$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 1

Noise characterization of high-pass filtered PACS photometer mini-maps

U. Klaas¹ & H. Linz¹

¹ Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 2

Change Record

Version	Date	Changes	Remarks
Issue 0.95	Sep 23, 2016	_	Pre-release 70µm analysis
			to selected ICC-members for review
Issue 1.0	Oct 18, 2016	Completion 160µm map analysis	Complete issue $70+160\mu m$ analysis
Issue 1.5	Feb 17, 2018	Additional 100µm map analysis	Complete 100µm analysis
Issue 2.0	June 22, 2018	Additional map parameter combinations	Include map parameter combinations
			typical for photometric flux
			calibration analysis

Contents

Intr	oduction	7
Ana	alysis overview	7
Ana	lysis of 70µm maps	11
3.1	70 µm: HPF radius 15, Pixfrac 0.1, Pixsize 1	12
	3.1.1 L 2.0 OBSID 1342242772	12
	3.1.2 L 2.0 OBSID 1342242773	14
	3.1.3 L 2.5 OBSIDs 1342242772+1342242773	16
3.2	70 µm: HPF radius 15, Pixfrac 0.1, Pixsize 1	18
	3.2.1 L 2.0 OBSID 1342242772	18
	3.2.2 L 2.0 OBSID 1342242773	20
	3.2.3 L 2.5 OBSIDs 1342242772+1342242773	22
3.3	70 $\mu m:$ HPF radius 30, Pixfrac 0.1, Pixsize 1."6 $\hfill \ldots$	24
	3.3.1 L 2.0 OBSID 1342242772	24
	3.3.2 L 2.0 OBSID 1342242773	26
	3.3.3 L 2.5 OBSIDs 1342242772+1342242773	28
3.4	70 µm: HPF radius 15, Pixfrac 0.1, Pixsize 2	30
	3.4.1 L 2.0 OBSID 1342242772	30
	3.4.2 L 2.0 OBSID 1342242773	32
	3.4.3 L 2.5 OBSIDs 1342242772+1342242773	34
3.5	70 µm: HPF radius 15, Pixfrac 0.1, Pixsize $3^{\prime\prime}_{\cdot\prime}2^{\cdot\prime}$	36
	3.5.1 L 2.0 OBSID 1342242772	36
	3.5.2 L 2.0 OBSID 1342242773	38
	3.5.3 L 2.5 OBSIDs 1342242772+1342242773	40
3.6	70 μm: HPF radius 15, Pixfrac 0.5, Pixsize 1	42
	3.6.1 L 2.0 OBSID 1342242772	42
	Ana 3.1 3.2 3.3 3.4 3.5	3.1.1 L 2.0 OBSID 1342242772 3.1.2 L 2.0 OBSID 1342242773 3.1.3 L 2.5 OBSIDs 1342242772+1342242773 3.2 70 μm: HPF radius 15, Pixfrac 0.1, Pixsize 1"6 3.2.1 L 2.0 OBSID 1342242772 3.2.2 L 2.0 OBSID 1342242773 3.2.3 L 2.5 OBSIDs 1342242772+134224273 3.2.3 L 2.5 OBSIDs 1342242772+134224273 3.3.3 L 2.0 OBSID 1342242772 3.3.4 L 2.0 OBSID 1342242773 3.3.5 L 2.0 OBSID 1342242773 3.3.4 L 2.0 OBSID 1342242773 3.3.5 L 2.0 OBSID 1342242772 3.3.4 L 2.0 OBSID 1342242772 3.3.3 L 2.5 OBSIDs 1342242772 3.4.1 L 2.0 OBSID 1342242772 3.4.2 L 2.0 OBSID 1342242772 3.4.3 L 2.5 OBSIDs 1342242772 3.4.4 L 2.0 OBSID 1342242772 3.4.3 L 2.5 OBSIDs 1342242772 3.4.4 L 2.0 OBSID 1342242772 3.5.1 L 2.0 OBSID 1342242772 3.5.2 L 2.0 OBSID 1342242773 3.5.3 L 2.0 OBSID 1342242773 3.5.4 L 2.0 OBSID 1342242773 3.5.4

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 3

		3.6.2	L 2.0 OBSID 1342242773	44
		3.6.3	L 2.5 OBSIDs 1342242772+1342242773	46
	3.7	70 µm:	: HPF radius 15, Pixfrac 1.0, Pixsize 1	48
		3.7.1	L 2.0 OBSID 1342242772	48
		3.7.2	L 2.0 OBSID 1342242773	50
		3.7.3	L 2.5 OBSIDs 1342242772+1342242773	52
	3.8	70 µm:	: HPF radius 15, Pixfrac 1.0, Pixsize 16	54
		3.8.1	L 2.0 OBSID 1342242772	54
		3.8.2	L 2.0 OBSID 1342242773	56
		3.8.3	L 2.5 OBSIDs 1342242772+1342242773	58
	3.9	70 µm:	: HPF radius 30, Pixfrac 1.0, Pixsize 16	60
		3.9.1	L 2.0 OBSID 1342242772	60
		3.9.2	L 2.0 OBSID 1342242773	62
		3.9.3	L 2.5 OBSIDs 1342242772+1342242773	64
	3.10	70 µm:	: HPF radius 15, Pixfrac 1.0, Pixsize 2	66
			L 2.0 OBSID 1342242772	
		3.10.2	L 2.0 OBSID 1342242773	68
		3.10.3	L 2.5 OBSIDs 1342242772+1342242773	70
	3.11	70 µm:	: HPF radius 15, Pixfrac 1.0, Pixsize 3	72
		3.11.1	L 2.0 OBSID 1342242772	72
		3.11.2	L 2.0 OBSID 1342242773	74
		3.11.3	L 2.5 OBSIDs 1342242772+1342242773	76
4	Ana	lysis o	of 100µm maps	78
-			n: HPF radius 15, Pixfrac 0.1, Pixsize 1	
			L 2.0 OBSID 1342242770	
			L 2.0 OBSID 1342242771	
			L 2.5 OBSIDs 1342242770+1342242771	
	4.2		n: HPF radius 15, Pixfrac 0.1, Pixsize 1	
		4.2.1	L 2.0 OBSID 1342242770	85
		4.2.2	L 2.0 OBSID 1342242771	. 87
		4.2.3	L 2.5 OBSIDs 1342242770+1342242771	. 89
	4.3	100 µn	n: HPF radius 30, Pixfrac 0.1, Pixsize 1	. 91
		4.3.1	L 2.0 OBSID 1342242770	91
		4.3.2	L 2.0 OBSID 1342242771	
		4.3.3	L 2.5 OBSIDs 1342242770+1342242771	95
	4.4	100 µn	n: HPF radius 15, Pixfrac 0.1, Pixsize 2	. 97
			L 2.0 OBSID 1342242770	

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 4

		4.4.2 L 2.0 OBSID 1342242771
		4.4.3 L 2.5 OBSIDs 1342242770+1342242771
	4.5	100 µm: HPF radius 15, Pixfrac 0.1, Pixsize 3."2
		4.5.1 L 2.0 OBSID 1342242770
		4.5.2 L 2.0 OBSID 1342242771
		4.5.3 L 2.5 OBSIDs 1342242770+1342242771
	4.6	100 μ m: HPF radius 15, Pixfrac 0.5, Pixsize 1."6
		4.6.1 L 2.0 OBSID 1342242770
		4.6.2 L 2.0 OBSID 1342242771
		4.6.3 L 2.5 OBSIDs 1342242770+1342242771
	4.7	100 μ m: HPF radius 15, Pixfrac 1.0, Pixsize 14 $\dots \dots \dots$
		4.7.1 L 2.0 OBSID 1342242770
		4.7.2 L 2.0 OBSID 1342242771
		4.7.3 L 2.5 OBSIDs 1342242770+1342242771
	4.8	100 μ m: HPF radius 15, Pixfrac 1.0, Pixsize 1
		4.8.1 L 2.0 OBSID 1342242770
		4.8.2 L 2.0 OBSID 1342242771
		4.8.3 L 2.5 OBSIDs 1342242770+1342242771
	4.9	100 µm: HPF radius 30, Pixfrac 1.0, Pixsize 1."6
		4.9.1 L 2.0 OBSID 1342242770
		4.9.2 L 2.0 OBSID 1342242771
		4.9.3 L 2.5 OBSIDs 1342242770+1342242771
	4.10	100 µm: HPF radius 15, Pixfrac 1.0, Pixsize 2
		4.10.1 L 2.0 OBSID 1342242770
		4.10.2 L 2.0 OBSID 1342242771
		4.10.3 L 2.5 OBSIDs 1342242770+1342242771
	4.11	100 µm: HPF radius 15, Pixfrac 1.0, Pixsize 3."2
		4.11.1 L 2.0 OBSID 1342242770
		4.11.2 L 2.0 OBSID 1342242771
		4.11.3 L 2.5 OBSIDs 1342242770+1342242771
5	Ano	lysis of 160µm maps 145
9		143 160 µm: HPF radius 25, Pixfrac 0.1, Pixsize 2 146
	5.1	100 μm: HPF radius 25, Pixirac 0.1, Pixsize 2.1 140 5.1.1 L 2.0 OBSID 1342242772 146
		5.1.2 L 2.0 OBSID 1342242773
		5.1.2 L 2.5 OBSID 1342242772+1342242773
	5.2	160 μm: HPF radius 25, Pixfrac 0.1, Pixsize 3 152
	0.4	5.2.1 L 2.0 OBSID 1342242772
		0.2.1 1.2.0 0.001 10.12.12.12.1

$\mathop{\textbf{PACS}}_{\text{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 5

	5.2.2 L 2.0 OBSID 1342242773	154
	5.2.3 L 2.5 OBSIDs 1342242772+1342242773	156
5.3	160 μ m: HPF radius 50, Pixfrac 0.1, Pixsize 3	158
	5.3.1 L 2.0 OBSID 1342242772	158
5.4	160 μ m: HPF radius 25, Pixfrac 0.1, Pixsize 48	160
	5.4.1 L 2.0 OBSID 1342242772	160
	5.4.2 L 2.0 OBSID 1342242773	162
	5.4.3 L 2.5 OBSIDs 1342242772+1342242773	164
5.5	160 μ m: HPF radius 25, Pixfrac 0.1, Pixsize 64	166
	5.5.1 L 2.0 OBSID 1342242772	166
	5.5.2 L 2.0 OBSID 1342242773	168
	5.5.3 L 2.5 OBSIDs 1342242772+1342242773	170
	5.5.4 L 2.0 OBSID 1342242773	172
	5.5.5 L 2.5 OBSIDs 1342242772+1342242773	
5.6	160 μm: HPF radius 25, Pixfrac 0.5, Pixsize 3."2	
	5.6.1 L 2.0 OBSID 1342242772	
	5.6.2 L 2.0 OBSID 1342242773	178
	5.6.3 L 2.5 OBSIDs 1342242772+1342242773	180
5.7	160 μm: HPF radius 25, Pixfrac 1.0, Pixsize 2'1	
	5.7.1 L 2.0 OBSID 1342242772	
	5.7.2 L 2.0 OBSID 1342242773	
	5.7.3 L 2.5 OBSIDs 1342242772+1342242773	186
5.8	160 μm: HPF radius 25, Pixfrac 1.0, Pixsize 3	
	5.8.1 L 2.0 OBSID 1342242772	188
	5.8.2 L 2.0 OBSID 1342242773	190
	5.8.3 L 2.5 OBSIDs 1342242772+1342242773	
5.9	160 μm: HPF radius 50, Pixfrac 1.0, Pixsize 3	
	5.9.1 L 2.0 OBSID 1342242772	
	5.9.2 L 2.0 OBSID 1342242773	196
	5.9.3 L 2.5 OBSIDs 1342242772+1342242773	
5.10	160 μm: HPF radius 25, Pixfrac 1.0, Pixsize 4	200
	5.10.1 L 2.0 OBSID 1342242772	
	5.10.2 L 2.0 OBSID 1342242773	
	5.10.3 L 2.5 OBSIDs 1342242772+1342242773	
5.11	160 μ m: HPF radius 25, Pixfrac 1.0, Pixsize 64	
	5.11.1 L 2.0 OBSID 1342242772	
	5.11.2 L 2.0 OBSID 1342242773	
	5.11.3 L 2.5 OBSIDs 1342242772+1342242773	210

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 6

6	Res	sults for 70 µm maps 2	12
	6.1	Measurement of flux standard deviation in source-free areas	12
	6.2	Measurement of flux standard deviation by histogram method	14
	6.3	Ratio of L2.5 to L2.0 noise	16
	6.4	Noise of the associated error maps	18
	6.5	Comparison of the L2.0 product image noise with the noise of the associated error maps 2	19
	6.6	Comparison of the L2.5 product image noise with the noise of the associated error maps \ldots 2	21
	6.7	Final photometric noise values of L2.0 products corrected for correlation effects	22
	6.8	Final photometric noise values of L2.5 products corrected for correlation effects	23
7	Res	sults for 100 µm maps 2	24
	7.1	Measurement of flux standard deviation in source-free areas	24
	7.2	Measurement of flux standard deviation by histogram method	26
	7.3	Ratio of L2.5 to L2.0 noise	28
	7.4	Noise of the associated error maps	30
	7.5	Comparison of the L2.0 product image noise with the noise of the associated error maps $\ldots 2$	31
	7.6	Comparison of the L2.5 product image noise with the noise of the associated error maps $\ldots \ldots 2$	33
	7.7	Final photometric noise values of L2.0 products corrected for correlation effects	34
	7.8	Final photometric noise values of L2.5 products corrected for correlation effects	35
8	\mathbf{Res}	sults for 160 µm maps 2	36
	8.1	Measurement of flux standard deviation in source-free areas	36
	8.2	Measurement of flux standard deviation by histogram method	38
	8.3	Ratio of L2.5 to L2.0 noise	40
	8.4	Noise of the associated error maps	42
	8.5	Comparison of L2.0 product image noise with noise of associated error maps	43
	8.6	Comparison of L2.5 product image noise with noise of associated error maps	45
	8.7	Final photometric noise values of L2.0 products corrected for correlation effects	46
	8.8	Final photometric noise values of L2.5 products corrected for correlation effects	47

9 Conclusions

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 7

1 Introduction

We investigate the noise properties of high-pass-filtered (HPF) mini-maps for point source photometry and how they vary depending on

- a) the selected **HPF radius**¹,
- b) the mapping parameter **pixfrac** (ratio of drop size to input pixel size used for the Drizzle algorithm [c.f. Fruchter, A.S. & Hook, R.N., PASP, 114,144] employed within the photProject mapper), and
- c) the **output pixel size** in the final map.

We compare the noise measured in the intensity maps with the error map values, which are based on a noise model as presented in Popesso et al. (2012, arXiv:1211.4257v1 [astro-ph.IM]) and check the consistency of the correlated noise correction.

For that study two pairs of mini-maps on the intermediate bright standard star β Gem, OBSIDs 1342242770+1342242771 (only 100 µm analysis) and 1342242772+1342242773 (70 and 160 µm analysis) (cf. Table 1), were processed with the ipipe mapper script "HPF" up to level L2.0 with the combination of mapping parameters as listed in Table 2. The co-added L2.5 product is generated by applying the "mosaic" task. The used HIPE version was 14.2.0, equivalent to build number 14.0.3597. For details of the data processing, please refer to the PACS data reduction guide photometry.

Table 1: Properties of the mini-maps. The 160 μm maps of OBSIDs 1342242770 and 1342242771 are not used in the analysis presented in this report.

OBSID	λ	scan speed	orientation	# scan legs	leg length	leg separation
	(μm)	("/s)	(o wrt. S/C y-axis)		(')	(")
1342242770	100+160	20	70	10	3	4
1342242771	100 + 160	20	110	10	3	4
1342242772	70 + 160	20	70	10	3	4
1342242773	70 + 160	20	110	10	3	4

2 Analysis overview

A representative 1- σ noise level of the L2.0 and L2.5 intensity maps is derived in two ways:

- 1) The standard deviation is determined in two rectangular boxes located in source-free and clean areas of the map close to the central position with the source. A mean $\sigma_{\text{mean}} = \frac{\sigma_{\text{box1}} + \sigma_{\text{box2}}}{2}$ is determined for further analysis.
- 2) A flux histogram is constructed for all output pixels of the image map, where the corresponding coverage map indicates that $cover_{pix} \gtrsim \frac{1}{2} \ cover_{max}$. A Gauss fit is performed to the histogram but restricted to the part with fluxes below the flux bin associated with the peak of the histogram, which is a good approximation of the mean background level. In this way we ensure that the derived σ_{hist} represents the noise of the background level only and is not contaminated by flux of faint sources. (In fact, to optimize the quality of the fit, typically about 10 histogram bins to the right of the peak of the histogram are included in the fit).

¹This parameter determines the elementary section of a scan over which the filter algorithm computes a running median value. Its unit is "number of read-outs". The spatial interval between two readouts is $\alpha_{\rm ro} = \frac{v_{\rm scan}}{\nu_{\rm ro}}$. For the standard $\nu_{\rm ro} = 10$ Hz downlink rate in PACS prime mode (averaging 4 frames on-board read out with a frequency of 40 Hz) and a scan speed $v_{\rm scan} = 20$ "/s (cf. Table 1) the spatial interval $\alpha_{\rm ro}$ between two read-outs corresponds to 2". The entire width of the HPF window (") = $[(2 \times \text{HPF radius}) + 1] \times \alpha_{\rm ro}$.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filte	Noise characterization of high-pass filtered mini-maps	

Table 2: Combination of mapping parameters used for the study. The combinations high-lighted in bold face are used in the Standard Product Generation (SPG). The combinations in italics were typical for the PACS photometric flux calibration, except that a HPF radius of 20 was used at 100 μ m and a HPF radius of 35 at 160 μ m.

blue $(70 \mu m)$ filter			
HPF radius	pixfrac	output pixel size	
15	0.1	11	
15	0.1	16	
15	0.1	24	
15	0.1	32	
15	0.5	1."6	
15	1.0	1".1	
15	1.0	1."6	
15	1.0	24	
15	1.0	32	
30	0.1	1."6	
30	1.0	1."6	
gre	en (100 µ:	m) filter	
HPF radius	pixfrac	output pixel size	
15	0.1	14	
15	0.1	16	
15	0.1	24	
15	0.1	32	
15	0.5	1."6	
15	1.0	1".4	
15	1.0	1."6	
15	1.0	24	
15	1.0	3."2	
30	0.1	1."6	
30	1.0	1."6	
re	d (160 μm	n) filter	
HPF radius	pixfrac	output pixel size	
25	0.1	2."1	
25	0.1	$3''_{}2$	
25	0.1	48	
25	0.1	64	
25	0.5	3."2	
25	1.0	2'' 1	
25	1.0	3."2	
25	1.0	48	
25	1.0	64	
50	0.1	32	
50	1.0	32	

For the error maps of the L2.0 products the same $cover_{pix}$ threshold is used to produce a histogram. From this we derive a mean σ_{mean} (and median σ_{median}) noise value. For comparison with the measured σ_{hist} , the latter must be multiplied with the correlated noise correction factor f

 $^{^{2}}c_{ijk}$ is related to the 20 parameters P(0) ... P(19) in Table 9 of Popesso et al. (2012) by running 3 nested DO-loops with (from outer to inner) k = 0, n; j = 0, (n-k); and i = 0, (n-k-j))

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 9

$$f = \sum_{0 \le i+j+k \le n}^{n=3} c_{ijk} \, hpf^i \, outpix^j \, pixfrac^k \qquad k = 0, n; \ j = 0, (n-k); \ i = 0, (n-k-j)^2 \tag{1}$$

to derive the corrected noise per pixel:

$$\sigma_{\rm pixcorr} = f \,\sigma_{\rm hist}.\tag{2}$$

For the verification of the error maps of the L2.5 products the following algorithm described in Popesso et al. (2012) is used to calculate the uncorrected noise per pixel:

$$\sigma_{\rm pixcover} = 10^{\alpha \log_{10}(\rm cover_{pix}) + \beta} \tag{3}$$

with α and β being derived in the same manner from the 20 parameters P(0) ... P(19) in Table 9 of Popesso et al. (2012) as the f-factor above (calculated values of all three factors for the map parameter combinations used in this study are listed in Table 3):

$$\alpha = \sum_{0 \le i+j+k \le n}^{n=3} a_{ijk} hpf^i outpix^j pixfrac^k$$
(4)

$$\beta = \sum_{0 \le i+j+k \le n}^{n=3} b_{ijk} hpf^i outpix^j pixfrac^k$$
(5)

The corrected noise per pixel is then calculated via Eqn. 2 by inserting σ_{pixcover} instead of σ_{hist} .

For a photometric measurement, the noise inside the measurement aperture must be determined from the noise per pixel σ_{pix} . This is given by

$$\sigma_{\rm aperture} = \sqrt{N_{\rm outpixinaper}} \times \sigma_{\rm pix} \tag{6}$$

with $N_{\rm outpixinaper}$ being the number of output pixels inside the measurement aperture.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filt	tered mini-maps	Page 10

Table 3: α , β and f-factors calculated according to Eqs. 4, 5 and 1 used in the analysis. The combinations high-lighted in bold face are used in the Standard Product Generation (SPG). The combinations in italics were used for the photometric flux calibration analysis.

