1. "1. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	ssed with JScanam	Page 11

Figure 2: Noise determination for the 70 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proc	cessed with JScanam	Page 12

3.2 70 µm: Pixfrac 0.1, Pixsize 1."6

$3.2.1 \quad L\,2.5 \ OBSIDs \ 1342242772 {+} 1342242773$

Figure 3: 70 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 0.1 and output pixel size of 1."6 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	ssed with JScanam	Page 13

Figure 4: Noise determination for the 70 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proc	essed with JScanam	Page 14

3.3 70 µm: Pixfrac 0.1, Pixsize 2...4

$3.3.1 \quad L\,2.5 \ OBSIDs \ 1342242772 {+} 1342242773$

Figure 5: 70 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 0.1 and output pixel size of 2. "4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	essed with JScanam	Page 15

Figure 6: Noise determination for the 70 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proc	essed with JScanam	Page 16

3.4 70 µm: Pixfrac 0.1, Pixsize 3".2

$3.4.1 \quad L\, 2.5 \ OBSIDs \ 1342242772 {+} 1342242773$

Figure 7: 70 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 0.1 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	ssed with JScanam	Page 17

Figure 8: Noise determination for the 70 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 18

3.5 70 µm: Pixfrac 0.5, Pixsize 1."6

$3.5.1 \quad L\, 2.5 \ OBSIDs \ 1342242772 {+} 1342242773$

Figure 9: 70 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 0.5 and output pixel size of 1."6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	ssed with JScanam	Page 19

Figure 10: Noise determination for the 70 μ m coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2\ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proc	cessed with JScanam	Page 20

3.6 70 µm: Pixfrac 0.5, Pixsize 2...4

$3.6.1 \quad L\, 2.5 \ OBSIDs \ 1342242772 {+} 1342242773$

Figure 11: 70 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 0.5 and output pixel size of 2. "4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	ssed with JScanam	Page 21

Figure 12: Noise determination for the 70 μ m coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proc	essed with JScanam	Page 22

3.7 70 μ m: Pixfrac 0.5, Pixsize 3".2

$3.7.1 \quad L\, 2.5 \ OBSIDs \ 1342242772 {+} 1342242773$

Figure 13: 70 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 0.5 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	ssed with JScanam	Page 23

Figure 14: Noise determination for the 70 μ m coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proc	essed with JScanam	Page 24

3.8 70 μ m: Pixfrac 1.0, Pixsize 1.1

$3.8.1 \quad L\, 2.5 \ OBSIDs \ 1342242772 {+} 1342242773$

Figure 15: 70 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 1.0 and output pixel size of 1. "1. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	ssed with JScanam	Page 25

Figure 16: Noise determination for the 70 μ m coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 26

3.9 70 µm: Pixfrac 1.0, Pixsize 1."6

$3.9.1 \quad L\,2.5 \ OBSIDs \ 1342242772 {+} 1342242773$

Figure 17: 70 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 1.0 and output pixel size of 1.6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	essed with JScanam	Page 27

Figure 18: Noise determination for the 70 μ m coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 28

3.10 70 µm: Pixfrac 1.0, Pixsize 2...4

$3.10.1 \quad L\, 2.5 \ OBSIDs \ 1342242772 {+} 1342242773$

Figure 19: 70 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 1.0 and output pixel size of 2. "4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 29

Figure 20: Noise determination for the 70 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 30

3.11 70 µm: Pixfrac 1.0, Pixsize 3".2

$3.11.1 \quad L\, 2.5 \ OBSIDs \ 1342242772 {+} 1342242773$

Figure 21: 70 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 1.0 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 31

Figure 22: Noise determination for the 70 μ m coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 32

4 Analysis of 100µm maps

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 33

4.1 100 μ m: Pixfrac 0.1, Pixsize 1...4

$4.1.1 \quad L\,2.5 \ OBSIDs \ 1342242770 {+} 1342242771$

Figure 23: 100 μ m L2.5 combined JS canam map for OBSIDs 1342242770+71 with pixfrac 0.1 and output pixel size of 1. "4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathrm{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 34

Figure 24: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2\ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 35

4.2 100 μ m: Pixfrac 0.1, Pixsize 1."6

$4.2.1 \quad L\,2.5 \ OBSIDs \ 1342242770 {+} 1342242771$

Figure 25: 100 μ m L2.5 combined JS canam map for OBSIDs 1342242770+71 with pixfrac 0.1 and output pixel size of 1."6 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 36

Figure 26: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).
$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 37

4.3 100 μ m: Pixfrac 0.1, Pixsize 2".4

$4.3.1 \quad L\,2.5 \ OBSIDs \ 1342242770 {+} 1342242771$

Figure 27: 100 μ m L2.5 combined JS canam map for OBSIDs 1342242770+71 with pixfrac 0.1 and output pixel size of 2".4 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	ssed with JScanam	Page 38

Figure 28: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	essed with JScanam	Page 39

4.4 100 µm: Pixfrac 0.1, Pixsize 3".2

$4.4.1 \quad L\,2.5 \ OBSIDs \ 1342242770 {+} 1342242771$

Figure 29: 100 μ m L2.5 combined JS canam map for OBSIDs 1342242770+71 with pixfrac 0.1 and output pixel size of 3''2 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	ssed with JScanam	Page 40

Figure 30: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 41

4.5 100 μ m: Pixfrac 0.5, Pixsize 1."6

$4.5.1 \quad L\, 2.5 \ OBSIDs \ 1342242770 {+} 1342242771$

Figure 31: 100 μ m L2.5 combined JS canam map for OBSIDs 1342242770+71 with pixfrac 0.5 and output pixel size of 1."6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	ssed with JScanam	Page 42

Figure 32: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2\ln 2} \sigma_{\text{hist}}$).