701	70µm map factors			
HPF/pixfrac/outpix	α	β	f	
15 / 0.1 / 1."1	-0.501863	-3.30016	1.47003	
15 / 0.1 / 1."6	-0.501830	-3.11796	1.38642	
15 / 0.1 / 24	-0.500192	-2.96825	1.30378	
15 / 0.1 / 3.2	-0.500173	-2.76504	1.17576	
15 / 0.5 / 1."6	-0.502250	-2.60539	1.89745	
15 / 1.0 / 1.11	-0.502032	-2.76077	3.12663	
15 / 1.0 / 1.0	-0.500302	-2.41860	2.34220	
15 / 1.0 / 24	-0.497850	-2.13750	1.64066	
15 / 1.0 / 3."2	-0.499353	-1.95621	1.51210	
30 / 0.1 / 1."6	-0.502160	-3.09060	1.53629	
30 / 1.0 / 1.0 / 1.06	-0.500875	-2.38287	2.60027	
100	µm map fact	ors		
HPF/pixfrac/outpix	$ \alpha$	β	f	
15 / 0.1 / 1."4	-0.415499	-3.35599	1.43590	
$15 \ / \ 0.1 \ / \ 1.0\%$	-0.410676	-3.29616	1.41157	
15 / 0.1 / 2.4	-0.394431	-3.14629	1.33312	
15 / 0.1 / 3.2	-0.393743	-2.94929	1.18794	
15 / 0.5 / 1."6	-0.401789	-2.95044	1.90949	
15 / 1.0 / 14	-0.420330	-2.87269	2.64995	
15 / 1.0 / 1.46	-0.422149	-2.75061	2.37049	
15 / 1.0 / 2.4	-0.422871	-2.44735	1.66385	
15 / 1.0 / 3.2	-0.423781	-2.24992	1.51819	
30 / 0.1 / 16	-0.398476	-3.29034	1.53702	
30 / 1.0 / 1.46	-0.397331	-2.79784	2.60266	
	μm map fact	ors		
HPF/pixfrac/outpix	α	β	f	
25 / 0.1 / 2.1	-0.435876	-3.46169	1.74613	
$25 \ / \ 0.1 \ / \ 3.^{\prime\prime}2$	-0.409194	-3.23597	1.54527	
25 / 0.1 / 4."8	-0.361526	-2.86422	1.43937	
25 / 0.1 / 6.4	-0.412735	-2.59025	1.25115	
25 / 0.5 / 3.22	-0.363151	-2.82315	1.93410	
25 / 1.0 / 2. 1	-0.404275	-2.97952	3.96257	
25 / 1.0 / 3."2	-0.375782	-2.45456	2.51013	
25 / 1.0 / 4."8	-0.329690	-1.94453	1.51518	
25 / 1.0 / 6."4	-0.387470	-1.88422	1.54181	
50 / 0.1 / 3."2	-0.284172	-1.89009	1.74796	
50 / 1.0 / 3."2	-0.463820	-2.25810	2.72807	

PACS Herschel	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 11	

3 Analysis of 70µm maps

$\underset{\text{Herschel}}{\text{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 12	

3.1 70 µm: HPF radius 15, Pixfrac 0.1, Pixsize 1."1

$3.1.1 \quad L\, 2.0 \ OBSID \ 1342242772$

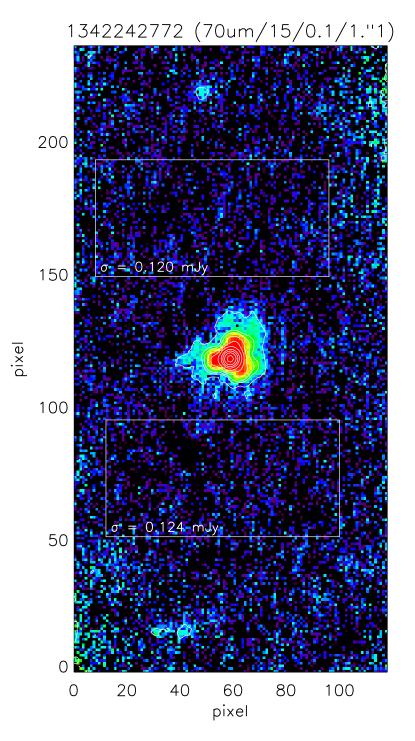


Figure 1: 70 μ m L2.0 map for OBSID 1342242772 with HPF radius 15, pixfrac 0.1 and output pixel size of 1".1. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 13

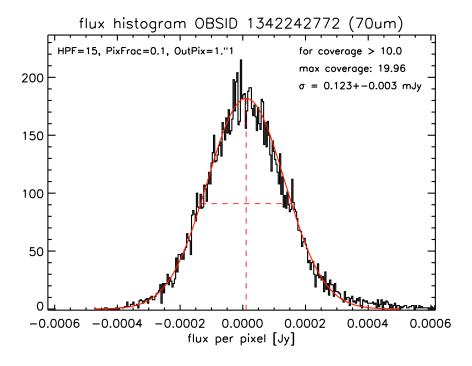


Figure 2: Noise determination for the 70 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

For this map parameter combination no error map analysis was done.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass f	Page 14	

3.1.2 L 2.0 OBSID 1342242773

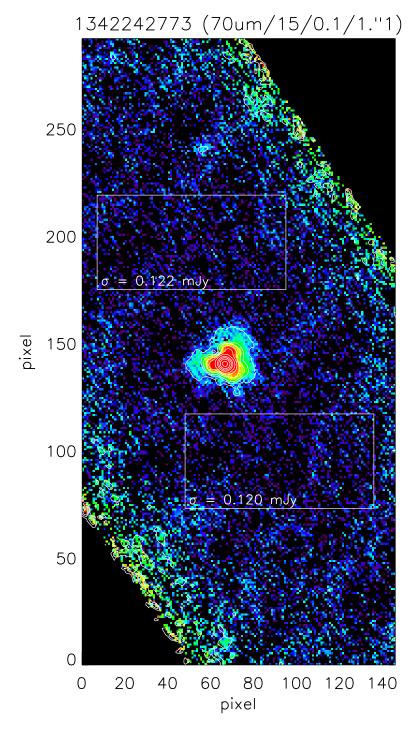


Figure 3: 70 μ m L2.0 map for OBSID 1342242773 with HPF radius 15, pixfrac 0.1 and output pixel size of 1".1. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 15

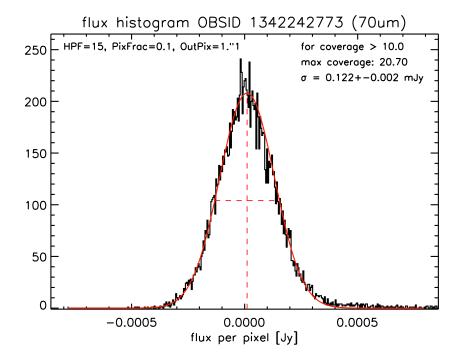


Figure 4: Noise determination for the 70 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

For this map parameter combination no error map analysis was done.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 16

3.1.3 L 2.5 OBSIDs 1342242772+1342242773

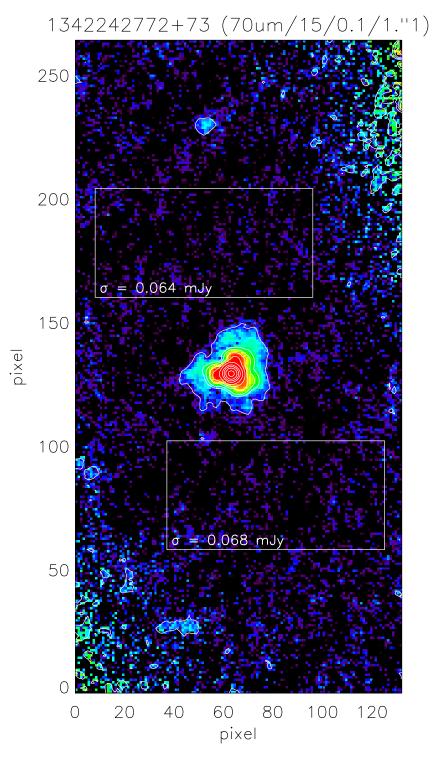


Figure 5: 70 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 15, pixfrac 0.1 and output pixel size of 1."1 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 17

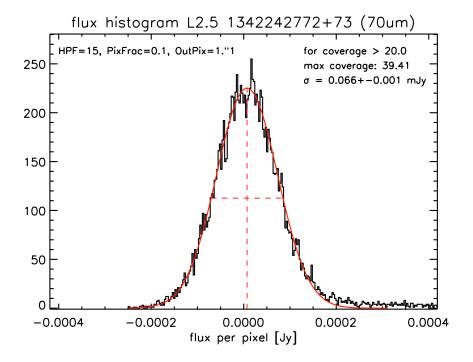


Figure 6: Noise determination for the 70 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

For this map parameter combination no error map analysis was done.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 18

3.2 70 µm: HPF radius 15, Pixfrac 0.1, Pixsize 1."6

3.2.1 L 2.0 OBSID 1342242772

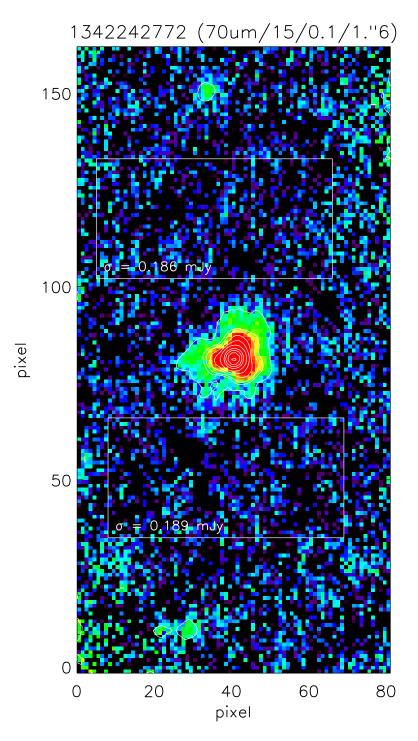


Figure 7: 70 μ m L2.0 map for OBSID 1342242772 with HPF radius 15, pixfrac 0.1 and output pixel size of 1."6 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 19

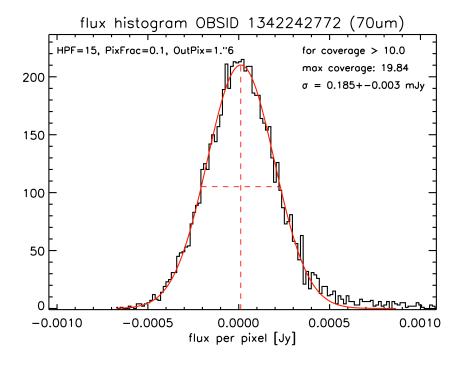


Figure 8: Noise determination for the 70 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

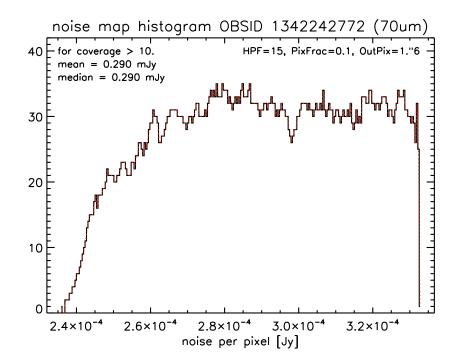


Figure 9: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\underset{\text{Herschel}}{\text{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 20

3.2.2 L 2.0 OBSID 1342242773

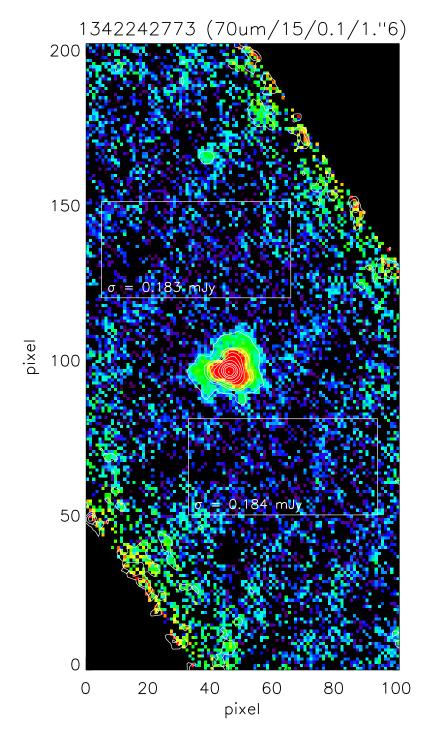


Figure 10: 70 μ m L2.0 map for OBSID 1342242773 with HPF radius 15, pixfrac 0.1 and output pixel size of 1".6 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\textbf{PACS}}_{\text{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 21

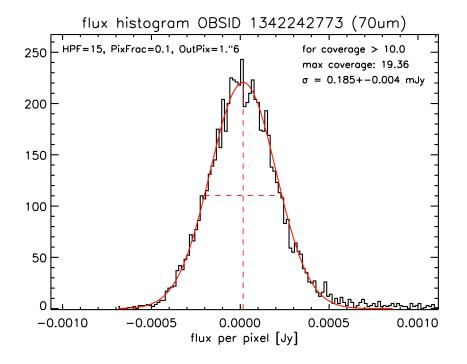


Figure 11: Noise determination for the 70 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

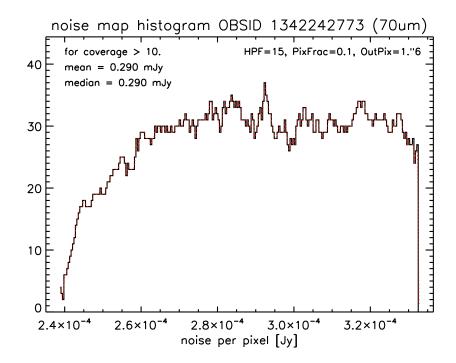


Figure 12: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 22

3.2.3 L 2.5 OBSIDs 1342242772+1342242773

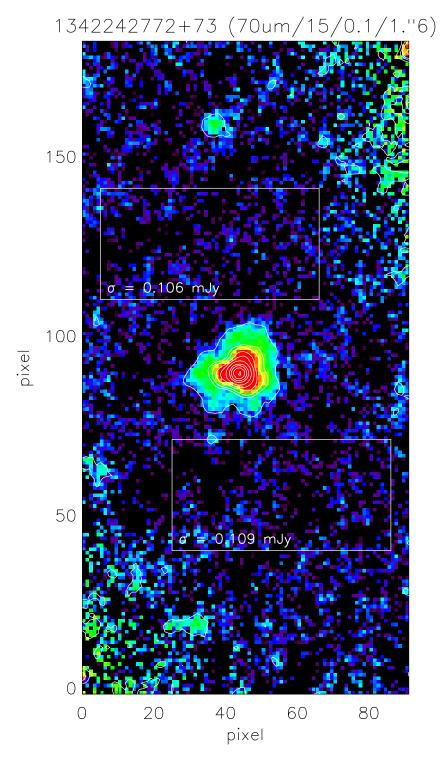


Figure 13: 70 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 15, pixfrac 0.1 and output pixel size of 1."6 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 23

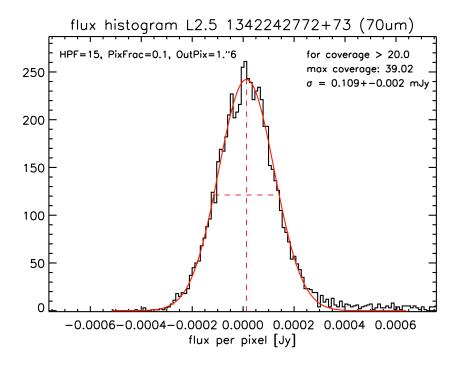


Figure 14: Noise determination for the 70 μ m coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

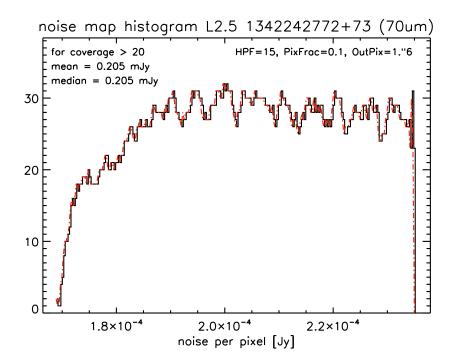


Figure 15: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 24

3.3 70 µm: HPF radius 30, Pixfrac 0.1, Pixsize 1."6

3.3.1 L 2.0 OBSID 1342242772

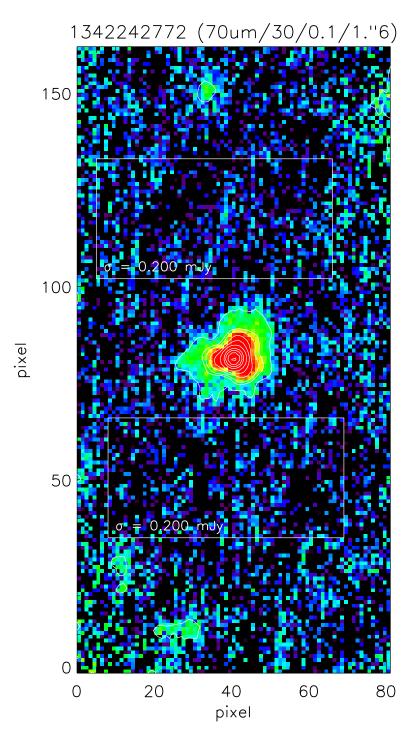


Figure 16: 70 μ m L2.0 map for OBSID 1342242772 with HPF radius 30, pixfrac 0.1 and output pixel size of 1".6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 25

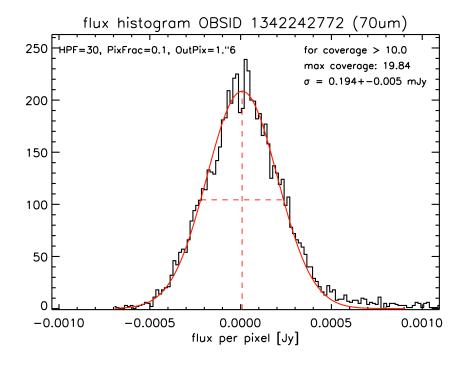


Figure 17: Noise determination for the 70 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).



Figure 18: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 26

3.3.2 L 2.0 OBSID 1342242773

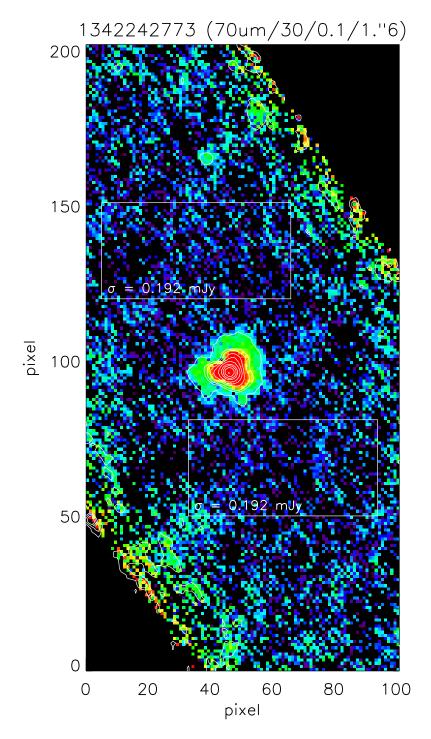


Figure 19: 70 μ m L2.0 map for OBSID 1342242773 with HPF radius 30, pixfrac 0.1 and an output pixels size of 1."6. The two background fields for noise determination are outlined by the white boxes and the σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 27

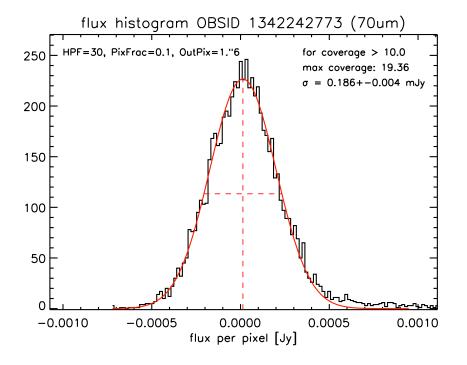


Figure 20: Noise determination for the 70 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

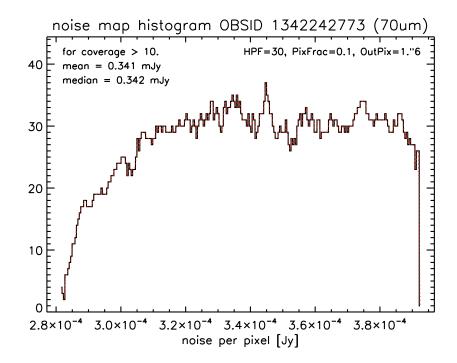


Figure 21: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 28

3.3.3 L 2.5 OBSIDs 1342242772+1342242773

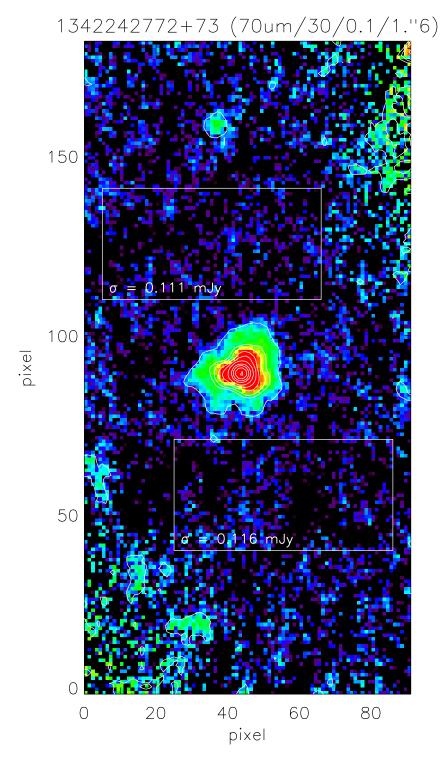


Figure 22: 70 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 30, pixfrac 0.1 and output pixel size of 1".6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 29

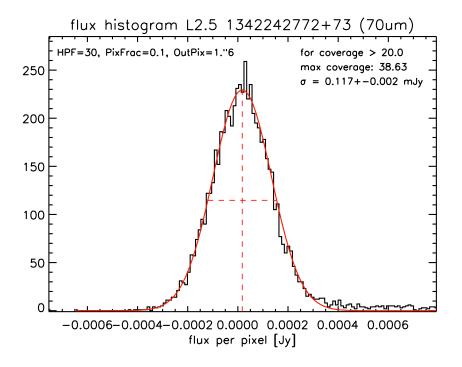


Figure 23: Noise determination for the 70 μ m coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

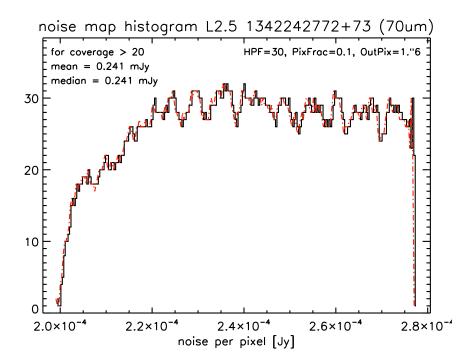


Figure 24: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 30

3.4 70 µm: HPF radius 15, Pixfrac 0.1, Pixsize 2.4

3.4.1 L 2.0 OBSID 1342242772

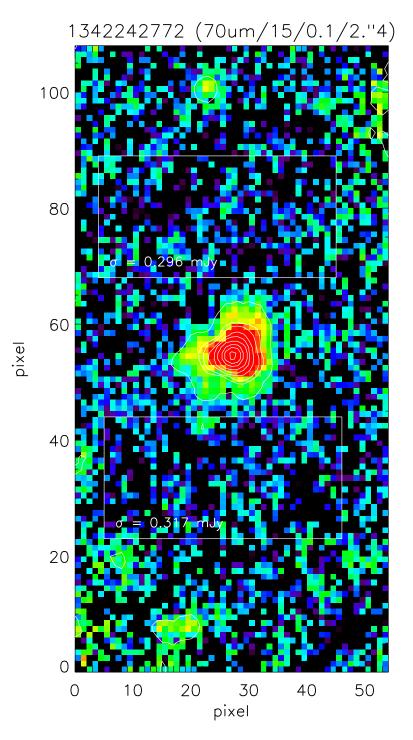


Figure 25: 70 μ m L2.0 map for OBSID 1342242772 with HPF radius 15, pixfrac 0.1 and output pixel size of 2".4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 31

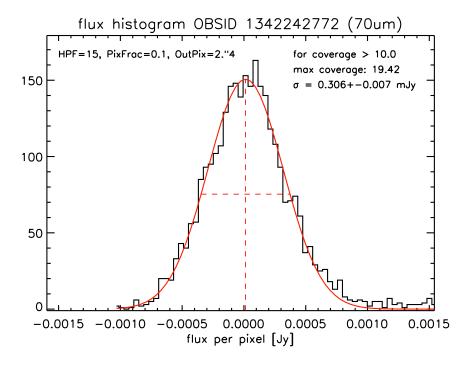


Figure 26: Noise determination for the 70 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

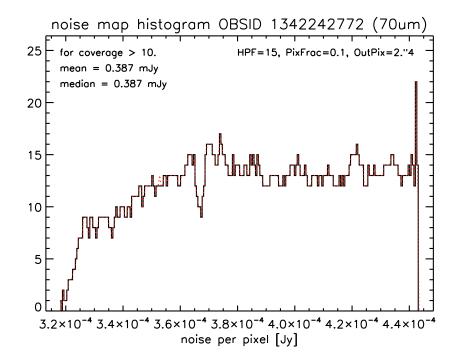


Figure 27: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{{ m Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 32

3.4.2 L 2.0 OBSID 1342242773

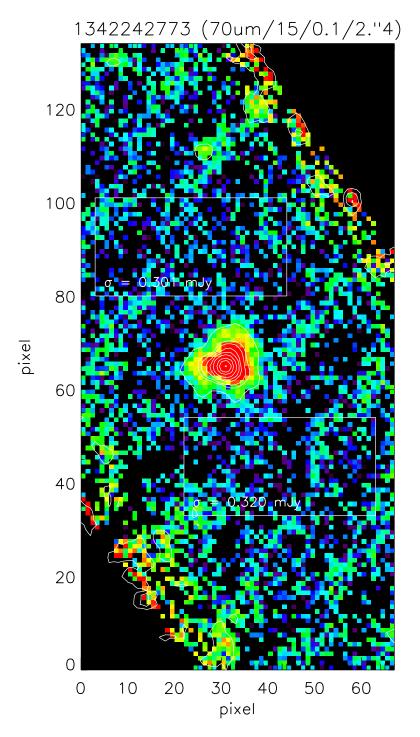


Figure 28: 70 μ m L2.0 map for OBSID 1342242773 with HPF radius 15, pixfrac 0.1 and output pixel size of 2".4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 33

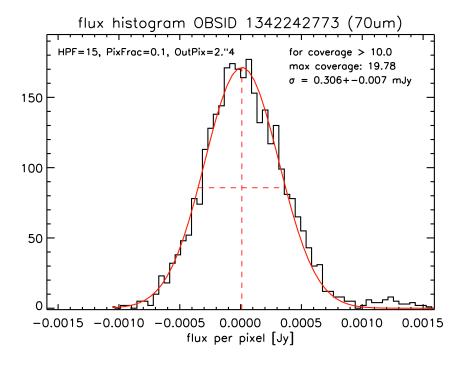


Figure 29: Noise determination for the 70 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

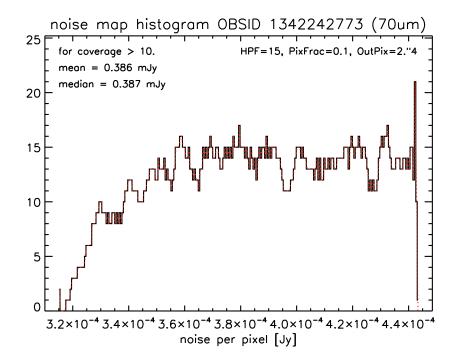


Figure 30: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 34

3.4.3 L 2.5 OBSIDs 1342242772+1342242773

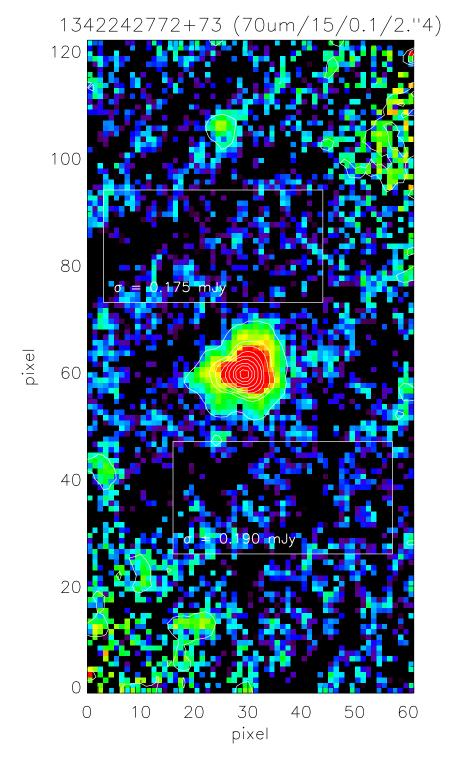


Figure 31: 70 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 15, pixfrac 0.1 and output pixel size of 2".4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\underset{\text{Herschel}}{\mathbf{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 35

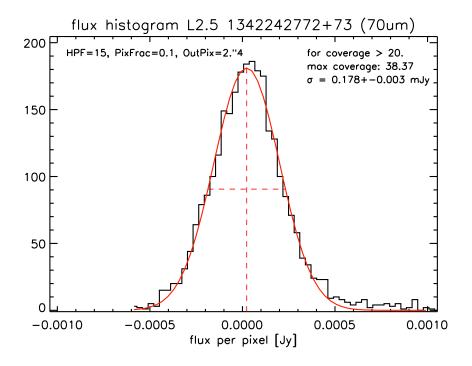


Figure 32: Noise determination for the 70 μ m coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

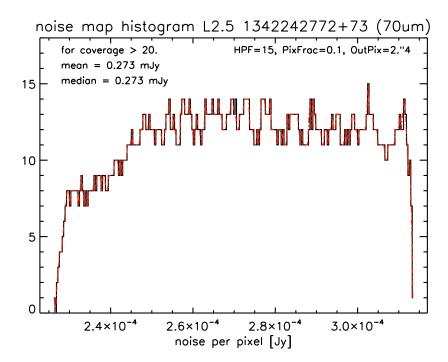


Figure 33: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 36

3.5 70 µm: HPF radius 15, Pixfrac 0.1, Pixsize 3".2

$3.5.1 \quad L\, 2.0 \ OBSID \ 1342242772$

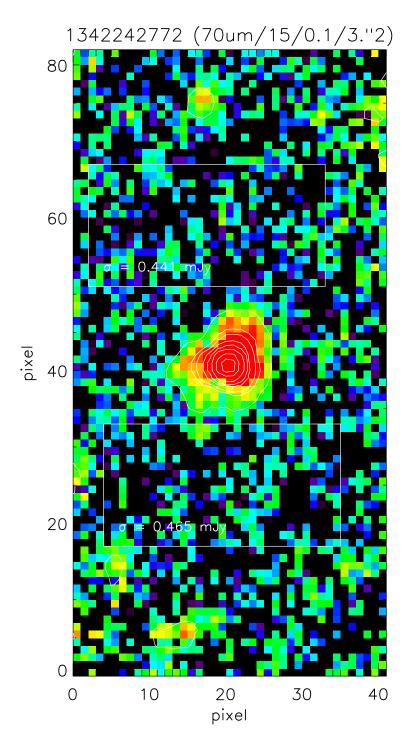


Figure 34: 70 μ m L2.0 map for OBSID 1342242772 with HPF radius 15, pixfrac 0.1 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 37

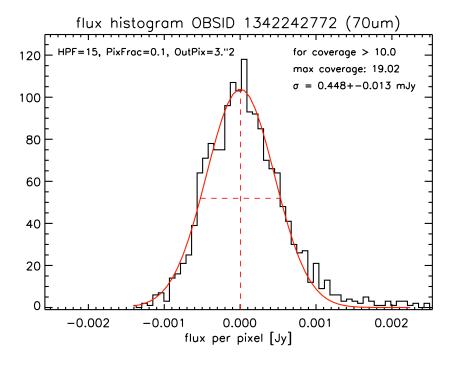


Figure 35: Noise determination for the 70 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

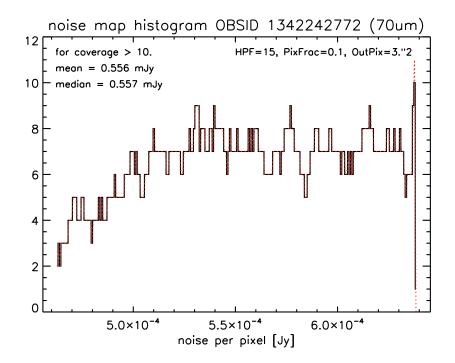


Figure 36: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	d mini-maps	Page 38

3.5.2 L 2.0 OBSID 1342242773

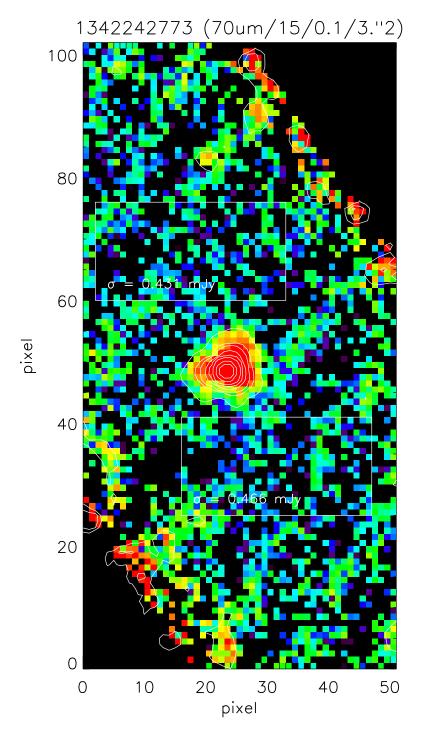


Figure 37: 70 μ m L2.0 map for OBSID 1342242773 with HPF radius 15, pixfrac 0.1 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 39

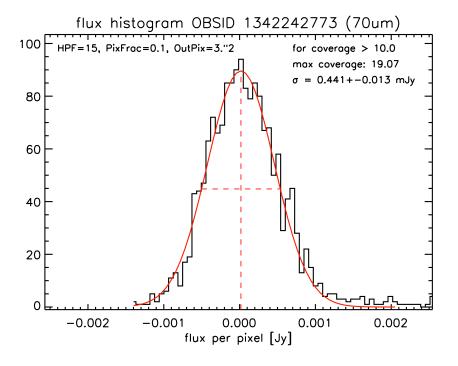


Figure 38: Noise determination for the 70 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

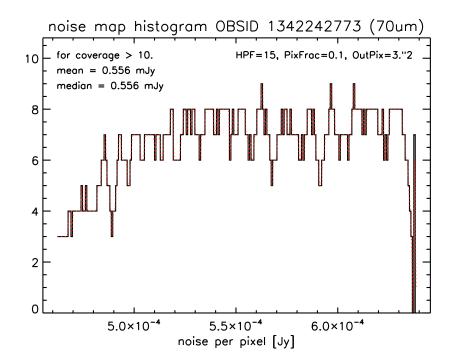


Figure 39: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 40

3.5.3 L 2.5 OBSIDs 1342242772+1342242773

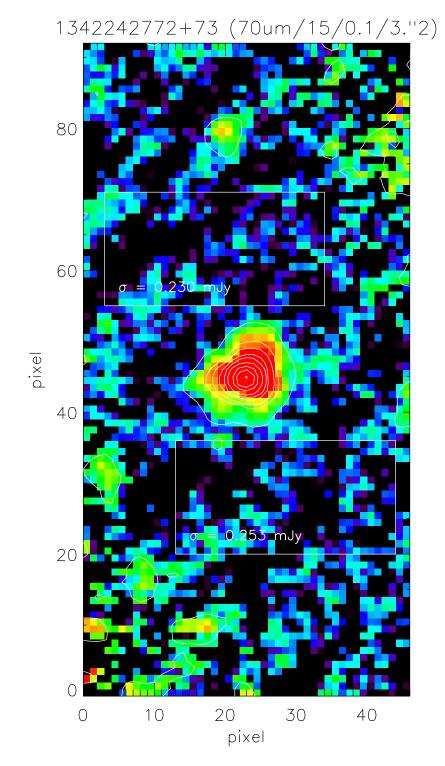


Figure 40: 70 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 15, pixfrac 0.1 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

PACS Herschel	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 41

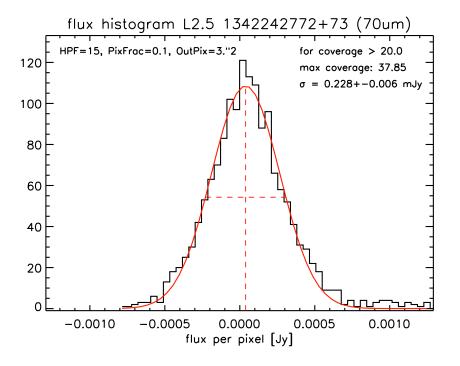


Figure 41: Noise determination for the 70 μ m coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

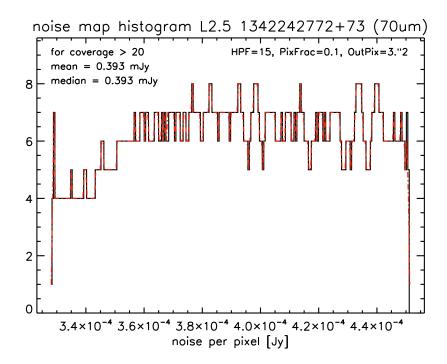


Figure 42: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filter	ed mini-maps	Page 42

3.6 70 µm: HPF radius 15, Pixfrac 0.5, Pixsize 1."6

3.6.1 L 2.0 OBSID 1342242772

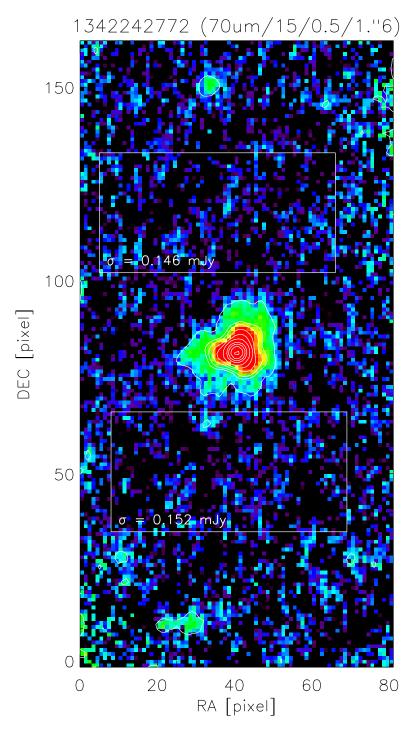


Figure 43: 70 μ m L2.0 map for OBSID 1342242772 with HPF radius 15, pixfrac 0.5 and output pixel size of 1".6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass	s filtered mini-maps	Page 43

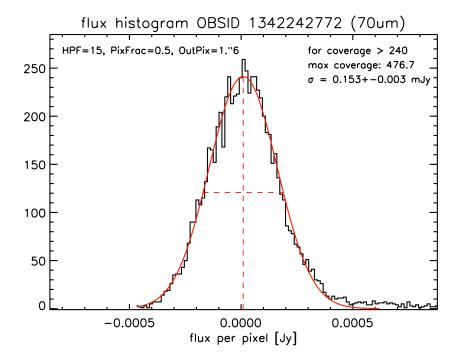


Figure 44: Noise determination for the 70 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

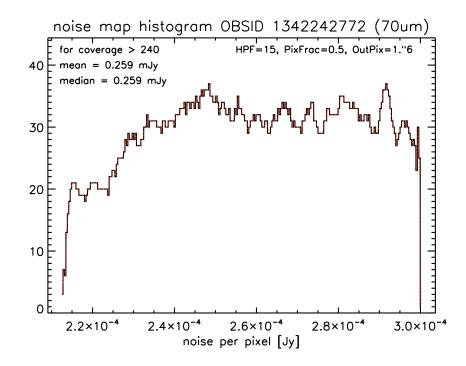


Figure 45: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filte	ered mini-maps	Page 44

3.6.2 L 2.0 OBSID 1342242773

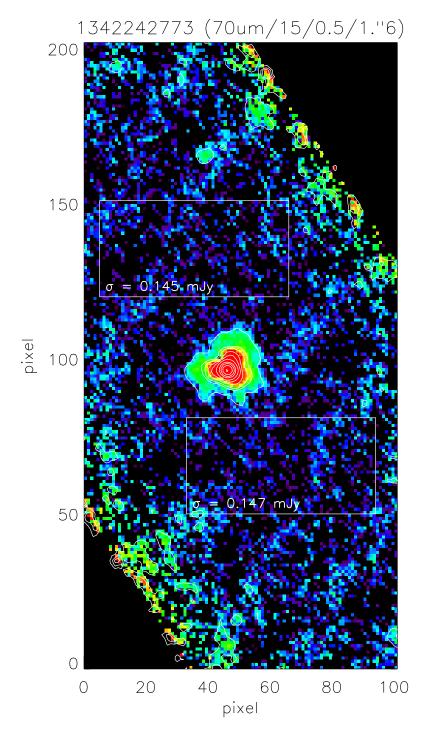


Figure 46: 70 μ m L2.0 map for OBSID 1342242773 with HPF radius 15, pixfrac 0.5 and an output pixels size of 1."6. The two background fields for noise determination are outlined by the white boxes and the σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 45

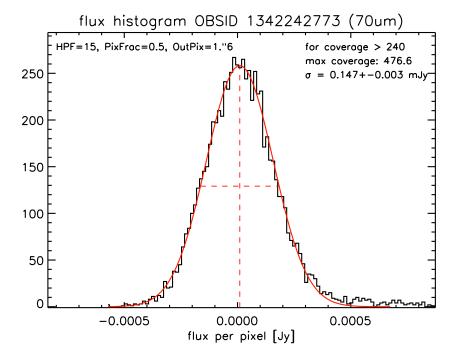


Figure 47: Noise determination for the 70 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

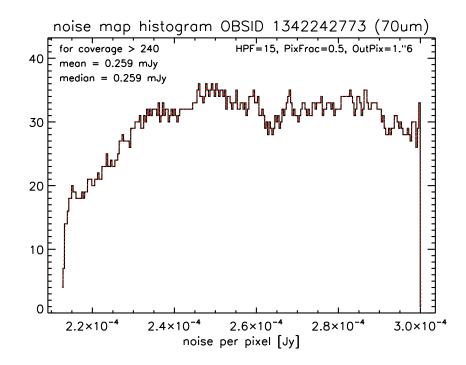


Figure 48: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 46

3.6.3 L 2.5 OBSIDs 1342242772+1342242773

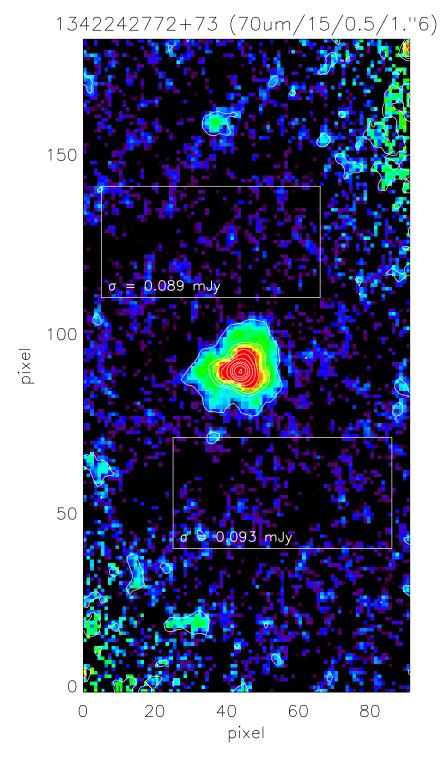


Figure 49: 70 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 15, pixfrac 0.5 and output pixel size of 1".6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 47

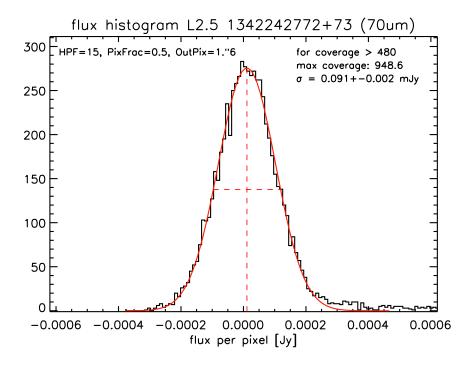


Figure 50: Noise determination for the 70 μ m coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

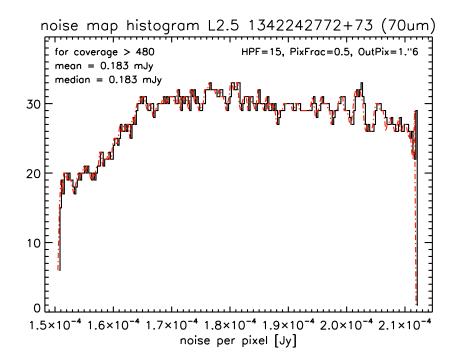


Figure 51: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\underset{\text{Herschel}}{\text{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtere	ed mini-maps	Page 48

3.7 70 μ m: HPF radius 15, Pixfrac 1.0, Pixsize 1.1

$3.7.1 \quad L\, 2.0 \ OBSID \ 1342242772$

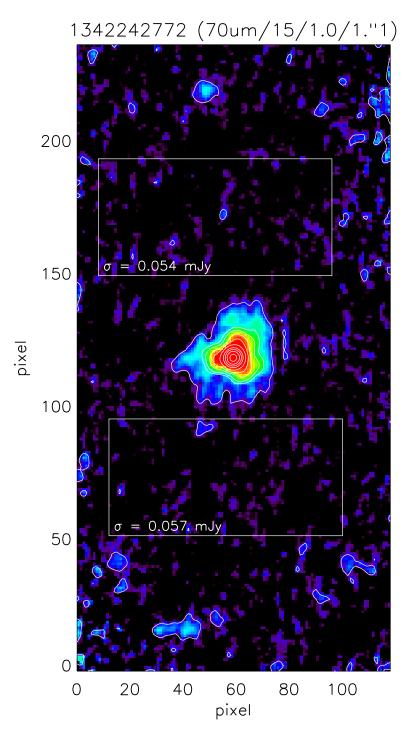


Figure 52: 70 μ m L2.0 map for OBSID 1342242772 with HPF radius 15, pixfrac 1.0 and output pixel size of 1".1. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 49

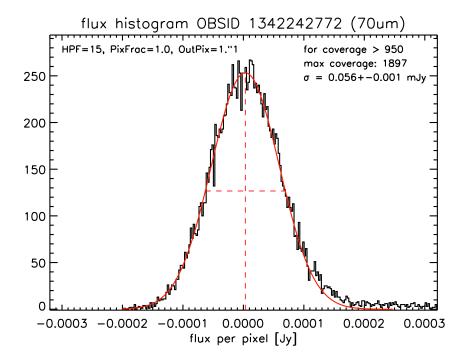


Figure 53: Noise determination for the 70 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

For this map parameter combination no error map analysis was done.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 50

3.7.2 L 2.0 OBSID 1342242773

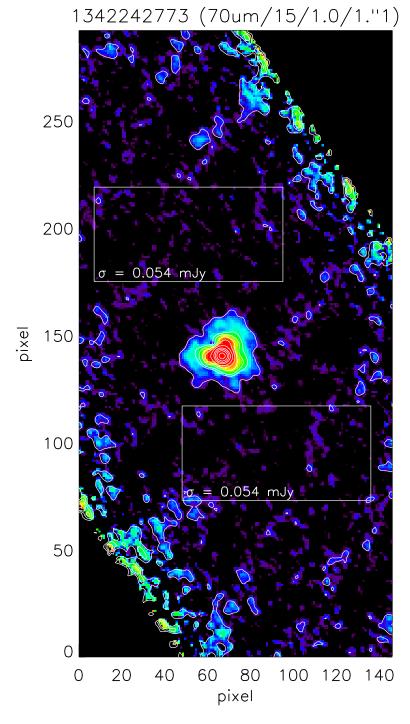


Figure 54: 70 μ m L2.0 map for OBSID 1342242773 with HPF radius 15, pixfrac 1.0 and output pixel size of 1."1. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\textbf{PACS}}_{\text{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 51

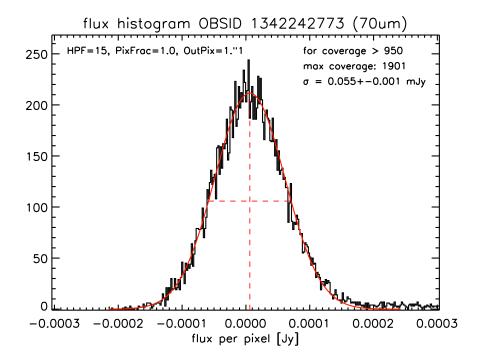


Figure 55: Noise determination for the 70 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

For this map parameter combination no error map analysis was done.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 52

3.7.3 L 2.5 OBSIDs 1342242772+1342242773

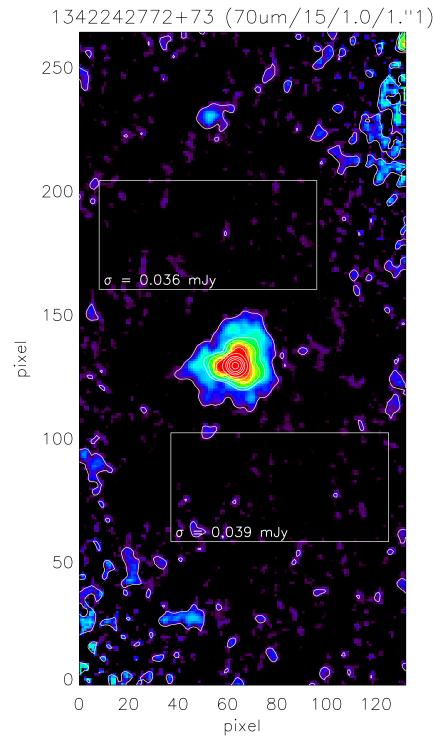


Figure 56: 70 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 15, pixfrac 1.0 and output pixel size of 1."1 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\underset{\text{Herschel}}{\text{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filter	red mini-maps	Page 53

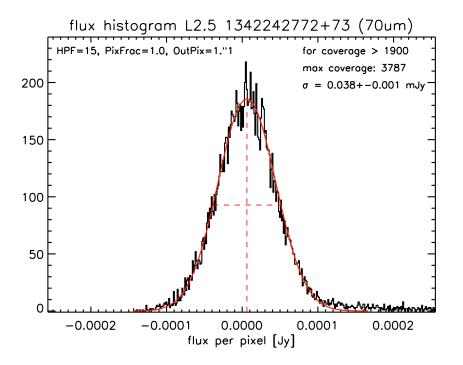


Figure 57: Noise determination for the 70 μ m coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

For this map parameter combination no error map analysis was done.