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 43

4.6 100 µm: Pixfrac 0.5, Pixsize 2...4

$4.6.1 \quad L\,2.5 \ OBSIDs \ 1342242770 {+} 1342242771$

Figure 33: 100 μ m L2.5 combined JS canam map for OBSIDs 1342242770+71 with pixfrac 0.5 and output pixel size of 2".4 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	essed with JScanam	Page 44

Figure 34: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proc	essed with JScanam	Page 45

4.7 100 µm: Pixfrac 0.5, Pixsize 3".2

$4.7.1 \quad L\,2.5 \ OBSIDs \ 1342242770 {+} 1342242771$

Figure 35: 100 μ m L2.5 combined JS canam map for OBSIDs 1342242770+71 with pixfrac 0.5 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	essed with JScanam	Page 46

Figure 36: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	ssed with JScanam	Page 47

4.8 100 μ m: Pixfrac 1.0, Pixsize 1...4

$4.8.1 \quad L\, 2.5 \ OBSIDs \ 1342242770 {+} 1342242771$

Figure 37: 100 μ m L2.5 combined JS canam map for OBSIDs 1342242770+71 with pixfrac 1.0 and output pixel size of 1. '4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	ssed with JScanam	Page 48

Figure 38: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 49

4.9 100 μ m: Pixfrac 1.0, Pixsize 1...6

$4.9.1 \quad L\,2.5 \ OBSIDs \ 1342242770 {+} 1342242771$

Figure 39: 100 μ m L2.5 combined JS canam map for OBSIDs 1342242770+71 with pixfrac 1.0 and output pixel size of 1.6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 50

Figure 40: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 51

4.10 100 µm: Pixfrac 1.0, Pixsize 2".4

$4.10.1 \quad L\, 2.5 \ OBSIDs \ 1342242770 {+} 1342242771$

Figure 41: 100 μ m L2.5 combined JS canam map for OBSIDs 1342242770+71 with pixfrac 1.0 and output pixel size of 2. "4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 52

Figure 42: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 53

4.11 100 µm: Pixfrac 1.0, Pixsize 3."2

4.11.1 L 2.5 OBSIDs 1342242770+1342242771

Figure 43: 100 μ m L2.5 combined JS canam map for OBSIDs 1342242770+71 with pixfrac 1.0 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 54

Figure 44: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 55

5 Analysis of 160µm maps

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 56

5.1 160 µm: Pixfrac 0.1, Pixsize 2".1

5.1.1 L 2.5 OBSIDs 1342242772+1342242773

Figure 45: 160 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 0.1 and output pixel size of 2". 1. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 57

Figure 46: Noise determination for the 160 μ m coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 58

5.2 160 µm: Pixfrac 0.1, Pixsize 3".2

5.2.1 L 2.5 OBSIDs 1342242772+1342242773

Figure 47: 160 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 0.1 and output pixel size of 3''2 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 59

Figure 48: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 60

5.3 160 μ m: Pixfrac 0.1, Pixsize 4...8

5.3.1 L 2.5 OBSIDs 1342242772+1342242773

Figure 49: 160 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 0.1 and output pixel size of 4. "8. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proces	ssed with JScanam	Page 61

Figure 50: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2\ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 62

5.4 160 μ m: Pixfrac 0.1, Pixsize 6.4

5.4.1 L 2.5 OBSIDs 1342242772+1342242773

Figure 51: 160 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 0.1 and output pixel size of 6. "4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	ssed with JScanam	Page 63

Figure 52: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 64

5.5 160 µm: Pixfrac 0.5, Pixsize 3".2

5.5.1 L 2.5 OBSIDs 1342242772+1342242773

Figure 53: 160 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 0.5 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 65

Figure 54: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2\ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 66

5.6 160 μ m: Pixfrac 0.5, Pixsize 4...8

5.6.1 L 2.5 OBSIDs 1342242772+1342242773

Figure 55: 160 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 0.5 and output pixel size of 4. "8. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proces	ssed with JScanam	Page 67

Figure 56: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 68

5.7 160 μ m: Pixfrac 0.5, Pixsize 6.4

5.7.1 L 2.5 OBSIDs 1342242772+1342242773

Figure 57: 160 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 0.5 and output pixel size of 6. "4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	ssed with JScanam	Page 69

Figure 58: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2\ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathrm{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 70

5.8 160 µm: Pixfrac 1.0, Pixsize 2."1

5.8.1 L 2.5 OBSIDs 1342242772+1342242773

Figure 59: 160 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 1.0 and output pixel size of 2". 1. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 71

Figure 60: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 72

5.9 160 µm: Pixfrac 1.0, Pixsize 3".2

5.9.1 L 2.5 OBSIDs 1342242772+1342242773

Figure 61: 160 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 1.0 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.
$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proces	ssed with JScanam	Page 73

Figure 62: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proc	cessed with JScanam	Page 74

5.10 160 µm: Pixfrac 1.0, Pixsize 4."8

5.10.1 L 2.5 OBSIDs 1342242772+1342242773

Figure 63: 160 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 1.0 and output pixel size of 4. "8. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	essed with JScanam	Page 75

Figure 64: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 76

5.11 160 µm: Pixfrac 1.0, Pixsize 6."4

5.11.1 L 2.5 OBSIDs 1342242772+1342242773

Figure 65: 160 μ m L2.5 combined JS canam map for OBSIDs 1342242772+73 with pixfrac 1.0 and output pixel size of 6. "4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	essed with JScanam	Page 77

Figure 66: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

$\mathop{\mathrm{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 78

$6 \quad \text{Results for } 70\,\mu\text{m maps}$

6.1 Measurement of flux standard deviation in source-free areas

Table 5 lists the measured noise of the background as determined in two source-free areas per map.

Table 5: Measurement of flux standard deviation at 70 μ m in source-free areas for the co-added L2.5 product, IDs 1342242772 and 1342242773. The position of the boxes is indicated in Figs. 1 through 21. Note, that the cut levels for all 70 μ m map displays are identical. The combination high-lighted in bold face is used in the Standard Product Generation (SPG). The combination in italics was typical for the PACS photometric flux calibration analysis.

pixfrac/outpix	box size	L2.5 ID 1342242772+7			
		$\sigma_{ m box1}$	$\sigma_{ m box2}$	$\sigma_{ m mean}$	
	(pixels)	(mJy)	(mJy)	(mJy)	
0.1 / 11	88×44	0.079	0.084	0.082	
$0.1 \ / \ 16$	61×31	0.131	0.138	0.135	
0.1 / 2.4	41×21	0.223	0.253	0.238	
$0.1 / 3''_{}2$	31×16	0.352	0.398	0.375	
0.5 / 1.00%	61×31	0.106	0.117	0.111	
$0.5 / 2''_{\cdot}4$	41×21	0.203	0.231	0.217	
0.5 / 3.2''	31×16	0.330	0.381	0.355	
1.1 / 1".1	88×44	0.040	0.047	0.043	
1.0 / 1."6	61×31	0.083	0.096	0.089	
1.0 / 24	41×21	0.176	0.207	0.191	
1.0 / 32	31×16	0.298	0.355	0.326	

There is a systematic variation of the measured noise in the image maps depending on the selection of the mapping parameters. The behaviour is quite similar to that of high pass filtered maps, which is due to the fact that both processing methods apply the PhotProject algorithm.