$\mathop{\textbf{PACS}}_{\text{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filter	ed mini-maps	Page 54

3.8 70 µm: HPF radius 15, Pixfrac 1.0, Pixsize 1."6

3.8.1 L 2.0 OBSID 1342242772

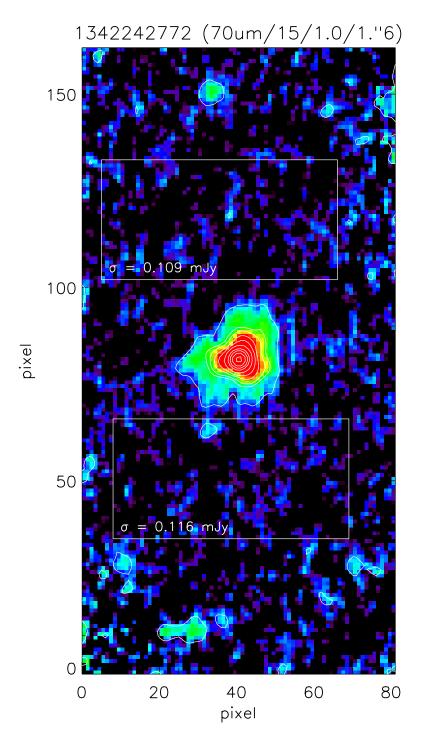


Figure 58: 70 μ m L2.0 map for OBSID 1342242772 with HPF radius 15, pixfrac 1.0 and output pixel size of 1".6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 55

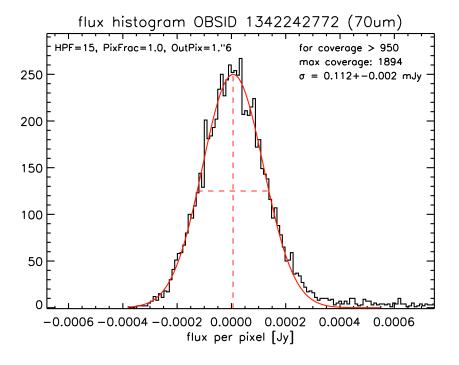


Figure 59: Noise determination for the 70 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

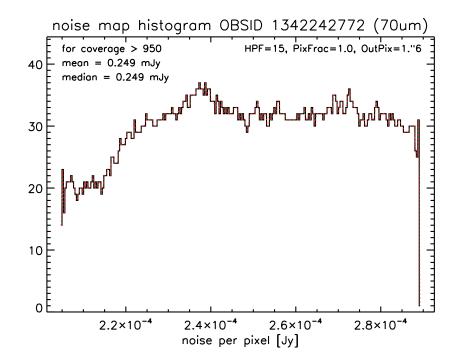


Figure 60: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{{ m Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 56

3.8.2 L 2.0 OBSID 1342242773

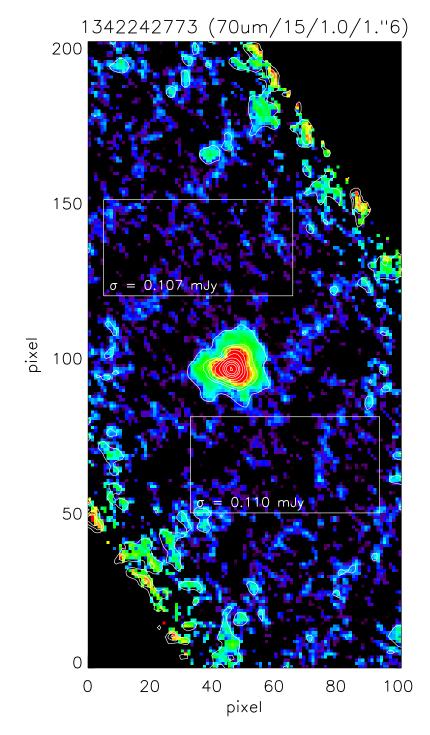


Figure 61: 70 μ m L2.0 map for OBSID 1342242773 with HPF radius 15, pixfrac 1.0 and an output pixels size of 1.6. The two background fields for noise determination are outlined by the white boxes and the σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 57

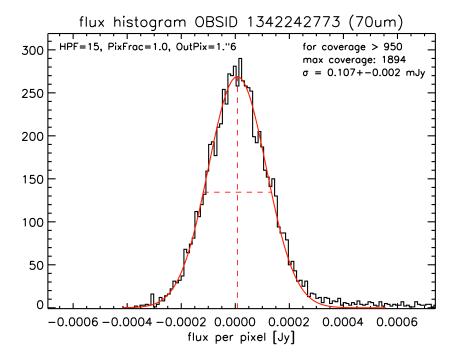


Figure 62: Noise determination for the 70 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

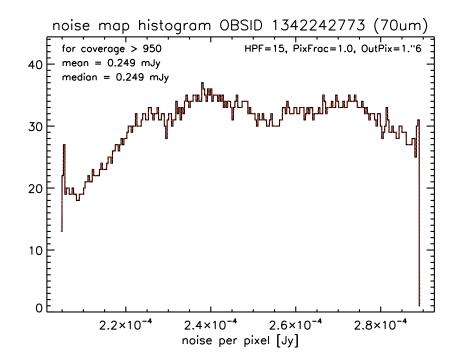
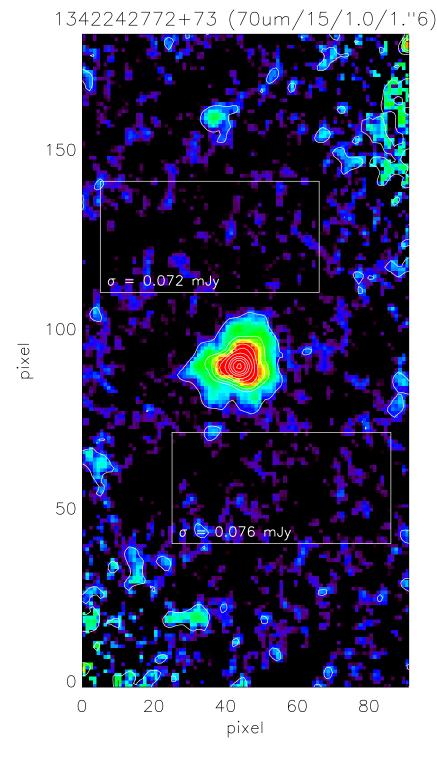



Figure 63: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 58

3.8.3 L 2.5 OBSIDs 1342242772+1342242773

Figure 64: 70 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 15, pixfrac 1.0 and output pixel size of 1".6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass f	iltered mini-maps	Page 59

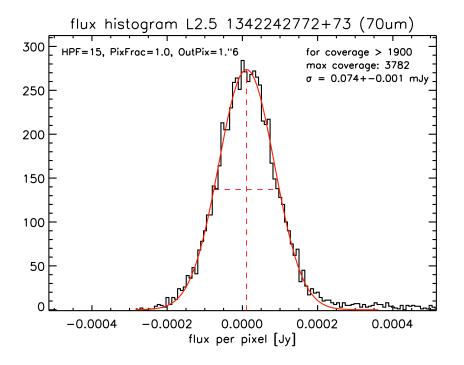


Figure 65: Noise determination for the 70 μ m coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

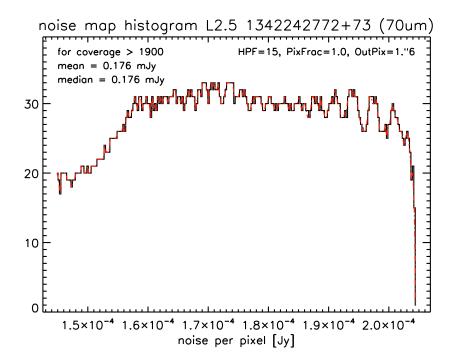


Figure 66: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	l mini-maps	Page 60

3.9 70 µm: HPF radius 30, Pixfrac 1.0, Pixsize 1."6

3.9.1 L 2.0 OBSID 1342242772

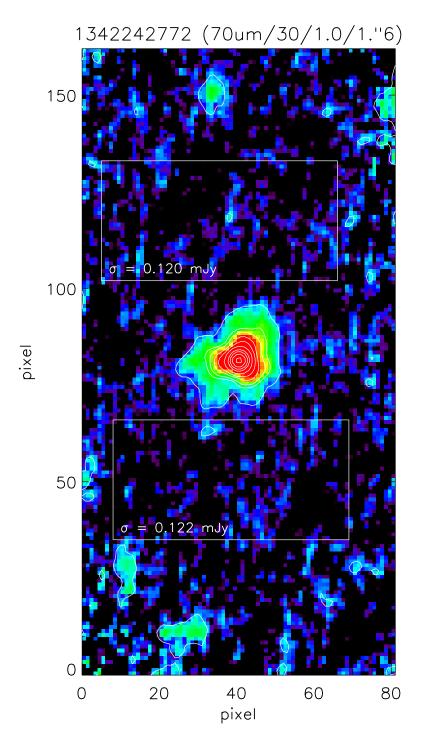


Figure 67: 70 μ m L2.0 map for OBSID 1342242772 with HPF radius 30, pixfrac 1.0 and output pixel size of 1".6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 61

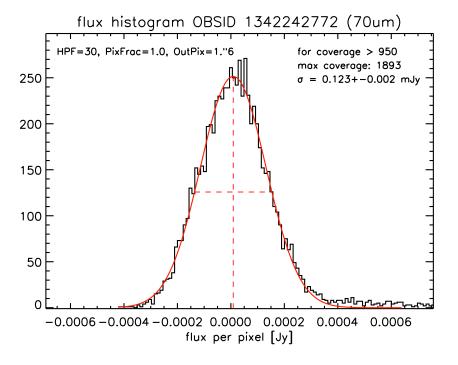


Figure 68: Noise determination for the 70 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

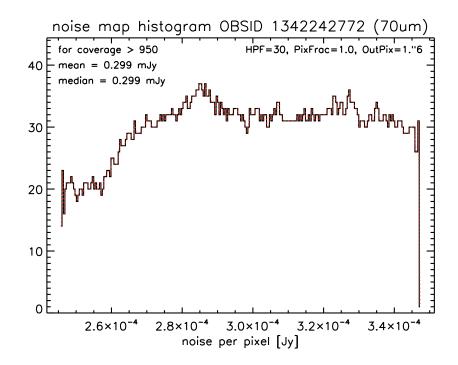


Figure 69: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{{ m Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 62

3.9.2 L 2.0 OBSID 1342242773

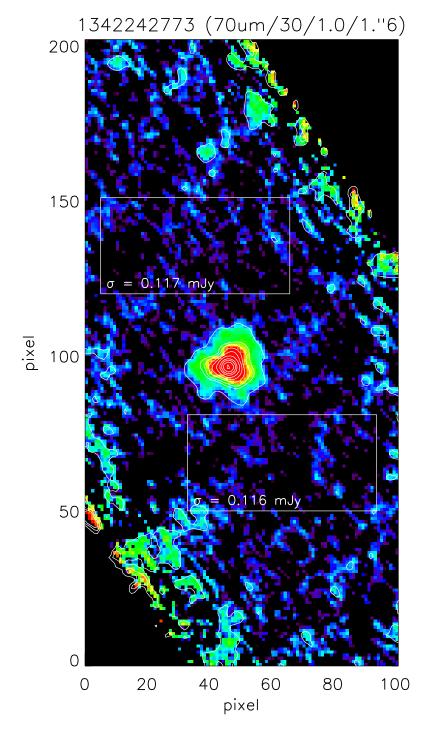


Figure 70: 70 μ m L2.0 map for OBSID 1342242773 with HPF radius 30, pixfrac 1.0 and output pixel size of 1."6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 63

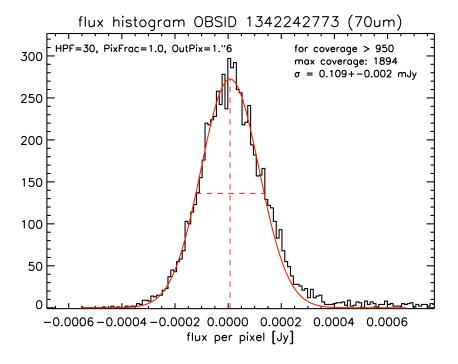


Figure 71: Noise determination for the 70 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

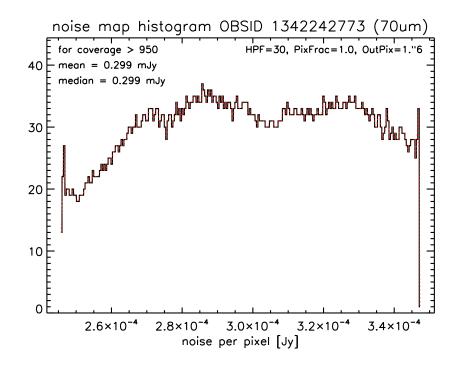


Figure 72: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 64

3.9.3 L 2.5 OBSIDs 1342242772+1342242773

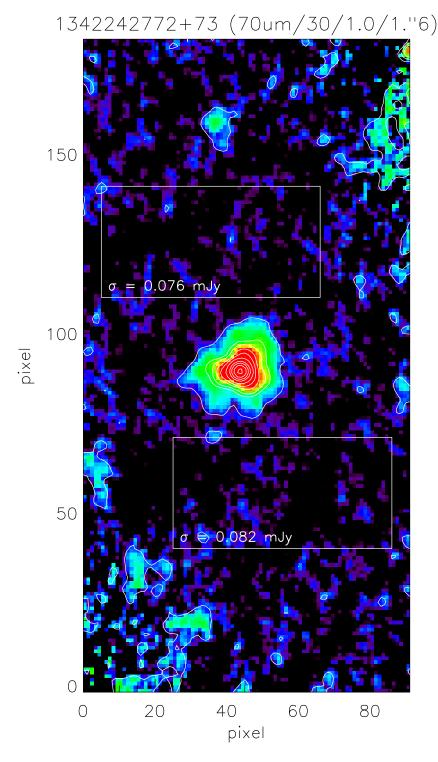


Figure 73: 70 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 30, pixfrac 1.0 and output pixel size of 1".6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 65

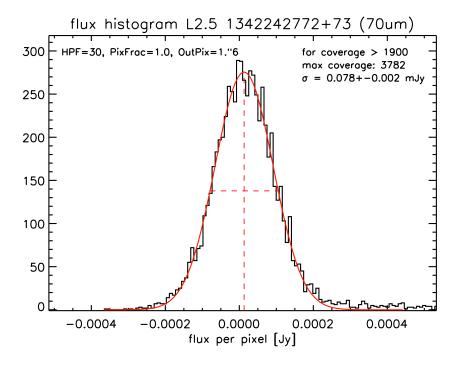


Figure 74: Noise determination for the 70 μ m coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

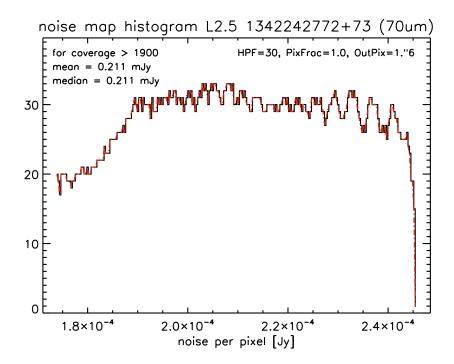


Figure 75: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\textbf{PACS}}_{\text{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 66

3.10 70 µm: HPF radius 15, Pixfrac 1.0, Pixsize 2."4

$3.10.1 \quad L\, 2.0 \ OBSID \ 1342242772$

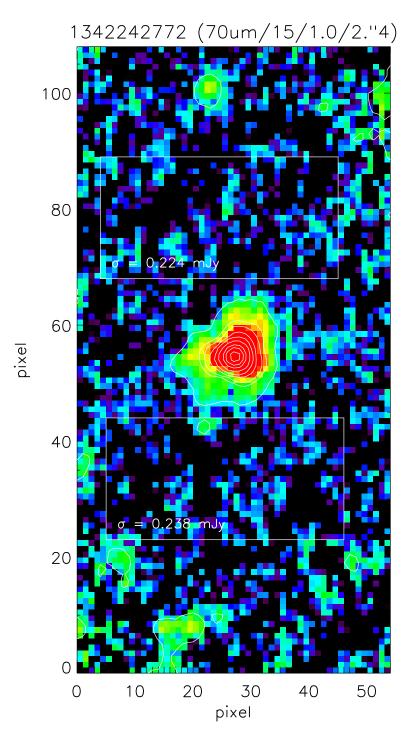


Figure 76: 70 μ m L2.0 map for OBSID 1342242772 with HPF radius 15, pixfrac 1.0 and output pixel size of 2".4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 67

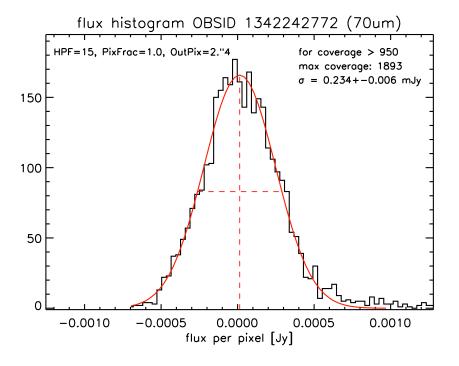


Figure 77: Noise determination for the 70 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

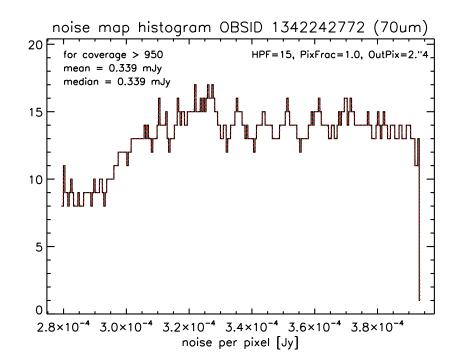


Figure 78: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 68

3.10.2 L 2.0 OBSID 1342242773

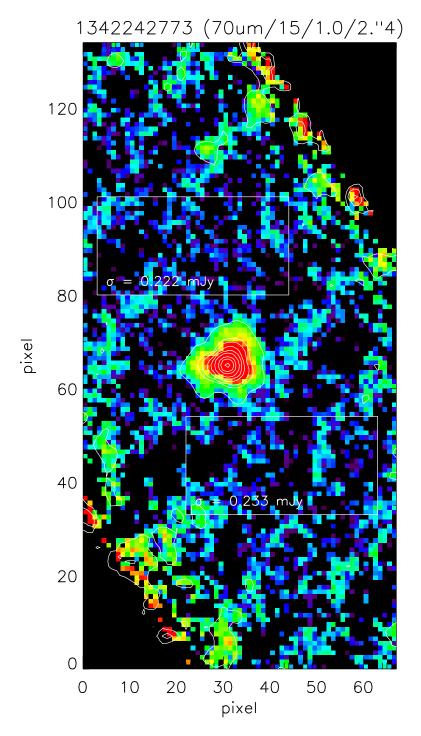


Figure 79: 70 μ m L2.0 map for OBSID 1342242773 with HPF radius 15, pixfrac 1.0 and output pixel size of 2".4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 69

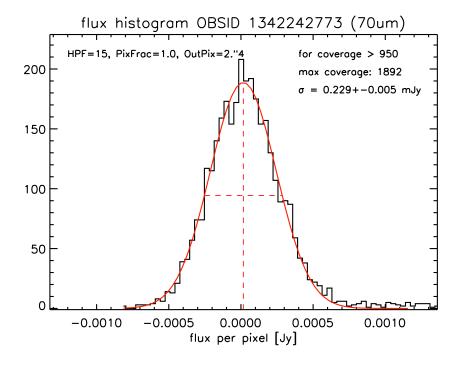


Figure 80: Noise determination for the 70 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

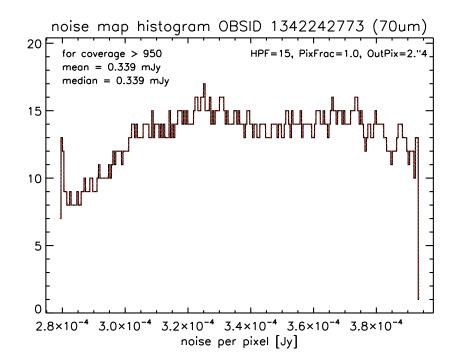


Figure 81: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 70

3.10.3 L 2.5 OBSIDs 1342242772 + 1342242773

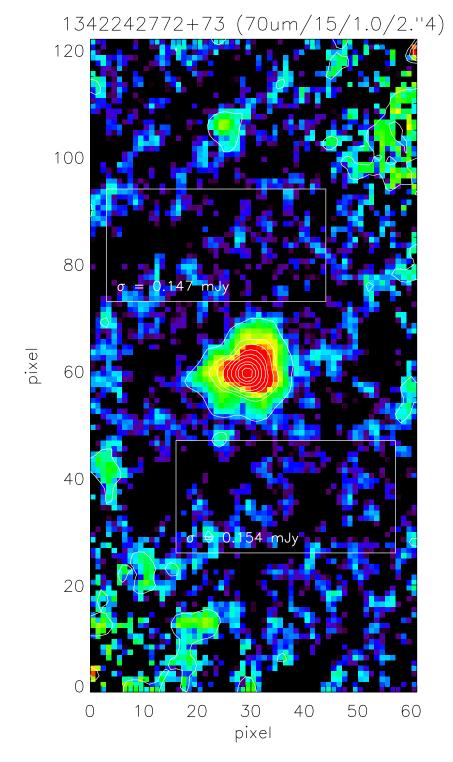


Figure 82: 70 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 15, pixfrac 1.0 and output pixel size of 2".4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 71

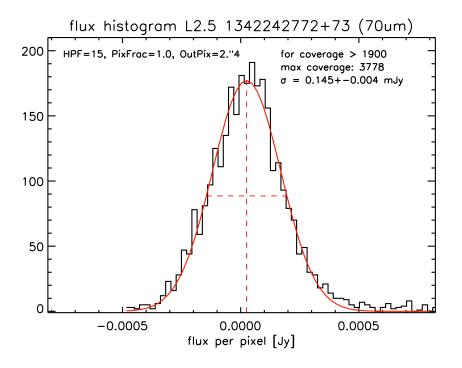


Figure 83: Noise determination for the 70 μ m coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

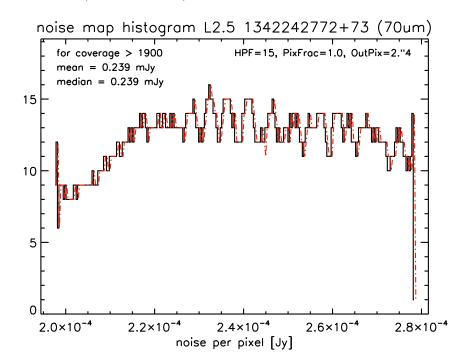


Figure 84: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 72

3.11 70 µm: HPF radius 15, Pixfrac 1.0, Pixsize 3".2

$3.11.1 \quad L\, 2.0 \ OBSID \ 1342242772$

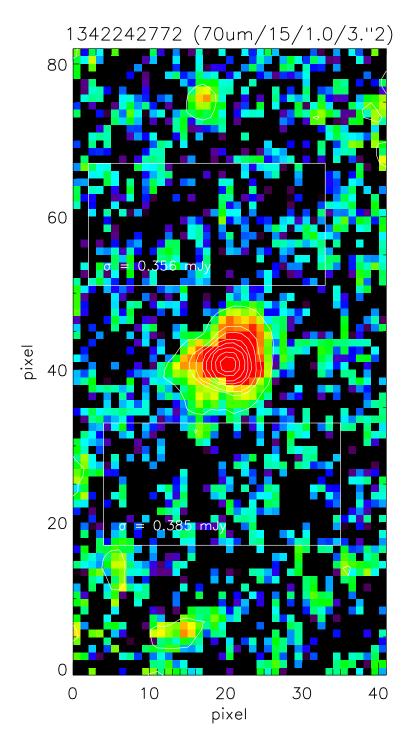


Figure 85: 70 μ m L2.0 map for OBSID 1342242772 with HPF radius 15, pixfrac 1.0 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\text{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 73

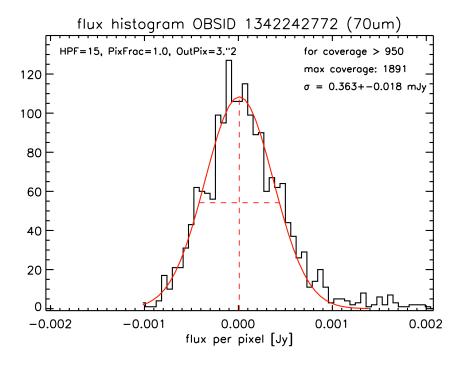


Figure 86: Noise determination for the 70 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

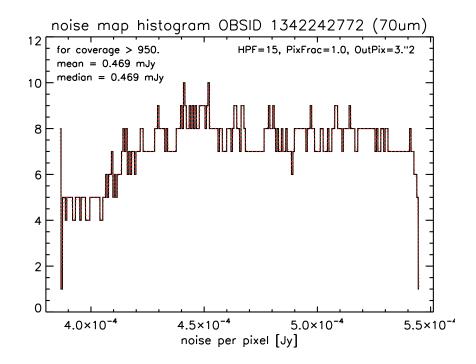


Figure 87: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 74

3.11.2 L 2.0 OBSID 1342242773

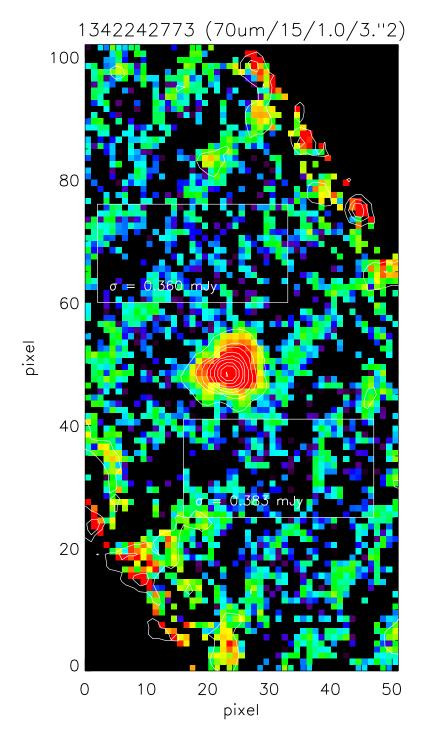


Figure 88: 70 μ m L2.0 map for OBSID 1342242773 with HPF radius 15, pixfrac 1.0 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 75

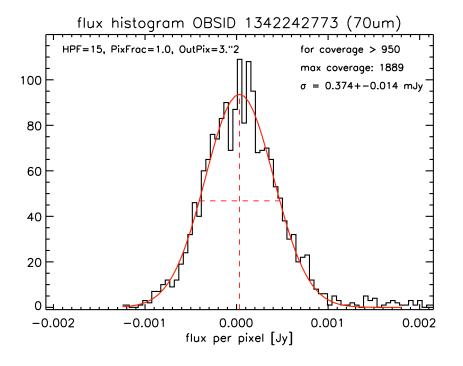


Figure 89: Noise determination for the 70 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

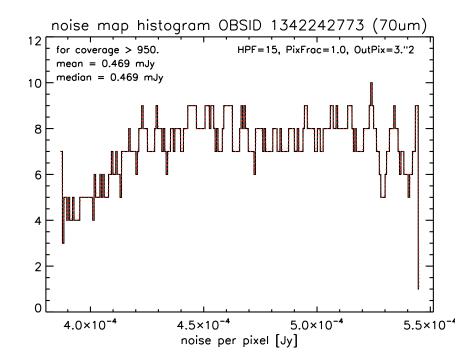


Figure 90: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 76

3.11.3 L 2.5 OBSIDs 1342242772 + 1342242773

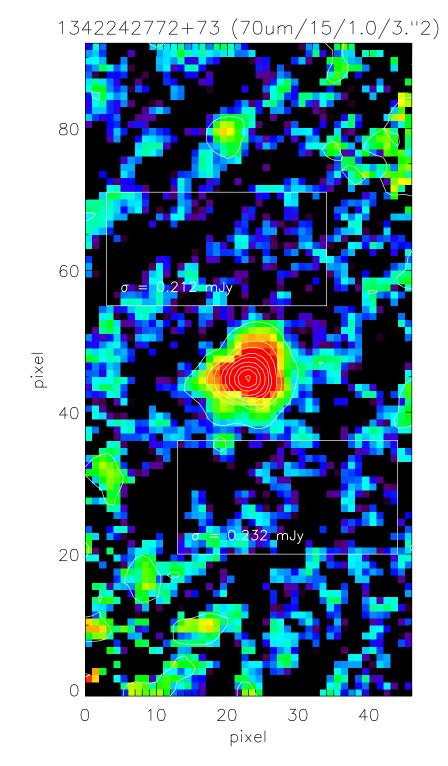


Figure 91: 70 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 15, pixfrac 1.0 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 77

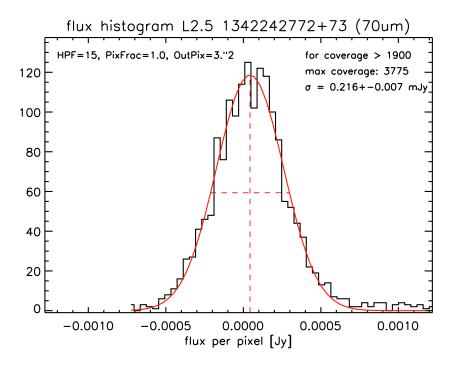


Figure 92: Noise determination for the 70 μ m coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

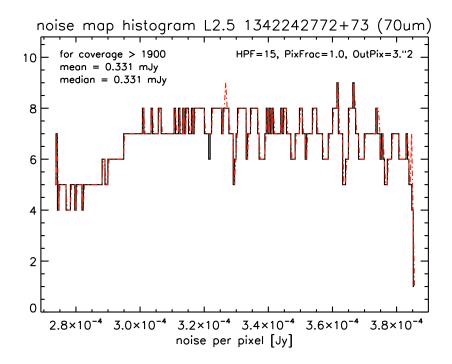


Figure 93: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	l mini-maps	Page 78

4 Analysis of 100µm maps

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 79

4.1 100 µm: HPF radius 15, Pixfrac 0.1, Pixsize 1."4

$4.1.1 \quad L\, 2.0 \ OBSID \ 1342242770$

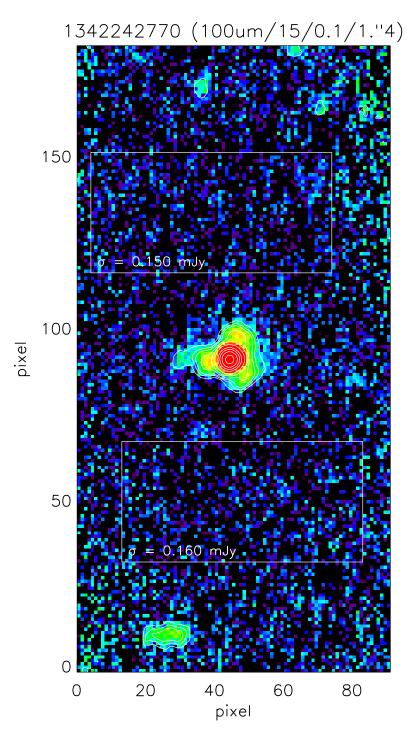


Figure 94: 100 μ m L2.0 map for OBSID 1342242770 with HPF radius 15, pixfrac 0.1 and output pixel size of 1".4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 80

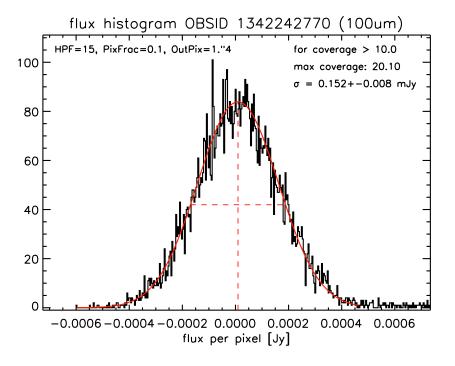


Figure 95: Noise determination for the 100 μ m L2.0 map of OBSID 1342242770 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

For this map parameter combination no error map analysis was done.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 81

4.1.2 L 2.0 OBSID 1342242771

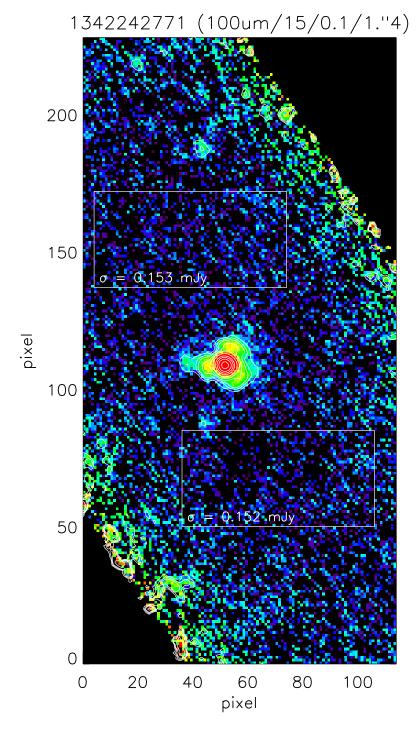


Figure 96: 100 μ m L2.0 map for OBSID 1342242771 with HPF radius 15, pixfrac 0.1 and output pixel size of 1".4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 82

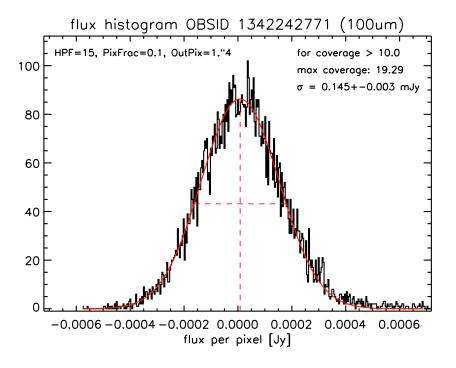


Figure 97: Noise determination for the 100 μ m L2.0 map of OBSID 1342242770 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

For this map parameter combination no error map analysis was done.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 83

$4.1.3 \quad L\,2.5 \ OBSIDs \ 1342242770 + 1342242771$

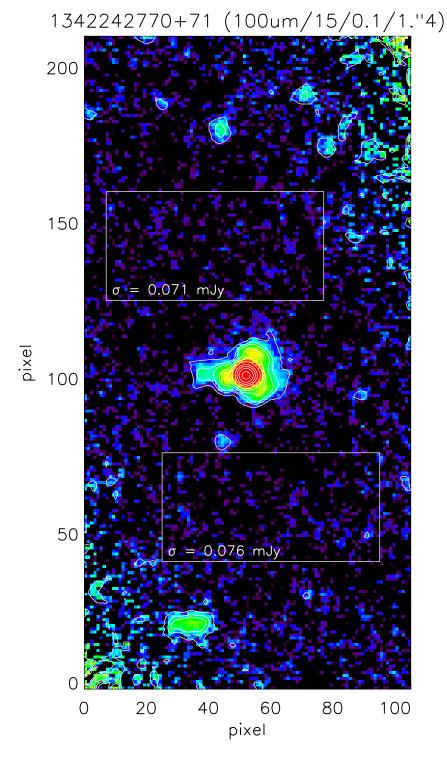


Figure 98: 100 μ m L2.5 combined map for OBSIDs 1342242770+71 with HPF radius 15, pixfrac 0.1 and output pixel size of 1".4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 84

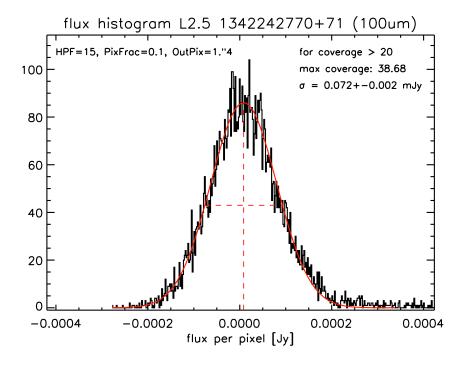


Figure 99: Noise determination for the 100 μ m coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

For this map parameter combination no error map analysis was done.

$\mathop{\mathrm{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 85

4.2 100 µm: HPF radius 15, Pixfrac 0.1, Pixsize 1."6

4.2.1 L 2.0 OBSID 1342242770

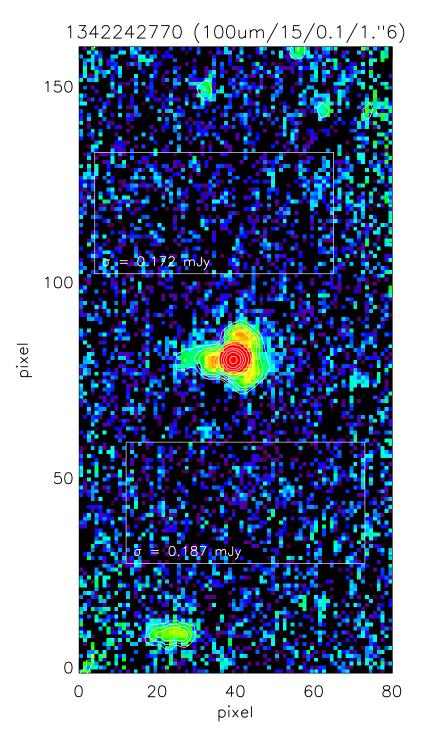


Figure 100: 100 μ m L2.0 map for OBSID 1342242770 with HPF radius 15, pixfrac 0.1 and output pixel size of 1".6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 86

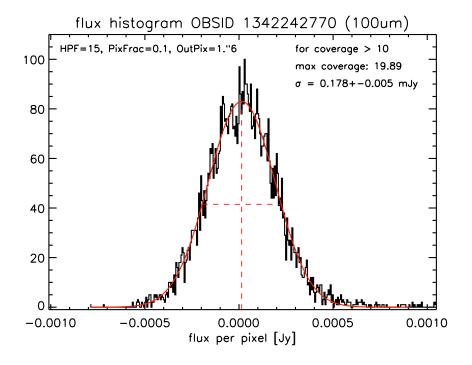


Figure 101: Noise determination for the 100 μ m L2.0 map of OBSID 1342242770 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

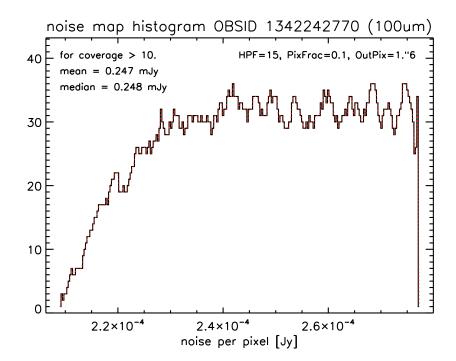


Figure 102: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 87

4.2.2 L 2.0 OBSID 1342242771

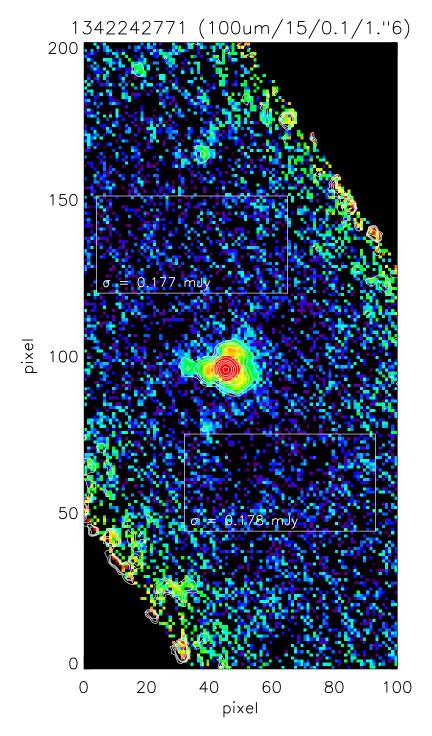


Figure 103: 100 μ m L2.0 map for OBSID 1342242771 with HPF radius 15, pixfrac 0.1 and output pixel size of 1."6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 88

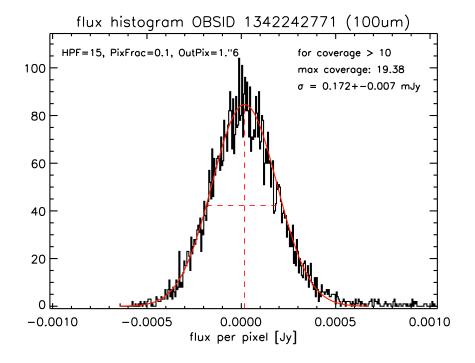


Figure 104: Noise determination for the 100 μ m L2.0 map of OBSID 1342242771 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

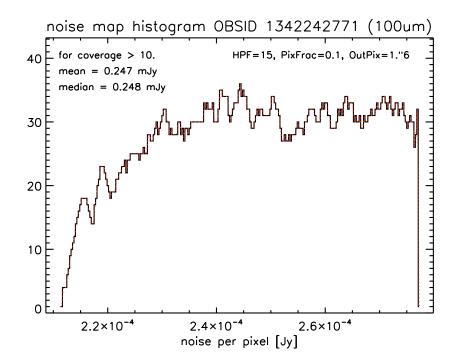


Figure 105: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 89

$4.2.3 \quad L\,2.5 \ OBSIDs \ 1342242770 {+} 1342242771$



Figure 106: 100 μ m L2.5 combined map for OBSIDs 1342242770+71 with HPF radius 15, pixfrac 0.1 and output pixel size of 1."6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\underset{\text{Herschel}}{\text{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 90

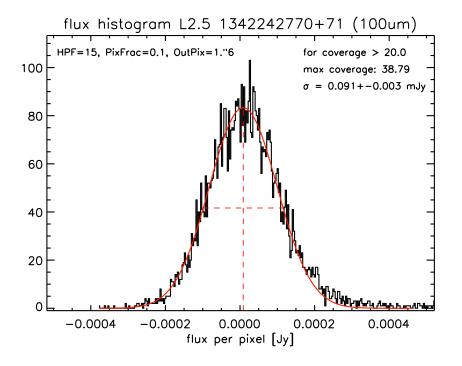


Figure 107: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

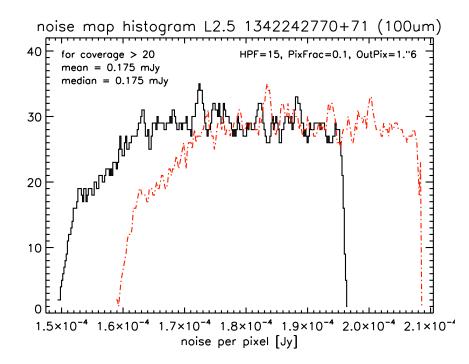


Figure 108: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 91

4.3 100 µm: HPF radius 30, Pixfrac 0.1, Pixsize 1."6

4.3.1 L 2.0 OBSID 1342242770

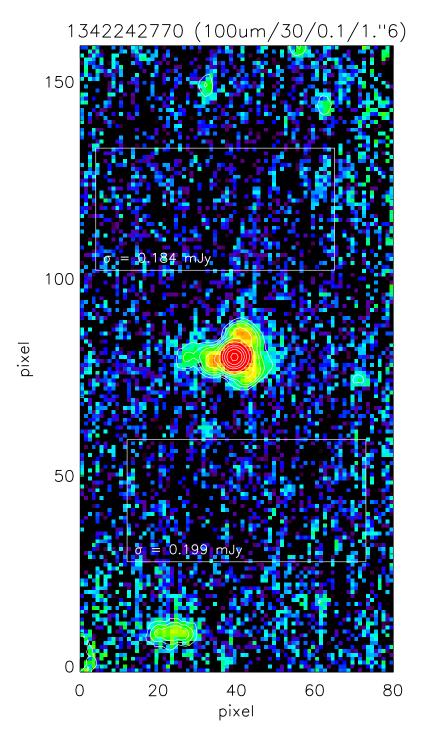


Figure 109: 100 μ m L2.0 map for OBSID 1342242770 with HPF radius 15, pixfrac 0.1 and output pixel size of 1".6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 92

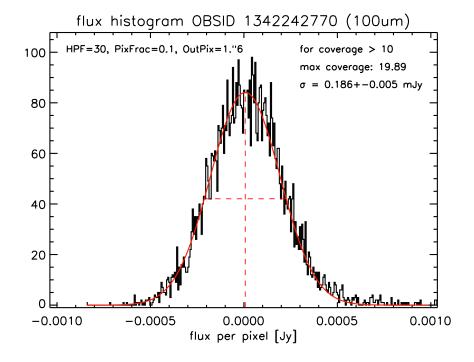


Figure 110: Noise determination for the 100 µm L2.0 map of OBSID 1342242770 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

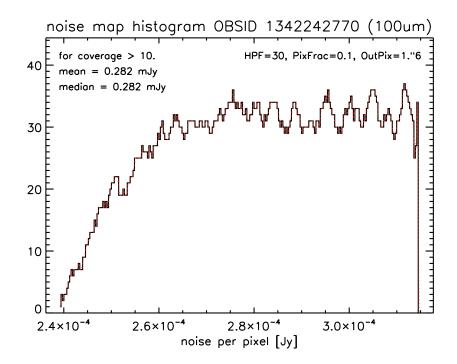


Figure 111: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\underset{\text{Herschel}}{\text{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 93

4.3.2 L 2.0 OBSID 1342242771

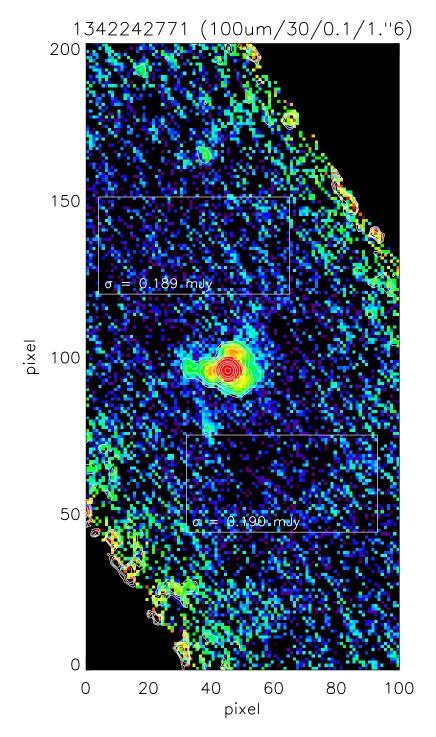


Figure 112: 100 μ m L2.0 map for OBSID 1342242771 with HPF radius 30, pixfrac 0.1 and output pixel size of 1."6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 94

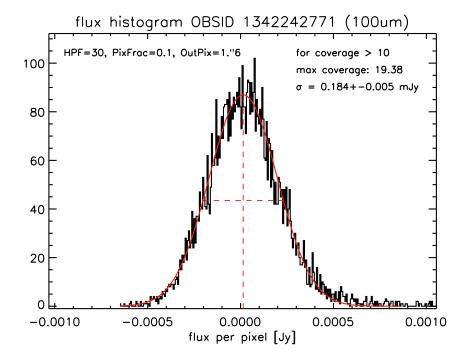


Figure 113: Noise determination for the 100 μ m L2.0 map of OBSID 1342242771 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