- 1) For identical *outpix* the noise decreases with increasing *pixfrac*, which is due to the drop size covering more output pixels and hence correlating the noise in a pixel cluster.
- 2) The noise increases with increasing *outpix* size, because there is more flux in each output pixel and hence also the amplitude increases.
- 3) The noise in the JScanam map areas is higher than in the identical HPF map areas with HPF radius 15. The factor is 1.13–1.24 for *outpix* size 1.11, 1.20–1.26 for *outpix* size 1.16, 1.28–1.30 for *outpix* size 2.14, and 1.47–1.56 for *outpix* size 3.12.
- 4) Also the asymmetry in flux standard deviation between both areas is higher for the JScanam processing than for the HPF processing. It increases with increasing *outpix* size and explains partly the non-constant noise ratio factor.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 79

6.2 Measurement of flux standard deviation by histogram method

Table 6 lists the noise values in the image maps determined with the histogram and Gauss fit method, including the uncertainty of the fit.

Table 6: Measurement of flux standard deviation at 70 μ m with the histogram method for the co-added L2.5 product, IDs 1342242772 and 1342242773. The coverage threshold used to determine $\sigma_{\rm hist}$ and the maximum coverage for each map are listed. The combination high-lighted in bold face is used in the Standard Product Generation (SPG). The combination in italics was typical for the PACS photometric flux calibration analysis.

pixfrac/outpix	L2.5 ID 1342242772+73			
	$\sigma_{ m hist}$	coverage	$\operatorname{cover}_{\max}$	
	(mJy)	>		
0.1 / 1."1	$0.081{\pm}0.001$	20	40.85	
0.1 / 1.6	$0.134{\pm}0.002$	20	40.19	
0.1 / 24	$0.239 {\pm} 0.007$	20	39.75	
0.1 / 3."2	$0.353{\pm}0.012$	20	38.79	
0.5 / 1."6	$0.109 {\pm} 0.002$	480	971.3	
0.5 / 24	$0.217 {\pm} 0.005$	480	969.4	
$0.5 / 3''_{2}$	$0.331{\pm}0.012$	480	966.7	
1.0 / 1".1	$0.044{\pm}0.001$	1900	3877	
1.0 / 1."6	$0.090 {\pm} 0.002$	1900	3873	
1.0 / 2.4	$0.192{\pm}0.005$	1900	3871	
1.0 / 3."2	$0.307 {\pm} 0.008$	1900	3866	

The derived noise values in Table 6 are quite similar to the values found for the source free areas, cf. Table 5, which indicates that the coverage range of the source free areas is above the threshold used for the histogram method. This is indeed the case as exemplary shown in Fig. 67 for the SPG mapping parameter combination 0.1 / 1."6. Therefore, a consistent behaviour as described in Sect. 6.1 is found.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proces	sed with JScanam	Page 80

Figure 67: Histogram of the distribution of coverage for the L2.5 product with the SPG mapping parameter combination 15 / 0.1 / 1."6 (black, all values below a coverage value of 3.0 are cut). The red dashed line indicates the coverage threshold used in the noise analysis. The dark blue and violet histograms give the coverage distribution inside the source-free noise measurement areas 1 and 2, respectively. The corresponding image map is shown in Fig. 3.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0	
Noise characterization of mini-maps proc	essed with JScanam	Page 81	

6.3 Determination of mean flux standard deviation from associated standard deviation map

Table 7 lists the mean noise per pixel as determined from the associated standard deviation map inside the same box area as for the image map.

Table 7: Determination of mean flux standard deviation at 70 μ m inside the same box area as for the image maps in Figs. 1 through 21. $\frac{\sigma_{\text{mean,boxn}}}{\sigma_{\text{ima,boxn}}}$ is the ratio of the noise from the standard deviation map and the image map.

pixfrac/outpix	box size			L2.5 ID 134	2242772+73		
		$\sigma_{\rm med,box1}$	$\sigma_{ m mean,box1}$	$\frac{\sigma_{\text{mean,box1}}}{\sigma_{\text{ima,box1}}}$	$\sigma_{ m med,box2}$	$\sigma_{ m mean,box2}$	$\frac{\sigma_{\text{mean,box}2}}{\sigma_{\text{ima,box}2}}$
	(pixels)	(mJy)	(mJy)	,	(mJy)	(mJy)	
0.1 / 1."1	88×44	0.078	$0.079 {\pm} 0.008$	1.00	0.080	$0.082{\pm}0.011$	0.98
0.1 / 1.6	61×31	0.113	0.115 ± 0.011	0.88	0.117	$0.119 {\pm} 0.015$	0.86
0.1 / 2.4	41×21	0.170	$0.173 {\pm} 0.016$	0.78	0.177	$0.180 {\pm} 0.023$	0.71
0.1 / 3.2	31×16	0.228	0.232 ± 0.022	0.66	0.233	$0.239 {\pm} 0.030$	0.60
0.5 / 1.00%	61×31	0.114	0.115 ± 0.011	1.08	0.117	$0.119 {\pm} 0.015$	1.02
0.5 / 2.4	41×21	0.171	0.173 ± 0.016	0.85	0.176	$0.180 {\pm} 0.023$	0.78
0.5 / 3.2''	31×16	0.228	0.232 ± 0.022	0.70	0.233	$0.239 {\pm} 0.030$	0.63
1.0 / 1.11	88×44	0.032	$0.032 {\pm} 0.003$	0.80	0.032	$0.033 {\pm} 0.004$	0.70
1.0 / 16	61×31	0.067	0.068 ± 0.006	0.82	0.069	$0.070 {\pm} 0.009$	0.73
1.0 / 2.4	41×21	0.150	$0.152 {\pm} 0.014$	0.86	0.155	$0.158 {\pm} 0.020$	0.76
1.0 / 3.2	31×16	0.229	0.232 ± 0.021	0.78	0.233	0.239 ± 0.030	0.67

1) The standard deviation maps give reasonable noise per pixel values in the order of 60-110% of the image maps.

- 2) The standard deviation maps reflect the asymmetry of the noise between the two measurement areas, but not as pronounced as the image maps.
- 3) For *outpix* size of 3".2, there is hardly any difference for the noise values derived from the stdev maps between all *pixfrac* values 0.1, 0.5 and 1.0. For smaller *outpix* sizes 2".4 and 1".6 the noise values are identical for *pixfrac* 0.1 and 0.5 for the same *outpix* size, while the *pixfrac* 1.0 values are smaller. This looks suspicious, since the image maps show a clear difference with the trends as described in the summary of Sect. 6.1. We discuss this finding in more detail in the general part of Section 9 (Conclusions).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 82

6.4 Final photometric noise values and determination of correlated noise correction factors

The correlated noise correction factors for 70 µm JS canam maps are determined according to Eq. 2 with the 70 µm reference noise $<\sigma_{\rm aperture, corr}>_{\rm wmHPF}^{\rm ref}$ (70 µm) value from Table 4. For the calculation we have to derive the noise in the standard aperture with radius 5".6 according to Eq. 1. Table 8 lists the derived $f_{\rm corr}^{\rm JS}$ values. The uncertainty of the $f_{\rm corr}^{\rm JS}$ values is in the order of 3–5%.

Table 8: Noise per measurement aperture $\sigma_{\text{aperture,corr}}$ at 70 µm (aperture radius of 5".6) and determination of correlated noise correction factor for JScanam maps by comparison with the corrected aperture noise of HPF=30 maps. The combination high-lighted in bold face is used in the Standard Product Generation (SPG). The combination in italics was typical for the PACS photometric flux calibration analysis.

pixfrac/outpix	$\sigma_{ m pix}^{JS}$	N _{outpixinaper}	$\sigma^{JS}_{ m aperture}$	$<\sigma_{\rm aperture, corr}>_{\rm wmHPF30}^{\rm ref}$	$f_{\rm corr}^{\rm JS}$
	(mJy/pix)		(mJy)	(mJy)	
0.1 / 1."1	$0.081 {\pm} 0.001$	81.4	0.731 ± 0.013	1.29 ± 0.02	$1.765 {\pm} 0.059$
0.1 / 1.6''	$0.134{\pm}0.003$	38.5	$0.831 {\pm} 0.019$	$1.29 {\pm} 0.02$	$1.552 {\pm} 0.060$
0.1 / 2.4	$0.239 {\pm} 0.007$	17.1	$0.988 {\pm} 0.029$	$1.29 {\pm} 0.02$	$1.305 {\pm} 0.059$
0.1 / 32	$0.353 {\pm} 0.012$	9.6	$1.094{\pm}0.037$	$1.29 {\pm} 0.02$	$1.179 {\pm} 0.058$
0.5 / 1.00%	$0.109 {\pm} 0.002$	38.5	$0.676 {\pm} 0.012$	$1.29 {\pm} 0.02$	1.907 ± 0.064
0.5 / 24	$0.217 {\pm} 0.005$	17.1	0.897 ± 0.021	$1.29 {\pm} 0.02$	$1.438 {\pm} 0.056$
0.5 / 3.2''	$0.331 {\pm} 0.012$	9.6	1.026 ± 0.037	$1.29 {\pm} 0.02$	$1.258 {\pm} 0.065$
1.0 / 1".1	$0.044{\pm}0.001$	81.4	$0.397 {\pm} 0.009$	$1.29 {\pm} 0.02$	$3.250 {\pm} 0.124$
1.0 / 16	$0.090 {\pm} 0.002$	38.5	$0.558 {\pm} 0.012$	$1.29 {\pm} 0.02$	$2.310 {\pm} 0.086$
1.0 / 2.4	$0.192{\pm}0.005$	17.1	$0.794{\pm}0.021$	$1.29 {\pm} 0.02$	1.625 ± 0.068
1.0 / 3.2	$0.307 {\pm} 0.008$	9.6	0.951 ± 0.025	$1.29 {\pm} 0.02$	$1.356 {\pm} 0.057$

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	essed with JScanam	Page 83

7 Results for $100 \,\mu m$ maps

7.1 Measurement of flux standard deviation in source-free areas

Table 9 lists the measured noise of the background as determined in two source-free areas per map.

Table 9: Measurement of flux standard deviation at 100 μ m in source-free areas for the co-added L2.5 product, IDs 1342242770 and 1342242771. The position of the boxes is indicated in Figs. 23 through 43. Note, that the cut levels for all 100 μ m map displays are identical. The combination high-lighted in bold face is used in the Standard Product Generation (SPG). The combination in italics was typical for the PACS photometric flux calibration analysis.

pixfrac/outpix	box size	L2.5 ID	L2.5 ID 1342242770+71		
		$\sigma_{ m box1}$	$\sigma_{ m box2}$	$\sigma_{ m mean}$	
	(pixels)	(mJy)	(mJy)	(mJy)	
0.1 / 14	70×35	0.099	0.106	0.103	
$0.1 \ / \ 16$	61×31	0.117	0.127	0.122	
0.1 / 2.4''	41×21	0.197	0.220	0.209	
$0.1 / 3''_{}2$	31×16	0.293	0.325	0.309	
0.5 / 1.00%	61×31	0.095	0.105	0.100	
$0.5 / 2''_{\cdot}4$	41×21	0.175	0.199	0.187	
0.5 / 3.2''	31×16	0.273	0.311	0.292	
1.0 / 1".4	$70{\times}35$	0.056	0.065	0.061	
$1.0 / 1.0^{\prime\prime}$	61×31	0.072	0.084	0.078	
1.0 / 24	41×21	0.147	0.176	0.161	
1.0 / 32	31×16	0.246	0.290	0.268	

There is a systematic variation of the measured noise in the image maps depending on the selection of the mapping parameters. The behaviour is quite similar to that of high pass filtered maps, which is due to the fact that both processing methods apply the PhotProject algorithm.

- 1) For identical *outpix* the noise decreases with increasing *pixfrac*, which is due to the drop size covering more output pixels and hence correlating the noise in a pixel cluster.
- 2) The noise increases with increasing *outpix* size, because there is more flux in each output pixel and hence also the amplitude increases.
- 3) The noise in the JScanam map areas is higher than in the identical HPF map areas with HPF radius 15. The factor is 1.24–1.39 for *outpix* size 1.4, 1.24–1.28 for *outpix* size 1.46, 1.31 for *outpix* size 2.44, and 1.43–1.50 for *outpix* size 3.42.
- 4) Also the asymmetry in flux standard deviation between both areas is higher for the JScanam processing than for the HPF processing. It increases with increasing *outpix* size and explains partly the non-constant noise ratio factor.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proc	essed with JScanam	Page 84

7.2 Measurement of flux standard deviation by histogram method

Table 10 lists the noise values in the image maps determined with the histogram and Gauss fit method, including the uncertainty of the fit.