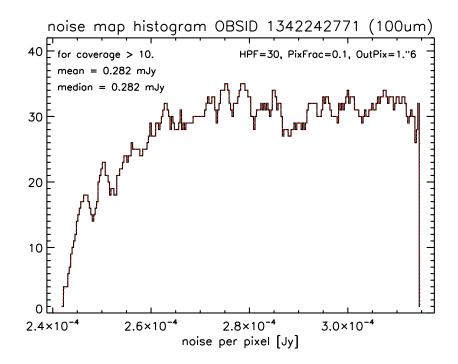


Figure 114: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 95

$4.3.3 \quad L\,2.5 \ OBSIDs \ 1342242770 {+} 1342242771$

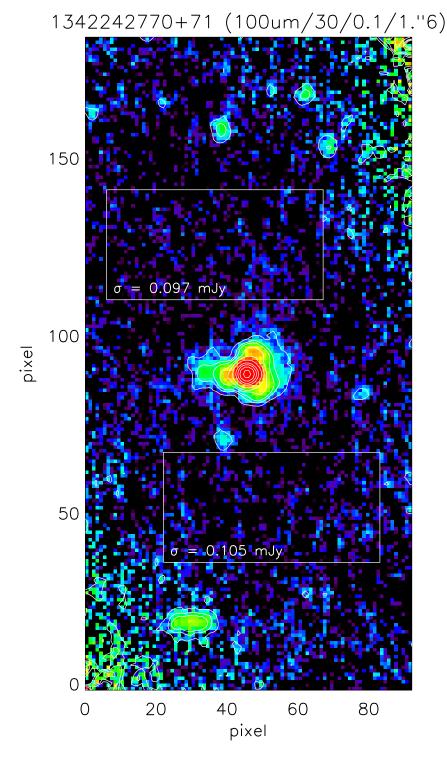


Figure 115: 100 μ m L2.5 combined map for OBSIDs 1342242770+71 with HPF radius 30, pixfrac 0.1 and output pixel size of 1."6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

PACS Herschel	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 96

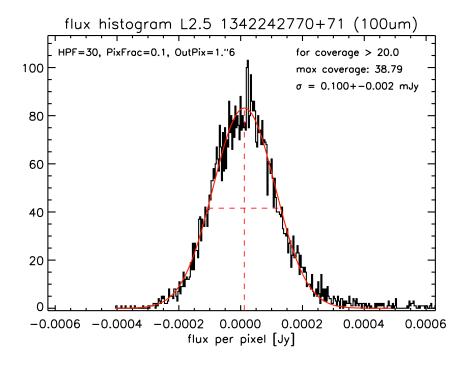


Figure 116: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

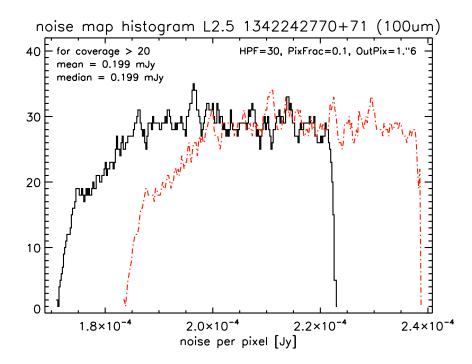


Figure 117: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\underset{\text{Herschel}}{\text{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 97

4.4 100 µm: HPF radius 15, Pixfrac 0.1, Pixsize 2.4

$4.4.1 \quad L\, 2.0 \ OBSID \ 1342242770$

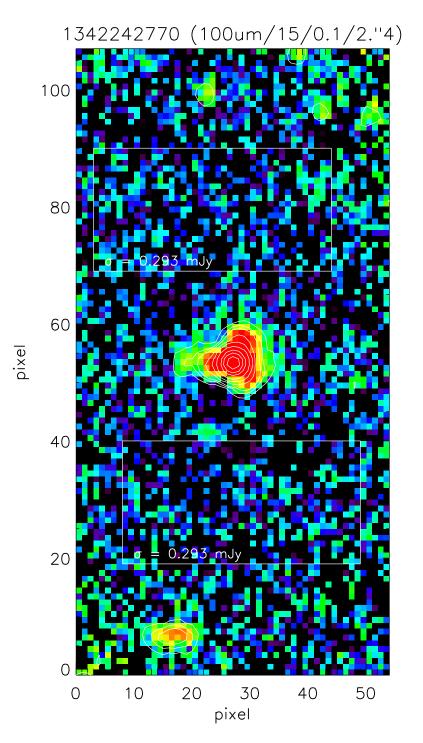


Figure 118: 100 μ m L2.0 map for OBSID 1342242770 with HPF radius 15, pixfrac 0.1 and output pixel size of 2".4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\underset{\text{Herschel}}{\text{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 98

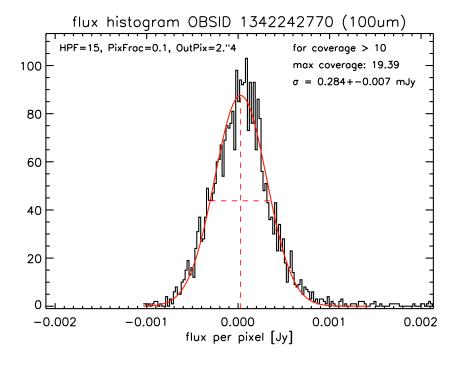


Figure 119: Noise determination for the 100 µm L2.0 map of OBSID 1342242770 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

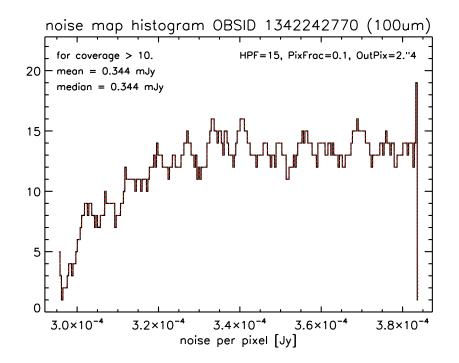


Figure 120: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{{ m Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 99

4.4.2 L 2.0 OBSID 1342242771

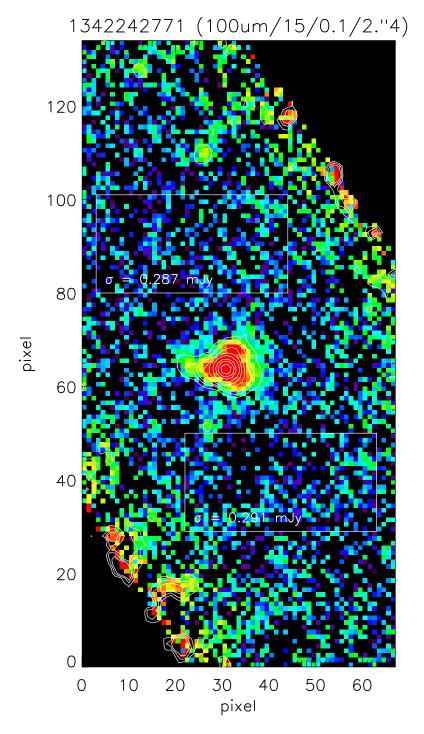


Figure 121: 100 μ m L2.0 map for OBSID 1342242771 with HPF radius 15, pixfrac 0.1 and output pixel size of 2".4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 100

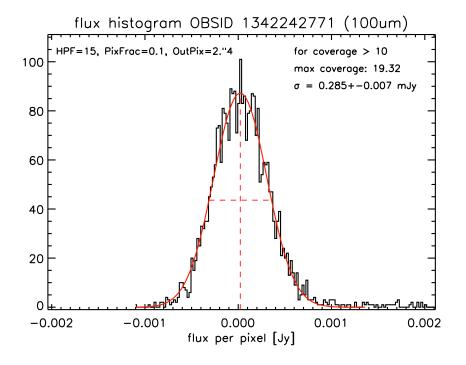


Figure 122: Noise determination for the 100 μ m L2.0 map of OBSID 1342242771 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

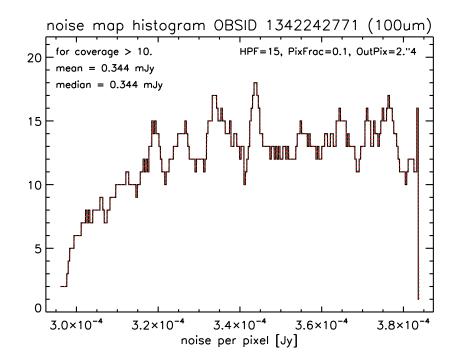


Figure 123: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\underset{\mathrm{Herschel}}{\mathrm{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 101

$4.4.3 \quad L\,2.5 \ OBSIDs \ 1342242770 + 1342242771$

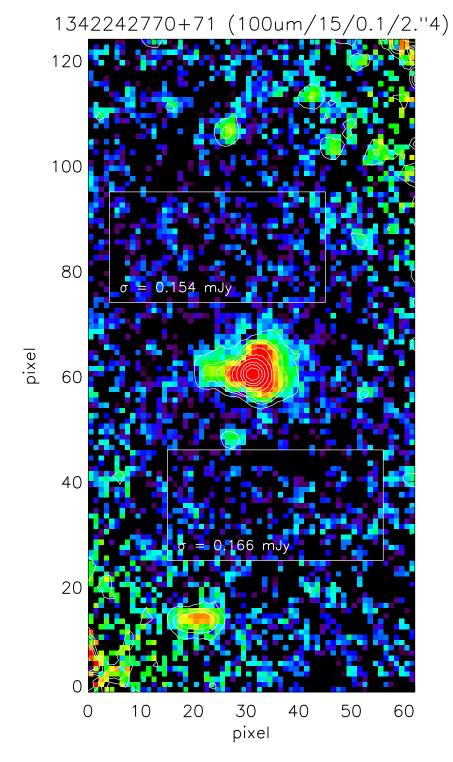


Figure 124: 100 μ m L2.5 combined map for OBSIDs 1342242770+71 with HPF radius 15, pixfrac 0.1 and output pixel size of 2".4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 102

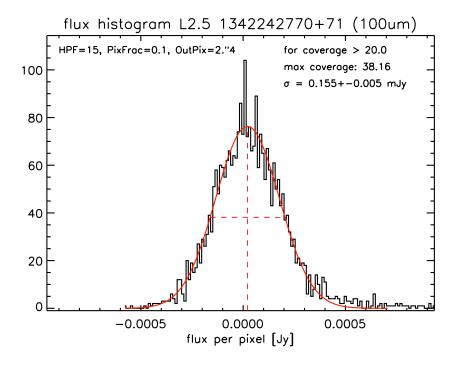


Figure 125: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

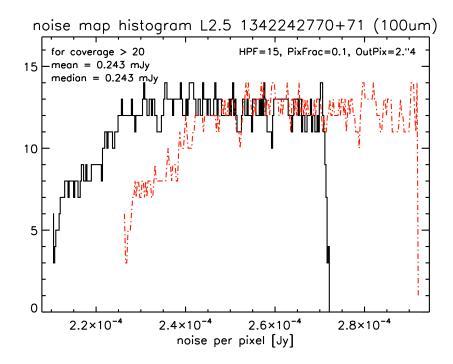


Figure 126: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 103

4.5 100 µm: HPF radius 15, Pixfrac 0.1, Pixsize 3".2

$4.5.1 \quad L\, 2.0 \ OBSID \ 1342242770$

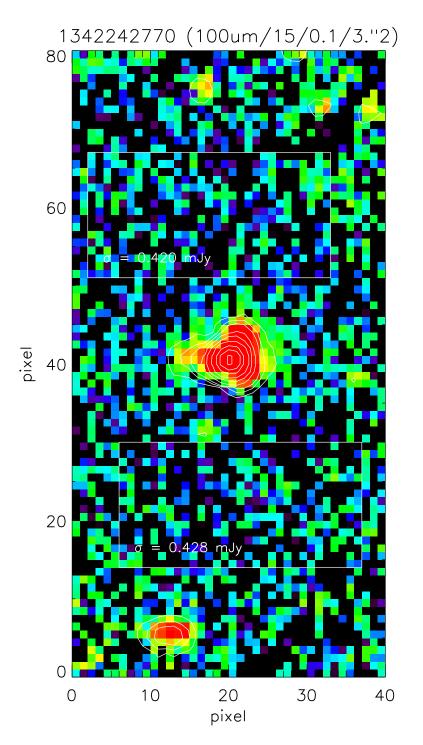


Figure 127: 100 μ m L2.0 map for OBSID 1342242770 with HPF radius 15, pixfrac 0.1 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\textbf{PACS}}_{\text{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 104

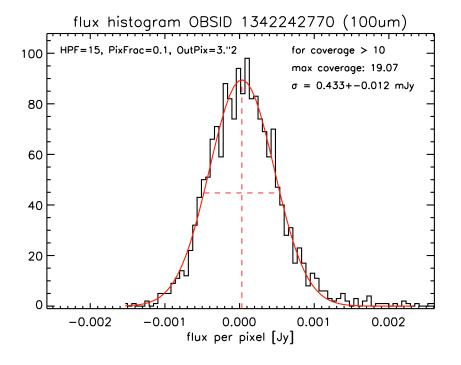


Figure 128: Noise determination for the 100 µm L2.0 map of OBSID 1342242770 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

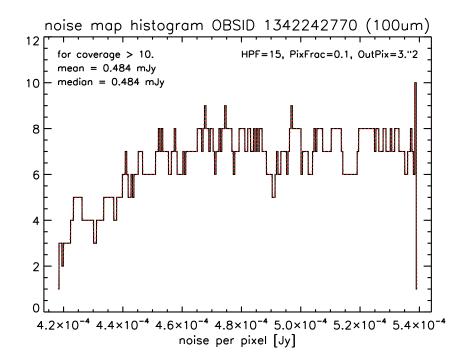


Figure 129: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 105

4.5.2 L 2.0 OBSID 1342242771

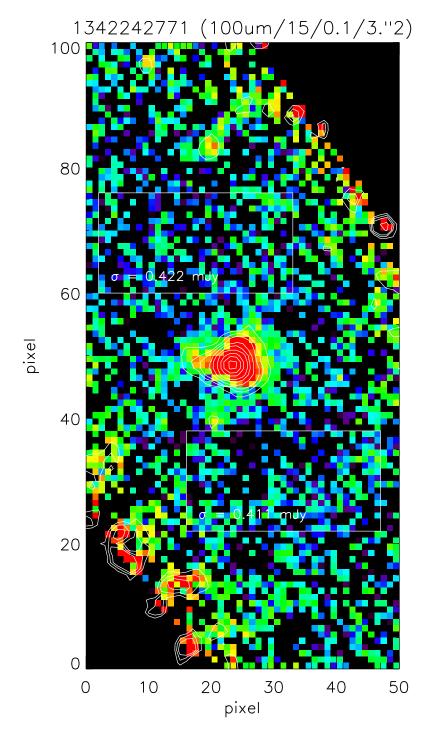


Figure 130: 100 μ m L2.0 map for OBSID 1342242771 with HPF radius 15, pixfrac 0.1 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 106

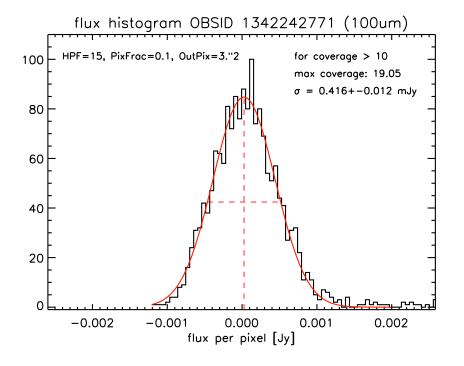


Figure 131: Noise determination for the 100 μ m L2.0 map of OBSID 1342242771 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

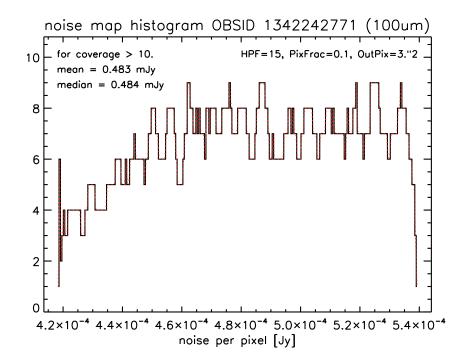


Figure 132: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 107

4.5.3 L 2.5 OBSIDs 1342242770+1342242771

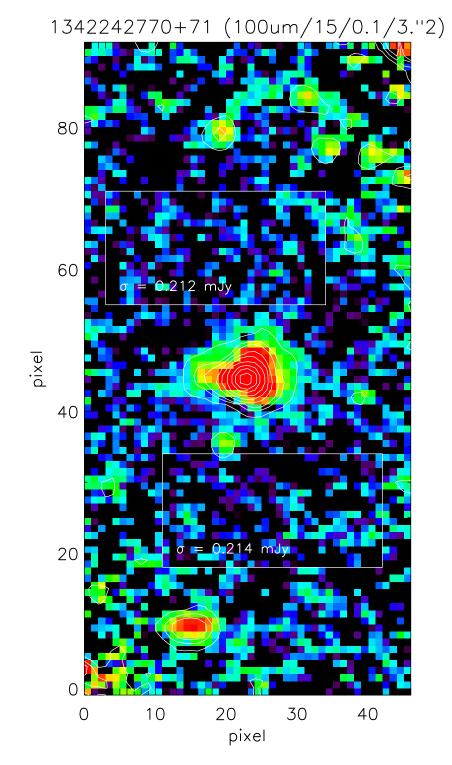


Figure 133: 100 μ m L2.5 combined map for OBSIDs 1342242770+71 with HPF radius 15, pixfrac 0.1 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 108

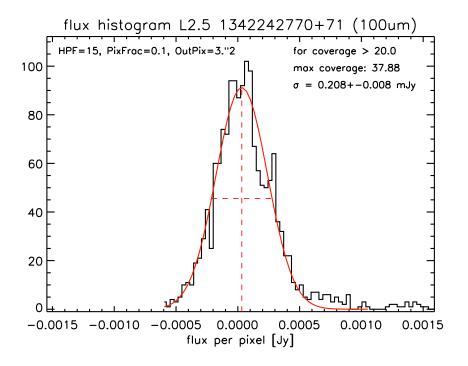


Figure 134: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

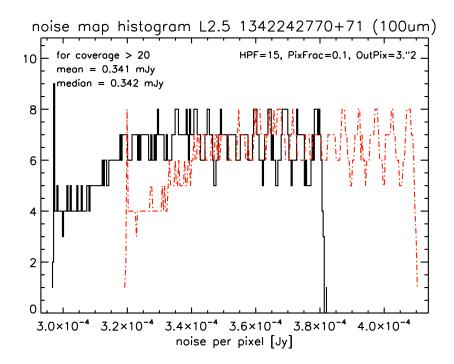


Figure 135: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 109

4.6 100 μ m: HPF radius 15, Pixfrac 0.5, Pixsize 1."6

4.6.1 L 2.0 OBSID 1342242770

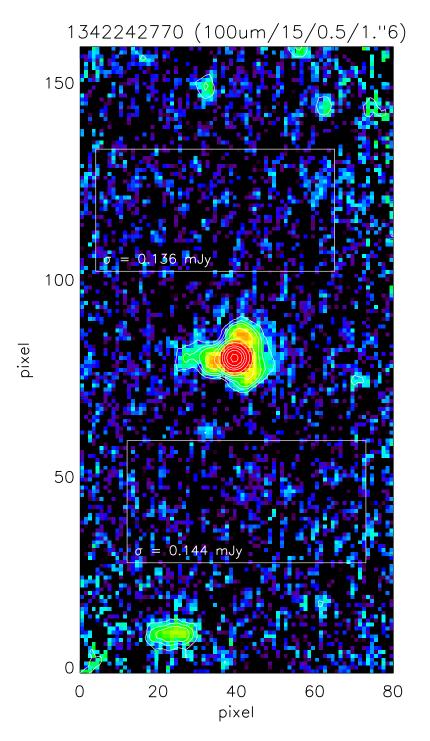


Figure 136: 100 μ m L2.0 map for OBSID 1342242770 with HPF radius 15, pixfrac 0.5 and output pixel size of 1".6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 110

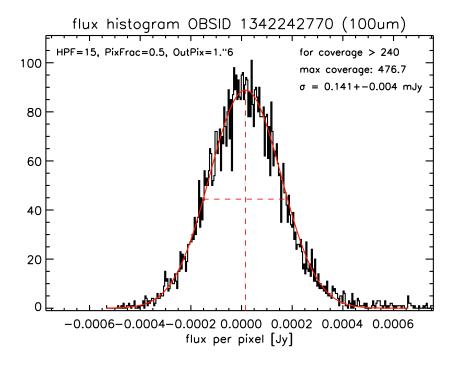


Figure 137: Noise determination for the 100 μ m L2.0 map of OBSID 1342242770 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

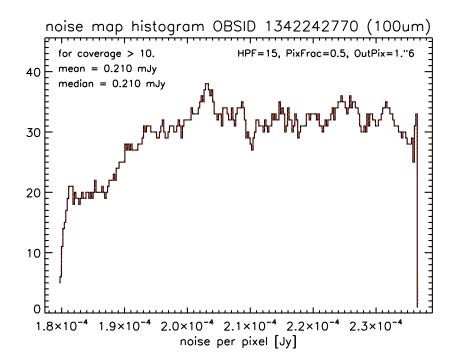


Figure 138: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 111

4.6.2 L 2.0 OBSID 1342242771

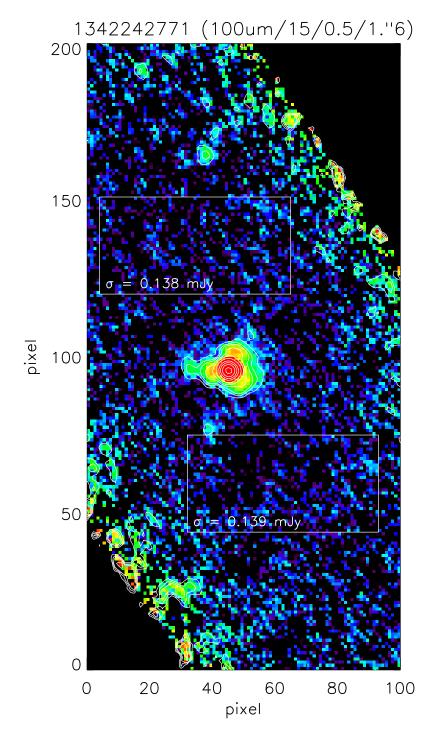


Figure 139: 100 μ m L2.0 map for OBSID 1342242771 with HPF radius 15, pixfrac 0.5 and output pixel size of 1".6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 112

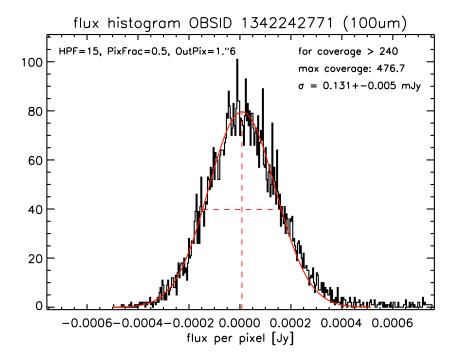


Figure 140: Noise determination for the 100 μ m L2.0 map of OBSID 1342242771 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

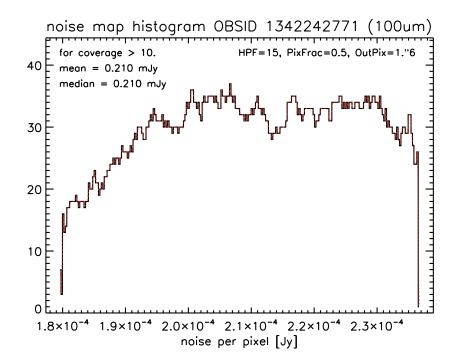


Figure 141: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 113

$4.6.3 \quad L\, 2.5 \ OBSIDs \ 1342242770 + 1342242771$

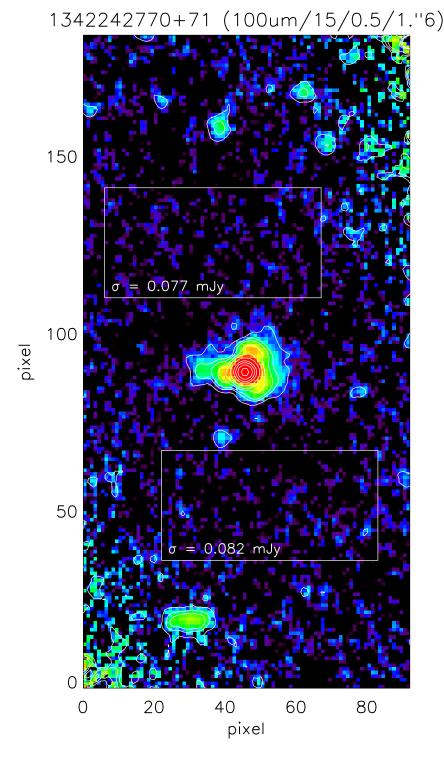


Figure 142: 100 μ m L2.5 combined map for OBSIDs 1342242770+71 with HPF radius 15, pixfrac 0.5 and output pixel size of 1."6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 114