Table 10: Measurement of flux standard deviation at 100 μ m with the histogram method for the co-added L2.5 product, IDs 1342242770 and 1342242771. The coverage threshold used to determine $\sigma_{\rm hist}$ and the maximum coverage for each map are listed. The combination high-lighted in bold face is used in the Standard Product Generation (SPG). The combination in italics was typical for the PACS photometric flux calibration analysis.

pixfrac/outpix	L2.5 ID 1342242770+71			
	$\sigma_{ m hist}$	coverage	$\operatorname{cover}_{\max}$	
	(mJy)	>		
0.1 / 1.4	$0.101{\pm}0.002$	22	42.44	
0.1 / 1.6	$0.124{\pm}0.004$	22	42.34	
0.1 / 24	$0.205 {\pm} 0.006$	22	41.76	
0.1 / 3."2	$0.321{\pm}0.012$	22	41.55	
0.5 / 1."6	$0.102{\pm}0.002$	520	1037	
0.5 / 24	$0.190{\pm}0.006$	520	1035	
0.5 / 3."2	$0.311{\pm}0.012$	520	1034	
1.0 / 1".4	$0.063 {\pm} 0.001$	2100	4134	
1.0 / 16	$0.082{\pm}0.001$	2100	4132	
1.0 / 2.4	$0.169 {\pm} 0.006$	2100	4132	
1.0 / 3.2	$0.292{\pm}0.010$	2100	4130	

The derived noise values in Table 10 are quite similar to the values found for the source free areas, cf. Table 9, which indicates that the coverage range of the source free areas is above the threshold used for the histogram method. This is indeed the case as exemplary shown in Fig. 68 for the SPG mapping parameter combination 0.1 / 1."6. Therefore, a consistent behaviour as described in Sect. 7.1 is found.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	ssed with JScanam	Page 85

Figure 68: Histogram of the distribution of coverage for the L2.5 product with the SPG mapping parameter combination 15 / 0.1 / 1."6 (black, all values below a coverage value of 3.0 are cut). The red dashed line indicates the coverage threshold used in the noise analysis. The dark and light green histograms give the coverage distribution inside the source-free noise measurement areas 1 and 2, respectively. The corresponding image map is shown in Fig. 25.

$\mathop{\mathrm{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0	
Noise characterization of mini-maps proc	cessed with JScanam	Page 86	-

7.3 Determination of mean flux standard deviation from associated standard deviation map

Table 11 lists the mean noise per pixel as determined from the associated standard deviation map inside the same box area as for the image map.

Table 11: Determination of mean flux standard deviation at 100 μ m inside the same box area as for the image maps in Figs. 23 through 43. $\frac{\sigma_{\text{mean,boxn}}}{\sigma_{\text{ima,boxn}}}$ is the ratio of the noise from the standard deviation map and the image map.

pixfrac/outpix	box size	L2.5 ID 1342242770+71					
		$\sigma_{\rm med,box1}$	$\sigma_{ m mean,box1}$	$\frac{\sigma_{\text{mean,box1}}}{\sigma_{\text{ima,box1}}}$	$\sigma_{\rm med,box2}$	$\sigma_{ m mean,box2}$	$\frac{\sigma_{\text{mean,box2}}}{\sigma_{\text{ima,box2}}}$
	(pixels)	(mJy)	(mJy)	,	(mJy)	(mJy)	
0.1 / 1."4	70×35	0.093	$0.094{\pm}0.009$	0.95	0.097	$0.100{\pm}0.013$	0.94
0.1 / 1.6''	61×31	0.107	0.108 ± 0.010	0.92	0.112	$0.114{\pm}0.015$	0.90
0.1 / 2.4	41×21	0.161	$0.163 {\pm} 0.015$	0.83	0.168	$0.172{\pm}0.023$	0.78
0.1 / 3.2	31×16	0.216	0.218 ± 0.021	0.74	0.223	$0.229 {\pm} 0.030$	0.70
0.5 / 1.00	61×31	0.107	0.108 ± 0.010	1.14	0.112	$0.114{\pm}0.015$	1.09
0.5 / 2.4	41×21	0.161	$0.163 {\pm} 0.015$	0.93	0.173	$0.172{\pm}0.023$	0.86
0.5 / 3.2''	31×16	0.216	0.218 ± 0.020	0.80	0.223	$0.229 {\pm} 0.030$	0.74
1.0 / 1.4	70×35	0.048	0.049 ± 0.004	0.88	0.050	$0.051 {\pm} 0.007$	0.78
1.0 / 1."6	61×31	0.063	0.064 ± 0.006	0.89	0.066	$0.067 {\pm} 0.009$	0.80
1.0 / 24	41×21	0.142	0.144 ± 0.013	0.98	0.154	$0.151{\pm}0.021$	0.86
1.0 / 3.2	31×16	0.215	0.218 ± 0.020	0.89	0.223	$0.229 {\pm} 0.030$	0.79

1) The standard deviation maps give reasonable noise per pixel values in the order of 70–114% of the image maps.

- 2) The standard deviation maps reflect the asymmetry of the noise between the two measurement areas, but not as pronounced as the image maps.
- 3) For *outpix* size of 3".2, there is hardly any difference for the noise values derived from the stdev maps between all *pixfrac* values 0.1, 0.5 and 1.0. For smaller *outpix* sizes 2".4 and 1".6 the noise values are identical for *pixfrac* 0.1 and 0.5 for the same *outpix* size, while the *pixfrac* 1.0 values are smaller. This looks suspicious, since the image maps show a clear difference with the trends as described in the summary of Sect. 7.1. We discuss this finding in more detail in the general part of Section 9 (Conclusions).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 87

7.4 Final photometric noise values and determination of correlated noise correction factors

The correlated noise correction factors for 100 μ m JScanam maps are determined according to Eq. 2 with the 100 μ m reference noise $\langle \sigma_{aperture,corr} \rangle_{wmHPF}^{ref}$ (100 μ m) value from Table 4. For the calculation we have to derive the noise in the standard aperture with radius 6''.8 according to Eq. 1. Table 12 lists the derived f_{corr}^{JS} values. The uncertainty of the f_{corr}^{JS} values is in the order of 1.5–4%.