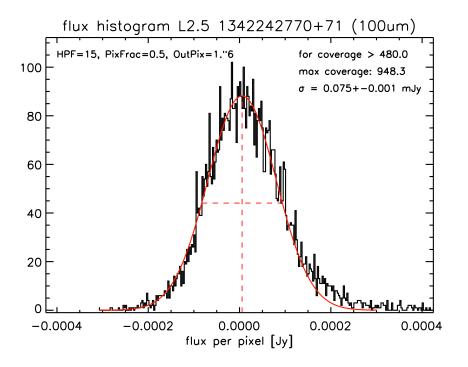


Figure 143: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

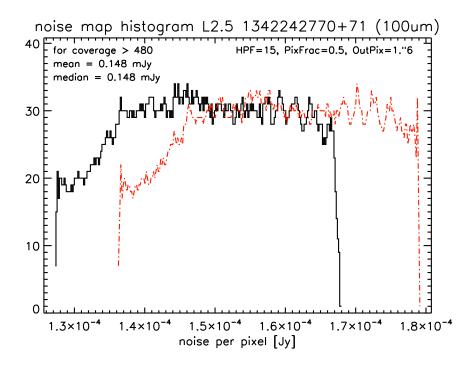


Figure 144: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 115

4.7 100 μ m: HPF radius 15, Pixfrac 1.0, Pixsize 1.4

$4.7.1 \quad L\, 2.0 \ OBSID \ 1342242770$

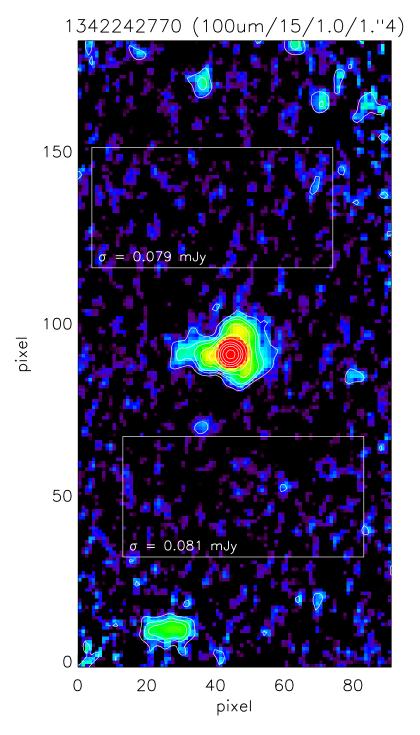


Figure 145: 100 μ m L2.0 map for OBSID 1342242770 with HPF radius 15, pixfrac 1.0 and output pixel size of 1".4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 116

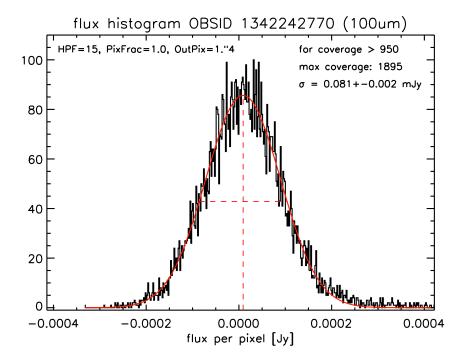


Figure 146: Noise determination for the 100 µm L2.0 map of OBSID 1342242770 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

For this map parameter combination no error map analysis was done.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 117

4.7.2 L 2.0 OBSID 1342242771

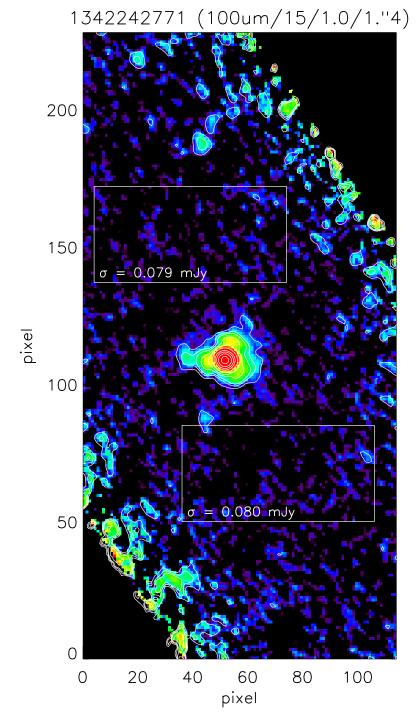


Figure 147: 100 μ m L2.0 map for OBSID 1342242771 with HPF radius 15, pixfrac 1.0 and output pixel size of 1.4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 118

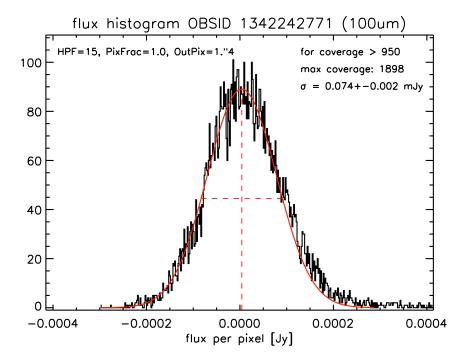


Figure 148: Noise determination for the 100 µm L2.0 map of OBSID 1342242771 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

For this map parameter combination no error map analysis was done.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 119

$4.7.3 \quad L\,2.5 \ OBSIDs \ 1342242770 {+} 1342242771$

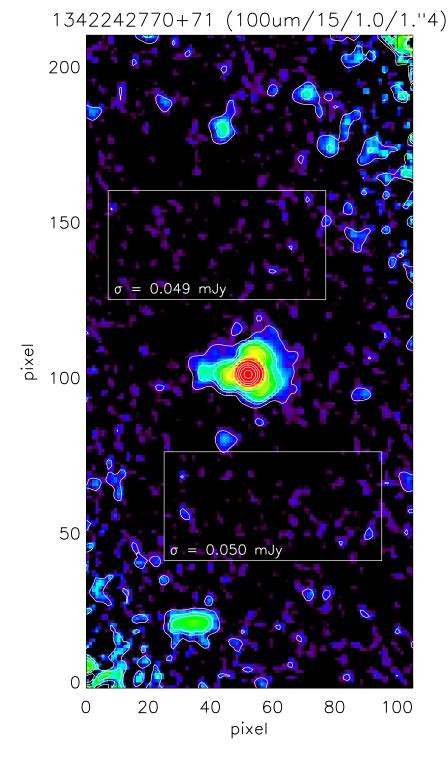


Figure 149: 100 μ m L2.5 combined map for OBSIDs 1342242770+71 with HPF radius 15, pixfrac 1.0 and output pixel size of 1.4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\textbf{PACS}}_{\text{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 120

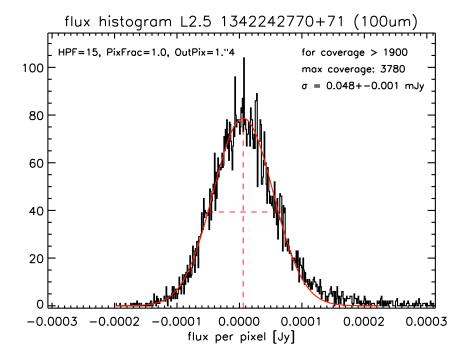


Figure 150: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

For this map parameter combination no error map analysis was done.

$\mathop{\textbf{PACS}}_{\text{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 121

4.8 100 μ m: HPF radius 15, Pixfrac 1.0, Pixsize 1.06

4.8.1 L 2.0 OBSID 1342242770

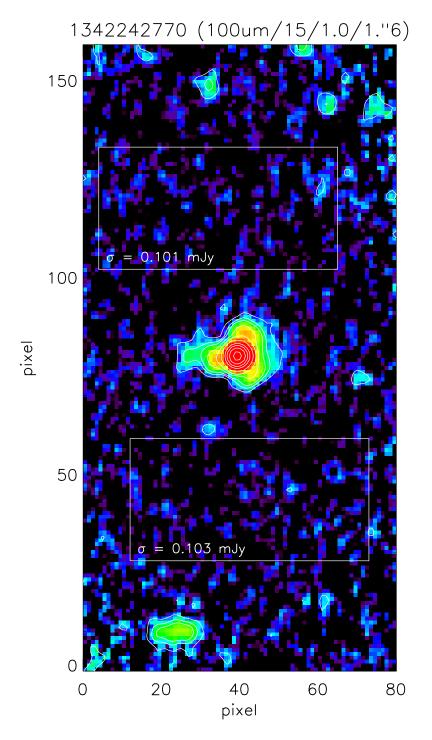


Figure 151: 100 μ m L2.0 map for OBSID 1342242770 with HPF radius 15, pixfrac 1.0 and output pixel size of 1".6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 122

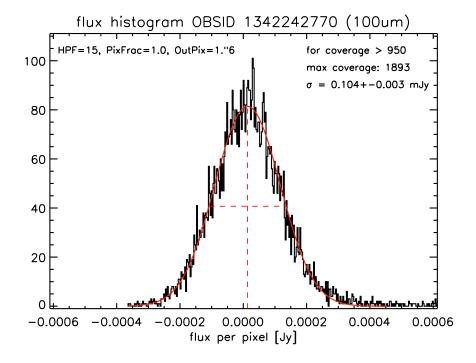


Figure 152: Noise determination for the 100 µm L2.0 map of OBSID 1342242770 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

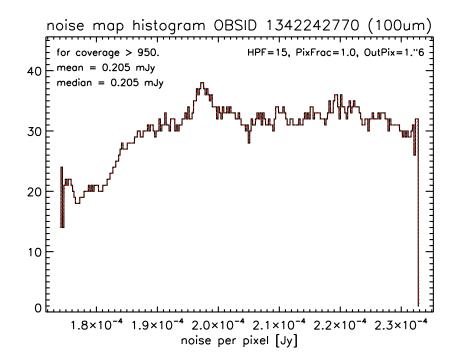


Figure 153: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 123

4.8.2 L 2.0 OBSID 1342242771

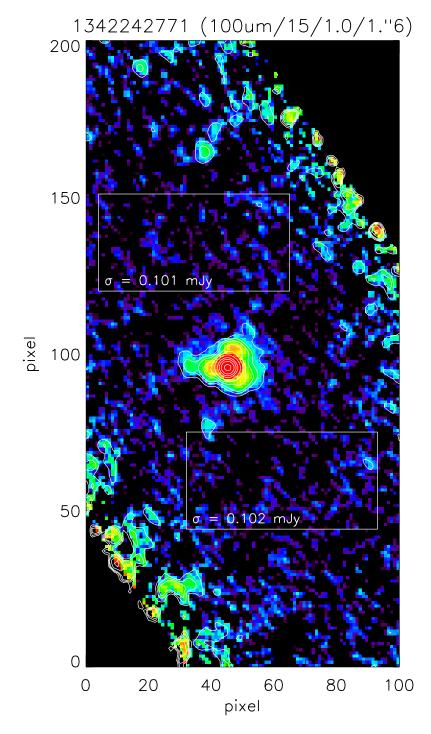


Figure 154: 100 μ m L2.0 map for OBSID 1342242771 with HPF radius 15, pixfrac 1.0 and output pixel size of 1."6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 124

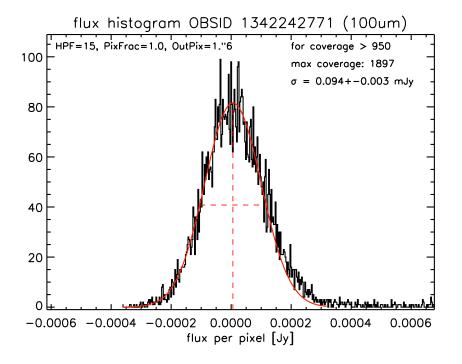


Figure 155: Noise determination for the 100 μ m L2.0 map of OBSID 1342242771 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

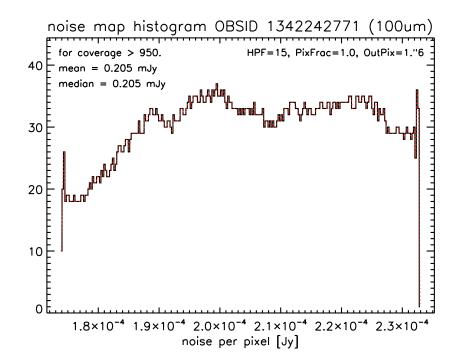


Figure 156: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 125

$4.8.3 \quad L\,2.5 \ OBSIDs \ 1342242770 {+} 1342242771$

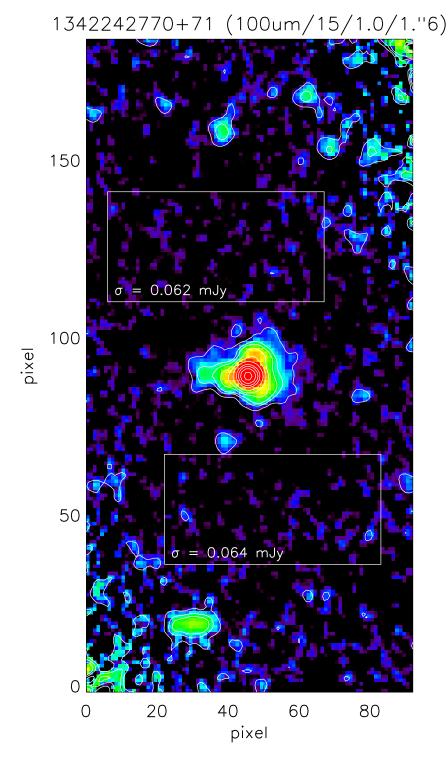


Figure 157: 100 μ m L2.5 combined map for OBSIDs 1342242770+71 with HPF radius 15, pixfrac 1.0 and output pixel size of 1."6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 126

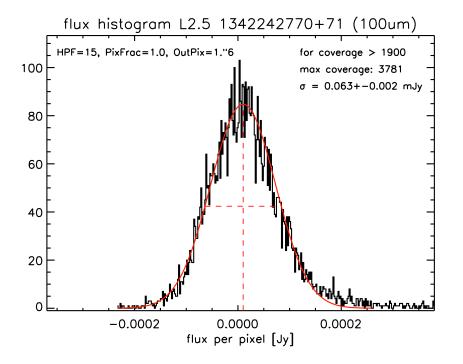


Figure 158: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

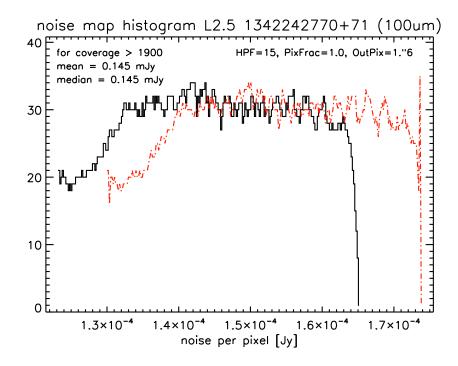


Figure 159: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 127

4.9 100 μ m: HPF radius 30, Pixfrac 1.0, Pixsize 1."6

4.9.1 L 2.0 OBSID 1342242770

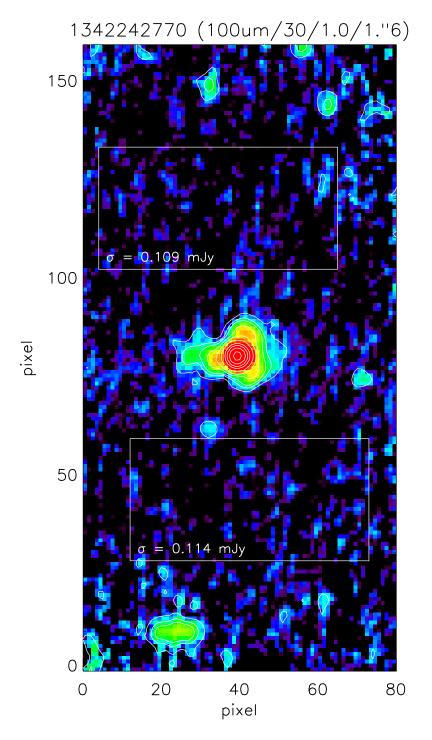


Figure 160: 100 μ m L2.0 map for OBSID 1342242770 with HPF radius 30, pixfrac 1.0 and output pixel size of 1".6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 128

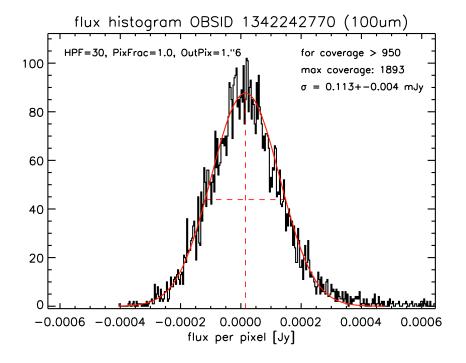


Figure 161: Noise determination for the 100 µm L2.0 map of OBSID 1342242770 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

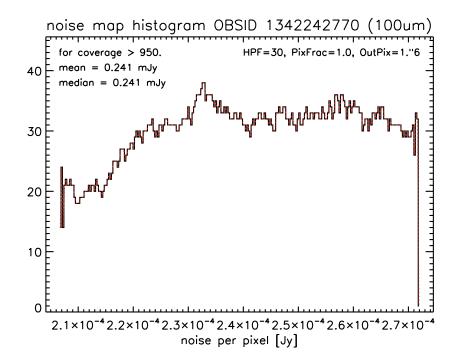


Figure 162: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{{ m Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 129

4.9.2 L 2.0 OBSID 1342242771

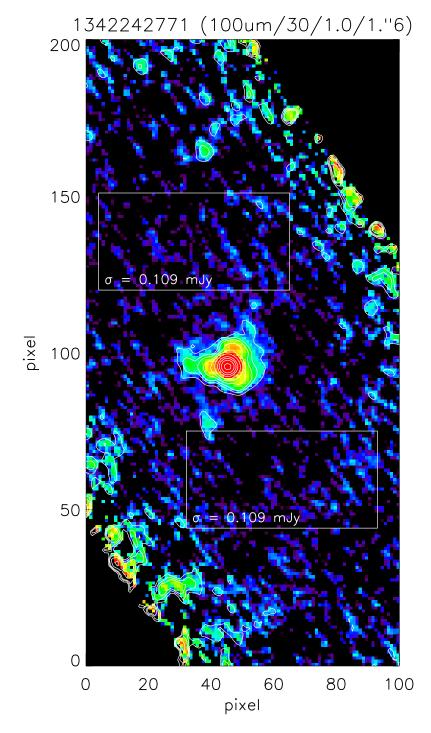


Figure 163: 100 μ m L2.0 map for OBSID 1342242771 with HPF radius 30, pixfrac 1.0 and output pixel size of 1."6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 130

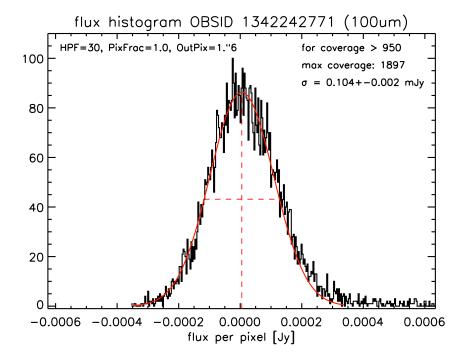


Figure 164: Noise determination for the 100 μ m L2.0 map of OBSID 1342242771 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

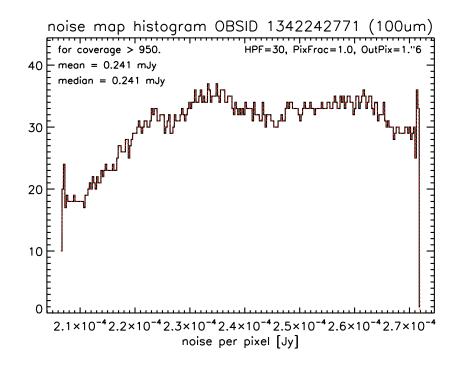


Figure 165: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 131

4.9.3 L 2.5 OBSIDs 1342242770+1342242771

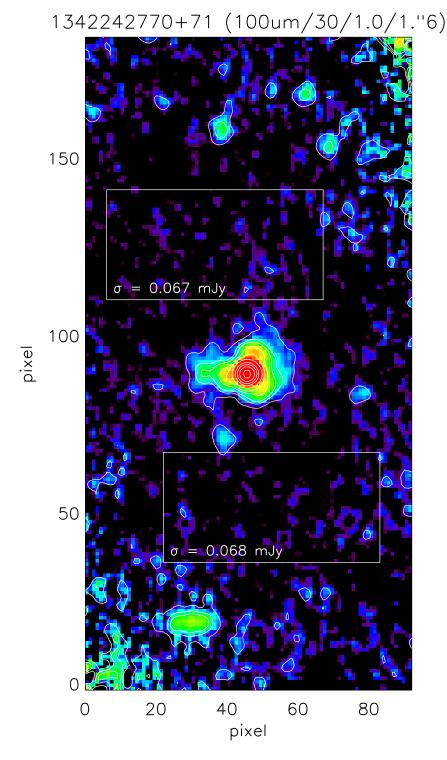


Figure 166: 100 μ m L2.5 combined map for OBSIDs 1342242770+71 with HPF radius 30, pixfrac 1.0 and output pixel size of 1.6. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 132

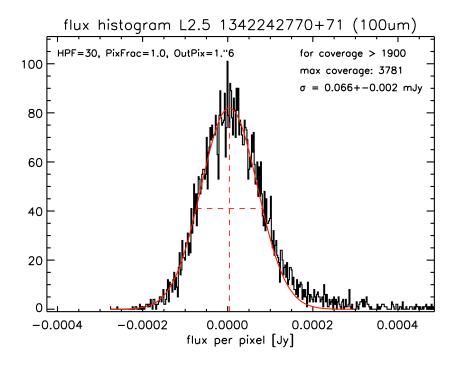


Figure 167: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

Figure 168: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\underset{\text{Herschel}}{\text{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 133

4.10 100 µm: HPF radius 15, Pixfrac 1.0, Pixsize 2".4

$4.10.1 \quad L\, 2.0 \ OBSID \ 1342242770$

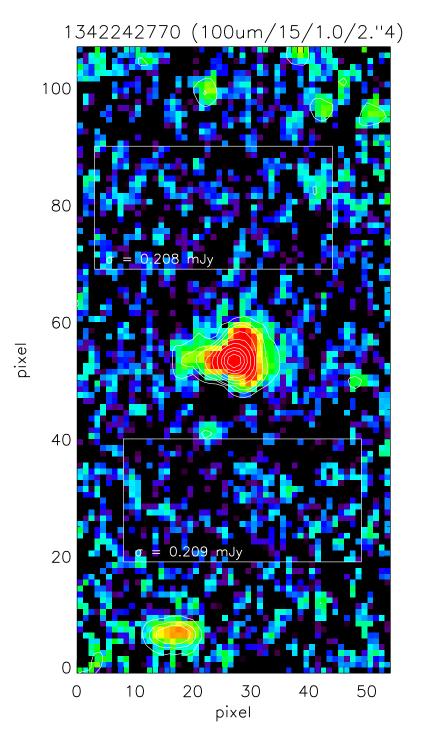


Figure 169: 100 μ m L2.0 map for OBSID 1342242770 with HPF radius 15, pixfrac 1.0 and output pixel size of 2".4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 134

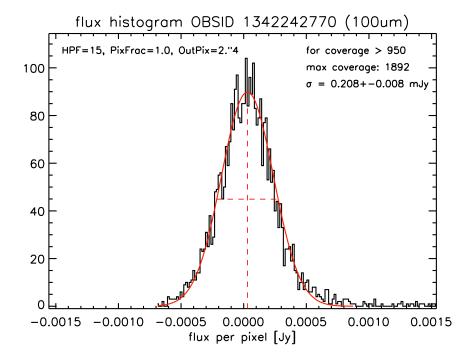


Figure 170: Noise determination for the 100 µm L2.0 map of OBSID 1342242770 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