Table 12: Noise per measurement aperture $\sigma_{\text{aperture,corr}}$ at 100 µm (aperture radius of 6. 8) and determination of correlated noise correction factor for JScanam maps by comparison with the corrected aperture noise of HPF maps. The combination high-lighted in bold face is used in the Standard Product Generation (SPG). The combination in italics was typical for the PACS photometric flux calibration analysis.

pixfrac/outpix	$\sigma^{JS}_{ m pix}$	N _{outpixinaper}	$\sigma^{JS}_{ m aperture}$	$<\sigma_{\rm aperture, corr}>_{\rm wmHPF30}^{\rm ref}$	$f_{\rm corr}^{\rm JS}$
	(mJy/pix)		(mJy)	(mJy)	
0.1 / 1."4	0.101 ± 0.002	74.1	0.869 ± 0.017	$1.51 {\pm} 0.005$	1.737 ± 0.040
0.1 / 1.6	$0.124{\pm}0.004$	56.7	$0.934{\pm}0.030$	$1.51{\pm}0.005$	$1.617 {\pm} 0.057$
0.1 / 2.4	$0.205 {\pm} 0.006$	25.2	1.029 ± 0.030	$1.51{\pm}0.005$	1.467 ± 0.048
0.1 / 3.2	$0.321 {\pm} 0.012$	14.2	1.210 ± 0.045	$1.51 {\pm} 0.005$	$1.248 {\pm} 0.051$
0.5 / 16	0.102 ± 0.002	56.7	$0.768 {\pm} 0.015$	$1.51 {\pm} 0.005$	$1.966 {\pm} 0.045$
0.5 / 24	$0.190 {\pm} 0.006$	25.2	$0.954{\pm}0.030$	$1.51 {\pm} 0.005$	$1.583 {\pm} 0.055$
0.5 / 3.2	$0.311 {\pm} 0.012$	14.2	1.172 ± 0.045	$1.51 {\pm} 0.005$	$1.289 {\pm} 0.054$
1.0 / 1.4	$0.061 {\pm} 0.001$	74.1	$0.525 {\pm} 0.009$	$1.51 {\pm} 0.005$	2.876 ± 0.059
1.0 / 1."6	$0.082 {\pm} 0.001$	56.7	$0.618 {\pm} 0.008$	$1.51 {\pm} 0.005$	2.446 ± 0.040
1.0 / 24	$0.169 {\pm} 0.006$	25.2	0.848 ± 0.030	$1.51{\pm}0.005$	1.780 ± 0.069
1.0 / 3.2	$0.292{\pm}0.010$	14.2	1.100 ± 0.038	$1.51{\pm}0.005$	1.372 ± 0.052

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	essed with JScanam	Page 88

8 Results for $160 \,\mu m$ maps

8.1 Measurement of flux standard deviation in source-free areas

Table 13 lists the measured noise of the background as determined in two source-free areas per map.

Table 13: Measurement of flux standard deviation at 160 μ m in source-free areas for the co-added L2.5 product, IDs 1342242772 and 1342242773. The position of the boxes is indicated in Figs. 45 through 65. Note, that the cut levels for all 160 μ m map displays are identical. The combination high-lighted in bold face is used in the Standard Product Generation (SPG).

pixfrac/outpix	box size	L2.5 ID 1342242772+73		
		$\sigma_{ m box1}$	$\sigma_{ m box2}$	$\sigma_{ m mean}$
	(pixels)	(mJy)	(mJy)	(mJy)
0.1 / 2".1	47×24	0.178	0.170	0.174
$0.1 \ / \ 3.2''$	$31{\times}16$	0.330	0.333	0.332
0.1 / 4.''8	21×11	0.632	0.638	0.635
0.1 / 6.4	16×8	0.970	1.031	1.000
$0.5 / 3''_{\cdot}2$	31×16	0.293	0.285	0.289
0.5 / 4.''8	21×11	0.590	0.590	0.590
0.5 / 6.4	16×8	0.931	0.988	0.960
1.0 / 2".1	47×24	0.109	0.101	0.105
1.0 / 3.2	$31{\times}16$	0.241	0.228	0.235
1.0 / 48	21×11	0.516	0.519	0.518
1.0 / 6.4	16×8	0.871	0.908	0.890

There is a systematic variation of the measured noise in the image maps depending on the selection of the mapping parameters. The behaviour is quite similar to that of high pass filtered maps, which is due to the fact that both processing methods apply the PhotProject algorithm.

- 1) For identical *outpix* the noise decreases with increasing *pixfrac*, which is due to the drop size covering more output pixels and hence correlating the noise in a pixel cluster.
- 2) The noise increases with increasing *outpix* size, because there is more flux in each output pixel and hence also the amplitude increases.
- 3) The noise in the JScanam map areas is higher than in the identical HPF map areas with HPF radius 25. The factor is 1.25–1.33 for *outpix* size 2".1, 1.46–1.55 for *outpix* size 3".2, 1.63–1.68 for *outpix* size 4".8, and 1.78–1.82 for *outpix* size 6".4.
- 4) The asymmetry in flux standard deviation between both areas increases with increasing *outpix* size and explains partly the non-constant noise ratio factor.

$\mathop{\mathrm{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 89

8.2 Measurement of flux standard deviation by histogram method

Table 14 lists the noise values in the image maps determined with the histogram and Gauss fit method, including the uncertainty of the fit.

Table 14: Measurement of flux standard deviation at 160 μ m with the histogram method for the co-added L2.5 product, IDs 1342242772 and 1342242773. The coverage threshold used to determine σ_{hist} and the maximum coverage for each map are listed. The combination high-lighted in bold face is used in the Standard Product Generation (SPG).

pixfrac/outpix	L2.5 ID 1342242772+73		
	$\sigma_{ m hist}$	coverage	$\operatorname{cover}_{\max}$
	(mJy)	>	
0.1 / 21	$0.173 {\pm} 0.009$	19.0	38.81
0.1 / 3.2	$0.335{\pm}0.015$	19.0	38.00
0.1 / 4."8	$0.639{\pm}0.046$	19.0	37.68
0.1 / 6."4	$0.990{\pm}0.072$	19.0	37.54
$0.5 / 3''_{2}$	$0.286{\pm}0.021$	480	941.4
0.5 / 4."8	$0.588{\pm}0.035$	480	940.2
0.5 / 64	$0.961{\pm}0.077$	480	936.5
1.0 / 2".1	$0.103{\pm}0.004$	1900	3765
1.0 / 3."2	$0.237{\pm}0.019$	1900	3756
1.0 / 48	$0.515{\pm}0.030$	1900	3754
1.0 / 6.4	$0.894{\pm}0.055$	1900	3738

The derived noise values in Table 14 are quite similar to the values found for the source free areas, cf. Table 13, which indicates that the coverage range of the source free areas is above the threshold used for the histogram method. This is indeed the case as exemplary shown in Fig. 69 for the SPG mapping parameter combination $0.1 / 3''_{2}$. Therefore, a consistent behaviour as described in Sect. 8.1 is found.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proces	ssed with JScanam	Page 90

Figure 69: Histogram of the distribution of coverage for the L2.5 product with the SPG mapping parameter combination 0.1 / 3.^{''}2 (black, all values below a coverage value of 3.0 are cut). The blue dashed line indicates the coverage threshold used in the noise analysis. The red and orange histograms give the coverage distribution inside the source-free noise measurement areas 1 and 2, respectively.

$\mathop{\mathrm{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proc	Page 91	

8.3 Determination of mean flux standard deviation from associated standard deviation map

Table 15 lists the mean noise per pixel as determined from the associated standard deviation map inside the same box area as for the image map.

Table 15: Determination of mean flux standard deviation at 160 μ m inside the same box area as for the image maps in Figs. 45 through 65. $\frac{\sigma_{\text{mean,boxn}}}{\sigma_{\text{ima,boxn}}}$ is the ratio of the noise from the standard deviation map and the image map.

pixfrac/outpix	box size	L2.5 ID 1342242772+73					
		$\sigma_{\rm med,box1}$	$\sigma_{ m mean,box1}$	$\frac{\sigma_{\text{mean,box1}}}{\sigma_{\text{ima,box1}}}$	$\sigma_{ m med,box2}$	$\sigma_{ m mean,box2}$	$\frac{\sigma_{\text{mean,box2}}}{\sigma_{\text{ima,box2}}}$
	(pixels)	(mJy)	(mJy)		(mJy)	(mJy)	
0.1 / 21	47×24	0.145	$0.147 {\pm} 0.018$	0.83	0.147	$0.149 {\pm} 0.018$	0.88
0.1 / 3.2	31×16	0.219	$0.224{\pm}0.025$	0.68	0.225	$0.229 {\pm} 0.026$	0.69
0.1 / 4."8	21×11	0.329	$0.335 {\pm} 0.036$	0.53	0.341	$0.347 {\pm} 0.041$	0.54
0.1 / 6.4	16×8	0.446	$0.454{\pm}0.051$	0.47	0.456	$0.464 {\pm} 0.057$	0.45
0.5 / 3.2''	31×16	0.220	$0.224{\pm}0.025$	0.76	0.225	$0.229 {\pm} 0.025$	0.80
0.5 / 48	21×11	0.329	$0.335 {\pm} 0.036$	0.57	0.341	$0.347 {\pm} 0.041$	0.59
0.5 / 6.4	16×8	0.446	$0.454{\pm}0.050$	0.49	0.457	$0.464{\pm}0.056$	0.47
1.0 / 2".1	47×24	0.054	$0.055 {\pm} 0.006$	0.50	0.055	$0.055 {\pm} 0.006$	0.54
1.0 / 3.2	31×16	0.124	$0.127 {\pm} 0.013$	0.53	0.127	$0.129 {\pm} 0.014$	0.57
1.0 / 48	21×11	0.279	$0.284{\pm}0.030$	0.55	0.289	$0.294{\pm}0.034$	0.57
1.0 / 6.4	16×8	0.446	0.454 ± 0.050	0.52	0.457	0.465 ± 0.056	0.51

1) The standard deviation maps give reasonable noise per pixel values in the order of 45–88% of the image maps.

- 2) The standard deviation maps reflect the asymmetry of the noise between the two measurement areas, but not as pronounced as the image maps.
- 3) For outpix size of 6."4, there is hardly any difference for the noise values derived from the stdev maps between all pixfrac values 0.1, 0.5 and 1.0. For smaller outpix sizes 4."8 and 3."2 the noise values are identical for pixfrac 0.1 and 0.5 for the same outpix size, while the pixfrac 1.0 values are smaller. This looks suspicious, since the image maps show a clear difference with the trends as described in the summary of Sect. 8.1. We discuss this finding in more detail in the general part of Section 9 (Conclusions).

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 92

8.4 Final photometric noise values and determination of correlated noise correction factors

The correlated noise correction factors for 160 μ m JScanam maps are determined according to Eq. 2 with the 160 μ m reference noise $\langle \sigma_{aperture,corr} \rangle_{wmHPF}^{ref}$ (160 μ m) value from Table 4. For the calculation we have to derive the noise in the standard aperture with radius 10."7 according to Eq. 1. Table 16 lists the derived f_{corr}^{JS} values. The uncertainty of the f_{corr}^{JS} values is in the order of 5–10%.

Table 16: Noise per measurement aperture $\sigma_{\text{aperture,corr}}$ at 160 µm (aperture radius of 10.77) and determination of correlated noise correction factor for JScanam maps by comparison with the corrected aperture noise of HPF maps. The combination high-lighted in bold face is used in the Standard Product Generation (SPG). The combination in italics was typical for the PACS photometric flux calibration analysis.

pixfrac/outpix	$\sigma^{JS}_{ m pix}$	N _{outpixinaper}	$\sigma^{JS}_{ m aperture}$	$<\sigma_{\rm aperture, corr}>_{\rm wmHPF50}^{\rm ref}$	$f_{\rm corr}^{ m JS}$
	(mJy/pix)		(mJy)	(mJy)	
0.1 / 21	$0.173 {\pm} 0.009$	81.6	1.563 ± 0.081	3.27 ± 0.05	$2.093{\pm}0.135$
$0.1 \ / \ 3.2''$	$0.335 {\pm} 0.015$	35.1	$1.985 {\pm} 0.089$	$3.27 {\pm} 0.05$	$1.648 {\pm} 0.099$
0.1 / 4."8	$0.639 {\pm} 0.046$	15.6	$2.524{\pm}0.182$	$3.27 {\pm} 0.05$	$1.296{\pm}0.114$
0.1 / 6.4	$0.990 {\pm} 0.072$	8.8	2.937 ± 0.214	$3.27 {\pm} 0.05$	$1.114{\pm}0.099$
0.5 / 3.2	$0.286{\pm}0.021$	35.1	$1.694{\pm}0.124$	$3.27 {\pm} 0.05$	$1.930{\pm}0.172$
0.5 / 48	$0.588 {\pm} 0.035$	15.6	2.322 ± 0.138	$3.27 {\pm} 0.05$	$1.408 {\pm} 0.106$
0.5 / 6.4	$0.961 {\pm} 0.077$	8.8	2.851 ± 0.228	$3.27 {\pm} 0.05$	$1.147 {\pm} 0.110$
1.0 / 2".1	$0.103 {\pm} 0.004$	81.6	$0.930 {\pm} 0.036$	$3.27 {\pm} 0.05$	$3.515 {\pm} 0.190$
1.0 / 3.2	$0.237 {\pm} 0.019$	35.1	$1.404{\pm}0.113$	$3.27 {\pm} 0.05$	2.329 ± 0.225
1.0 / 4."8	$0.515 {\pm} 0.030$	15.6	2.034 ± 0.119	$3.27 {\pm} 0.05$	$1.608 {\pm} 0.119$
1.0 / 6.4	$0.894{\pm}0.055$	8.8	2.652 ± 0.163	$3.27 {\pm} 0.05$	$1.233 {\pm} 0.095$

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps proce	essed with JScanam	Page 93

9 Conclusions

The systematic study (with different mapping parameters pixfrac and output pixel size) of a JScanam processed L2.5 composite of two mini-scan maps gave the following results:

- 1) JScanam processed maps show a similar behaviour of noise characteristics depending on *pixfrac* and *outpix* parameters as HPF processed maps. This is because both processing methods make use of the PhotProject algorithm.
- 2) We find that noise values derived from the standard deviation maps contained in the JScanam map product are in most cases identical among different *pixfrac* values for the same *outpix* size (cf. Tables 5, 9 and 13). For the parameter combinations analyzed in our study, there seems to be only a difference in the noise value with *pixfrac*, if the ratio of drop size (*pixfrac* × native detector pixel size) to *outpix* size changes from less equal 1 to greater than 1. The systematic trend of the noise level with *pixfrac* found for the noise analysis of the image maps is not reflected in the standard deviation maps. This kind of simplification is a common feature of the standard deviation map production in PhotProject, since it is also found for stdev maps associated with high pass filter processing (we verified that for a number of test cases investigated in [RD1]). Since the PACS software is frozen since end of 2016, it was not possible for us anymore to trigger an investigation of the code. However, neglecting the trend of the noise level with *pixfrac* introduces in most cases an uncertainty in the order of 5–20%. We can conclude, that the standard deviation maps give a reasonable estimate of the noise, as will be shown quantitatively for each filter below.

For $70\mu m$ maps:

- 1) The measured noise per pixel in JS canam processed maps is between 13 and 56% higher than in HPF processed maps with the standard HPF radius 15.
- 2) The standard deviation map of the JScanam L2.5 product gives representative noise per pixel values, which are in most cases at the 0.60–1.08 level of the noise measured inside the same area of the image map.
- 3) We derived correlated noise correction factors f_{corr}^{JS} under the assumption that the final noise corrected for correlation effects is the same for the HPF=30 and JScanam maps inside the standard aperture with 5."6 radius.

For $100\mu m$ maps:

- 1) The measured noise per pixel in JScanam processed maps is between 24 and 50% higher than in HPF processed maps with the standard HPF radius 15.
- 2) The standard deviation map of the JS canam L2.5 product gives representative noise per pixel values, which are in most cases at the 0.70–1.14 level of the noise measured inside the same area of the image map.
- 3) We derived correlated noise correction factors f_{corr}^{JS} under the assumption that the final noise corrected for correlation effects is the same for the HPF=30 and JScanam maps inside the standard aperture with 6.78 radius.

For 160µm maps:

1) The measured noise per pixel in JScanam processed maps is between 25 and 82% higher than in HPF processed maps with the standard HPF radius 25.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-015 June 27, 2018 Issue 1.0
Noise characterization of mini-maps processed with JScanam		Page 94

- 2) The standard deviation map of the JS canam L2.5 product gives representative noise per pixel values, which are in most cases at the 0.45–0.88 level of the noise measured inside the same area of the image map.
- 3) We derived correlated noise correction factors f_{corr}^{JS} under the assumption that the final noise corrected for correlation effects is the same for the HPF=50 and JScanam maps inside the standard aperture with 10.77 radius.

For convenience all $f_{\rm corr}^{\rm JS}$ values are summarized in Table 17.

Table 17: Correlated noise correction factors f_{corr}^{JS} for JS canam map parameter combinations.

pixfrac/outpix	f_{corr}^{JS}
70 µm filter	
0.1 / 1."1	1.77 ± 0.06
0.1 / 1.6	1.55 ± 0.06
0.1 / 24	1.31 ± 0.06
0.1 / 3."2	1.18 ± 0.06
0.5 / 1.00%	$1.91{\pm}0.06$
$0.5 / 2''_{4}$	$1.44{\pm}0.06$
0.5 / 3.2''	1.26 ± 0.07
1.0 / 1".1	3.25 ± 0.12
$1.0 / 1.0^{\prime\prime}$	$2.31{\pm}0.09$
1.0 / 24	$1.63 {\pm} 0.07$
1.0 / 3."2	$1.36 {\pm} 0.06$
$100\mu m$ filter	
0.1 / 1."4	1.74 ± 0.04
0.1 / 1."6	1.62 ± 0.06
0.1 / 24	1.47 ± 0.05
$0.1 / 3''_{2}$	1.25 ± 0.05
0.5 / 1.00%	1.97 ± 0.05
0.5 / 2.4''	1.58 ± 0.06
$0.5 / 3''_{2}$	1.29 ± 0.05
1.0 / 14	2.88 ± 0.06
1.0 / 1."6	2.45 ± 0.04
1.0 / 24	1.78 ± 0.07
1.0 / 3."2	1.37 ± 0.05
$160\mu m$ filter	
0.1 / 2."1	2.09 ± 0.14
$0.1 / 3''_{2}$	1.65 ± 0.10
0.1 / 4."8	$1.30{\pm}0.11$
0.1 / 64	1.11 ± 0.10
0.5 / 3.2''	1.93 ± 0.17
0.5 / 4.8	1.41 ± 0.11
0.5 / 6.4	1.15 ± 0.11
1.0 / 2".1	3.52 ± 0.19
1.0 / 32	2.33 ± 0.23
1.0 / 4."8	1.61 ± 0.12
1.0 / 64	1.23 ± 0.10