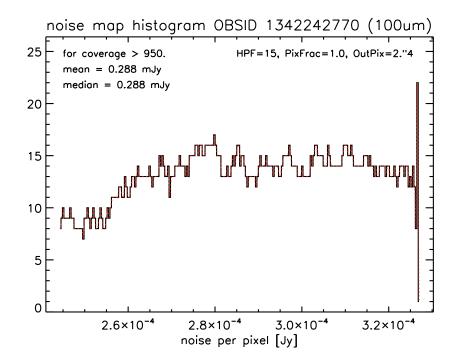


Figure 171: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{{ m Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 135

4.10.2 L 2.0 OBSID 1342242771

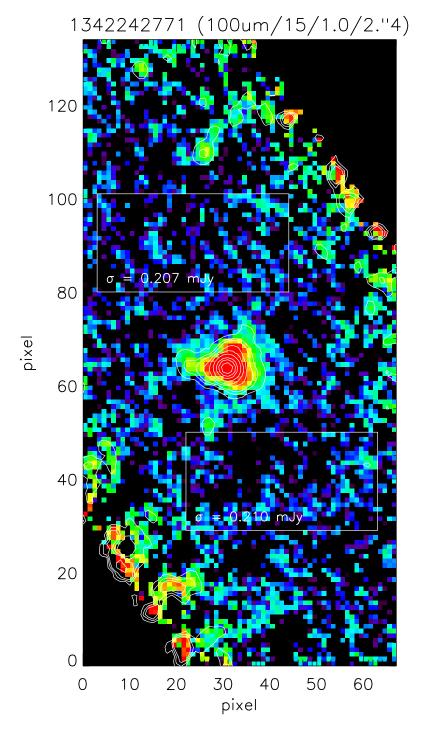


Figure 172: 100 μ m L2.0 map for OBSID 1342242771 with HPF radius 15, pixfrac 1.0 and output pixel size of 2".4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 136

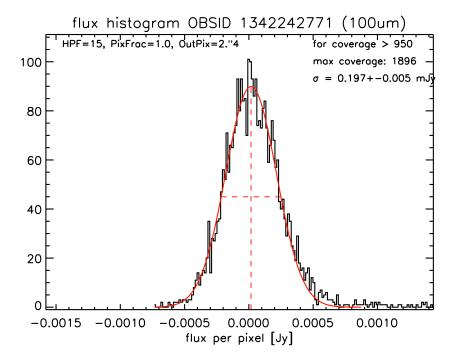


Figure 173: Noise determination for the 100 μ m L2.0 map of OBSID 1342242771 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

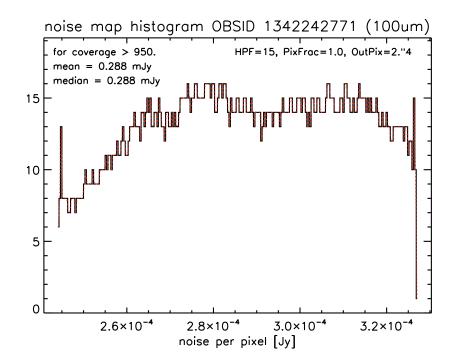


Figure 174: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 137

$4.10.3 \quad L\, 2.5 \ OBSIDs \ 1342242770 + 1342242771$

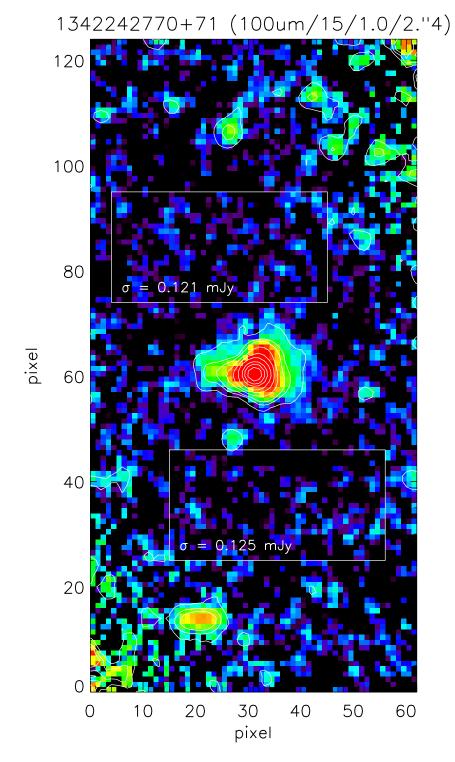


Figure 175: 100 μ m L2.5 combined map for OBSIDs 1342242770+71 with HPF radius 15, pixfrac 1.0 and output pixel size of 2".4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 138

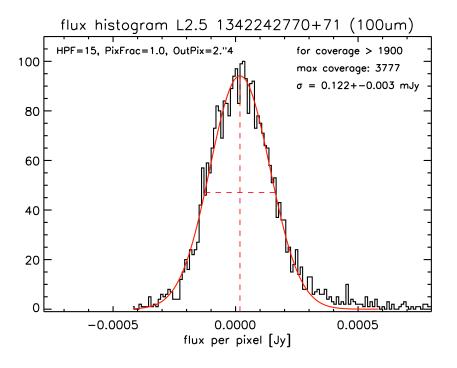


Figure 176: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

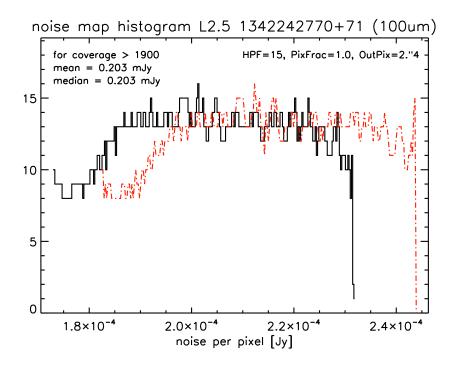


Figure 177: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 139

4.11 100 µm: HPF radius 15, Pixfrac 1.0, Pixsize 3."2

4.11.1 L 2.0 OBSID 1342242770

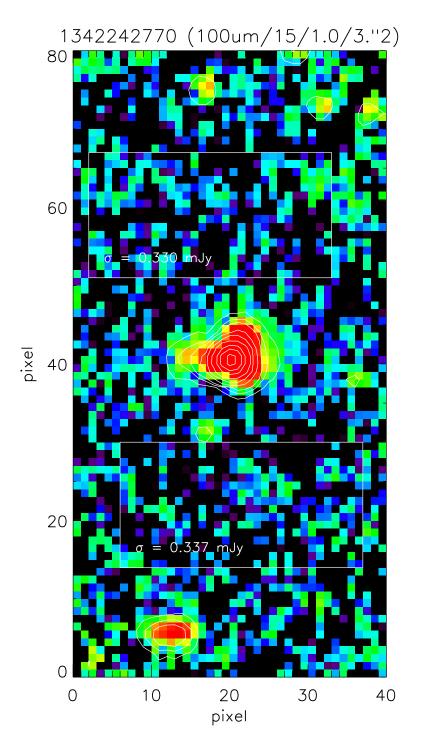


Figure 178: 100 μ m L2.0 map for OBSID 1342242770 with HPF radius 15, pixfrac 1.0 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 140

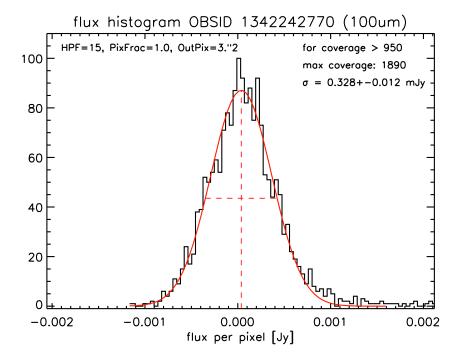


Figure 179: Noise determination for the 100 μ m L2.0 map of OBSID 1342242770 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

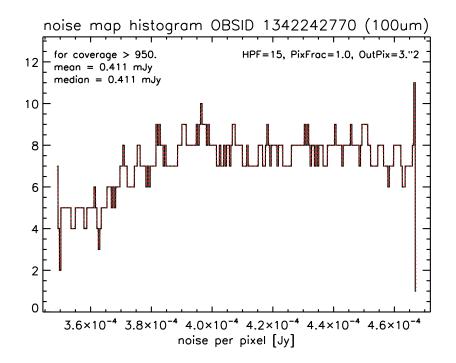


Figure 180: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{{ m Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 141

4.11.2 L 2.0 OBSID 1342242771

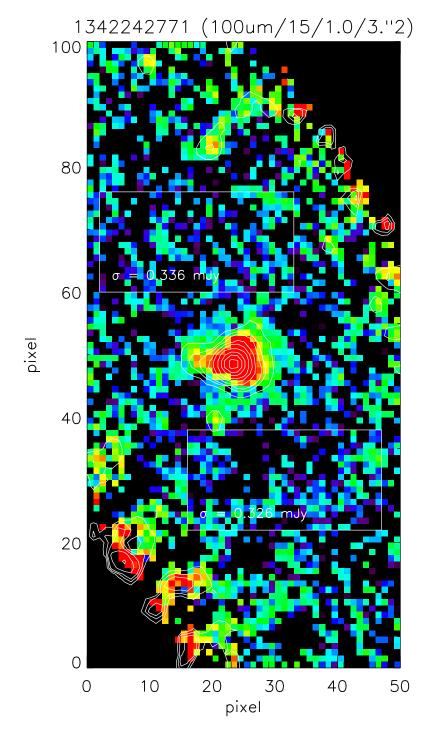


Figure 181: 100 μ m L2.0 map for OBSID 1342242771 with HPF radius 15, pixfrac 1.0 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 142

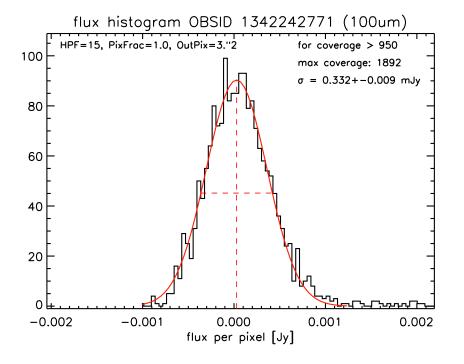


Figure 182: Noise determination for the 100 µm L2.0 map of OBSID 1342242771 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

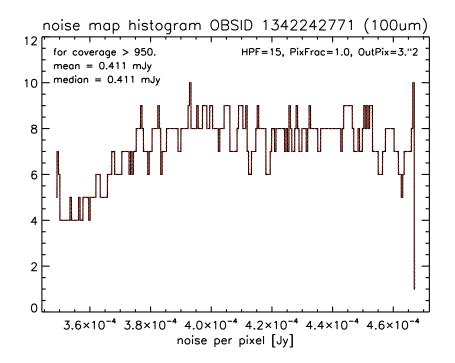


Figure 183: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 143

$4.11.3 \quad L\, 2.5 \ OBSIDs \ 1342242770 + 1342242771$

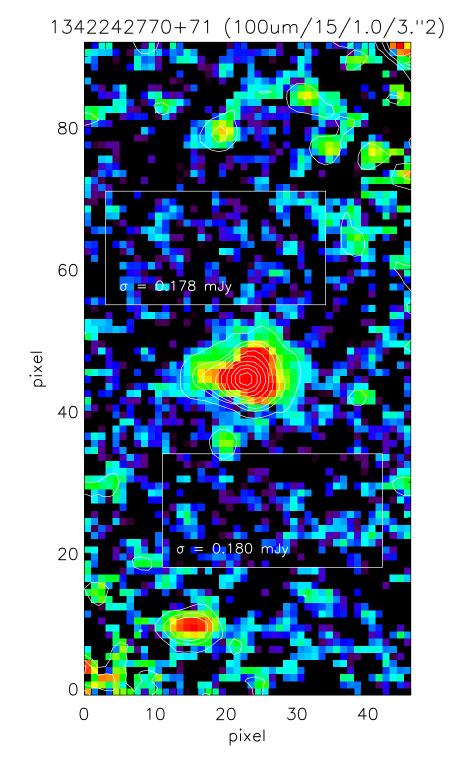


Figure 184: 100 μ m L2.5 combined map for OBSIDs 1342242770+71 with HPF radius 15, pixfrac 0.1 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\underset{\text{Herschel}}{\mathbf{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 144

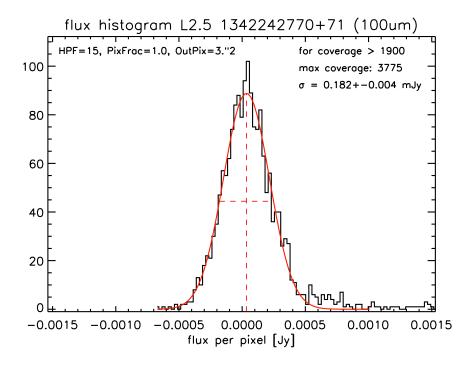


Figure 185: Noise determination for the 100 µm coadded L2.5 map of OBSIDs 1342242770+71 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

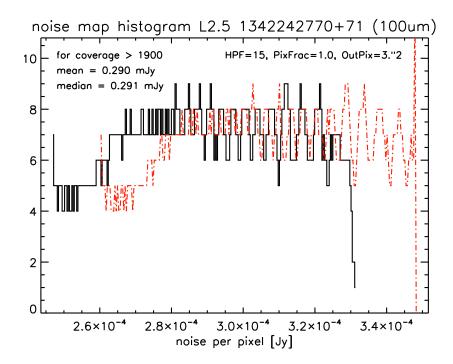


Figure 186: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 145

5 Analysis of 160µm maps

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 146

5.1 160 µm: HPF radius 25, Pixfrac 0.1, Pixsize 2".1

$5.1.1 \quad L\, 2.0 \ OBSID \ 1342242772$

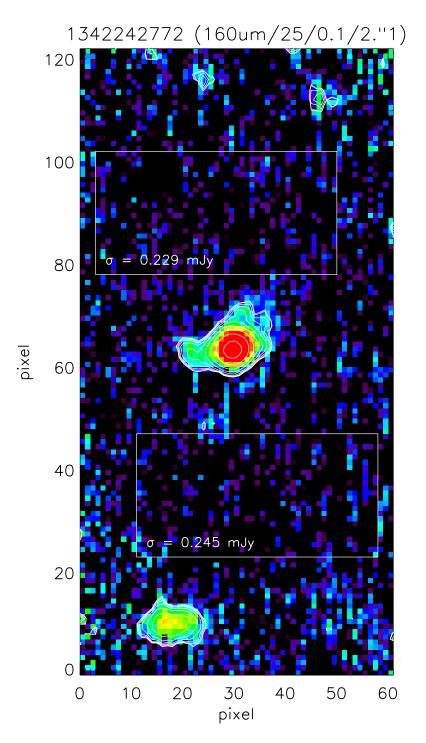


Figure 187: 160 μ m L2.0 map for OBSID 1342242772 with HPF radius 25, pixfrac 0.1 and output pixel size of 2".1 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 147

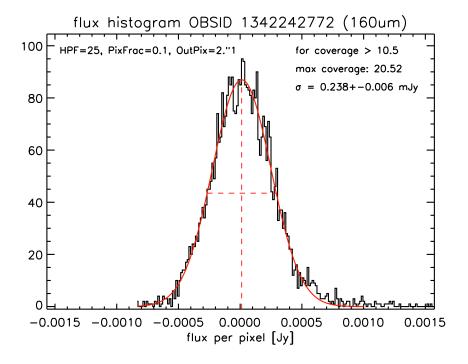


Figure 188: Noise determination for the 160 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

For this map parameter combination no error map analysis was done.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 148

5.1.2 L 2.0 OBSID 1342242773

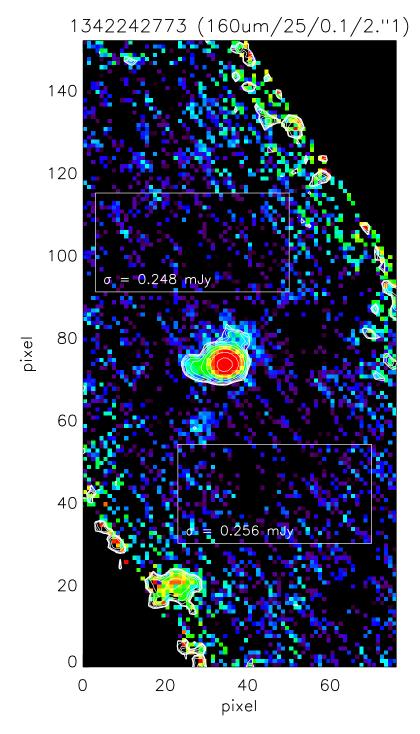


Figure 189: 160 μ m L2.0 map for OBSID 1342242773 with HPF radius 25, pixfrac 0.1 and output pixel size of 2".1 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 149

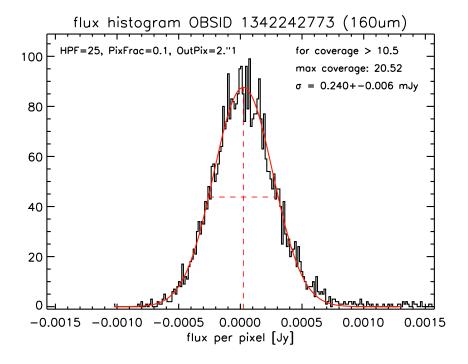


Figure 190: Noise determination for the 160 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

For this map parameter combination no error map analysis was done.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 150

5.1.3 L 2.5 OBSIDs 1342242772+1342242773

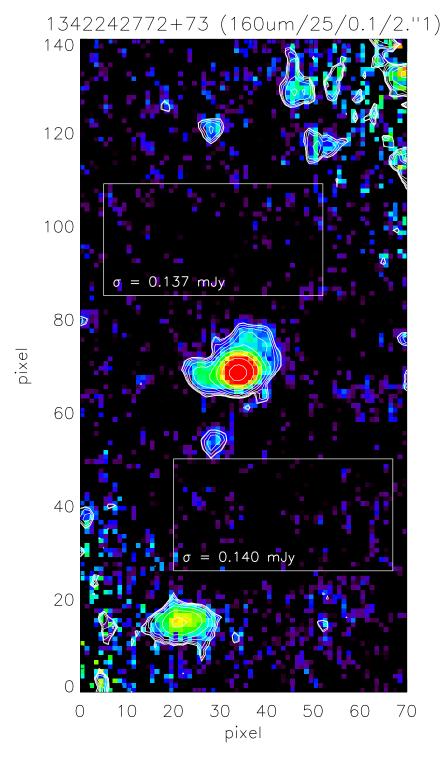


Figure 191: 160 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 25, pixfrac 0.1 and output pixel size of 2".1 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 151

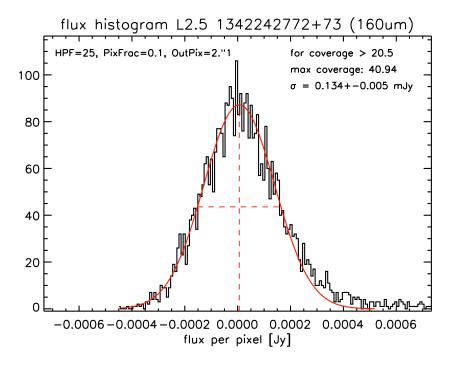


Figure 192: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

For this map parameter combination no error map analysis was done.

$\underset{\text{Herschel}}{\text{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 152

5.2 160 µm: HPF radius 25, Pixfrac 0.1, Pixsize 3".2

5.2.1 L 2.0 OBSID 1342242772

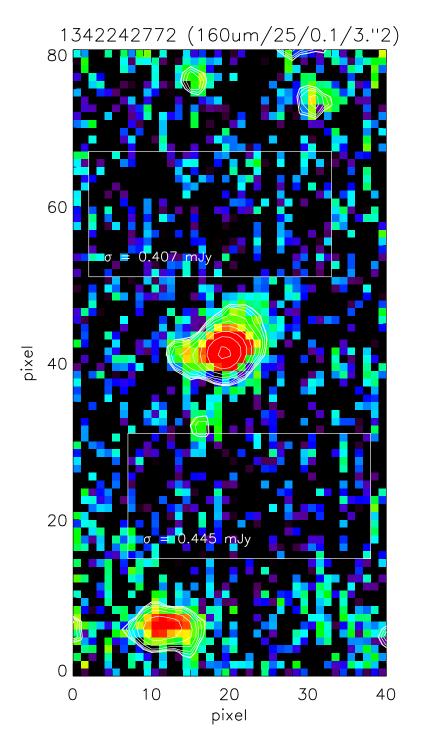


Figure 193: 160 μ m L2.0 map for OBSID 1342242772 with HPF radius 25, pixfrac 0.1 and output pixel size of 3".2 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 153

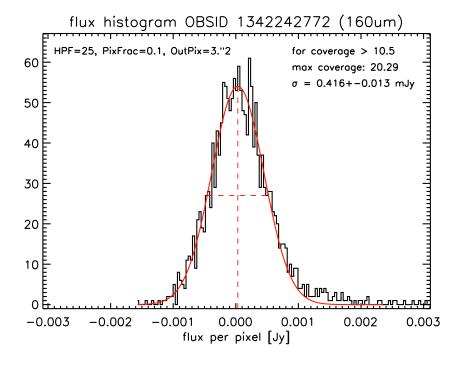


Figure 194: Noise determination for the 160 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

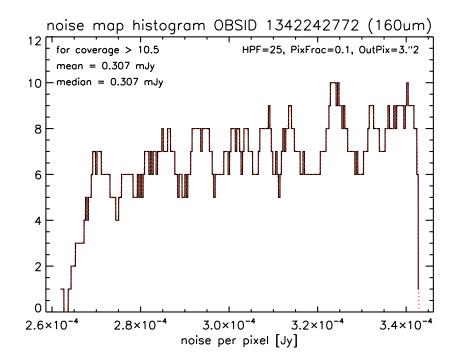


Figure 195: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 154

5.2.2 L 2.0 OBSID 1342242773

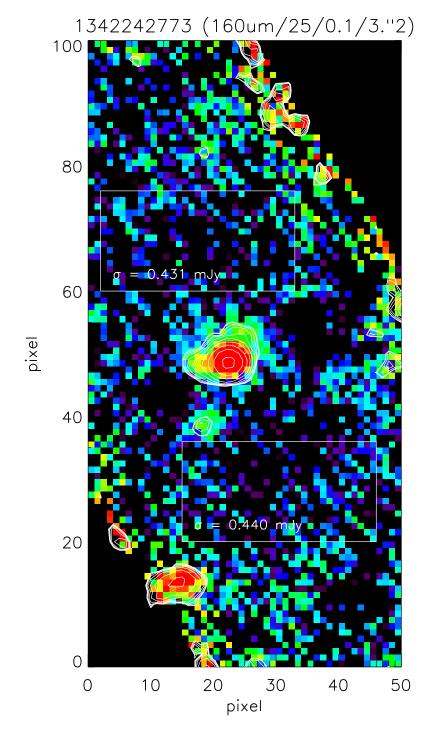


Figure 196: 160 μ m L2.0 map for OBSID 1342242773 with HPF radius 25, pixfrac 0.1 and output pixel size of 3".2 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 155

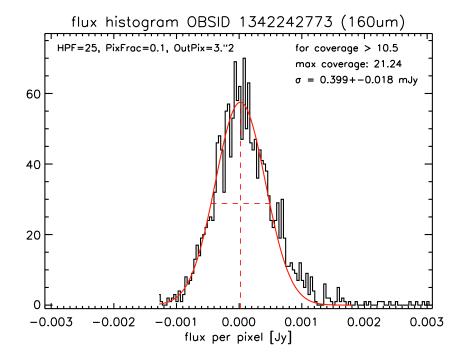


Figure 197: Noise determination for the 160 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

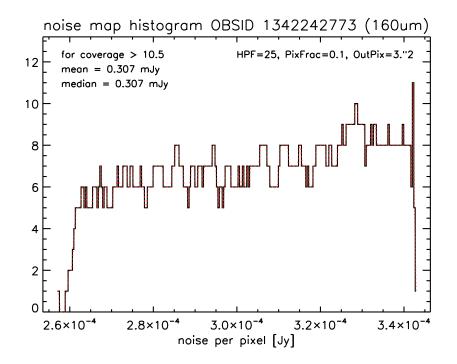


Figure 198: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 156

5.2.3 L 2.5 OBSIDs 1342242772+1342242773

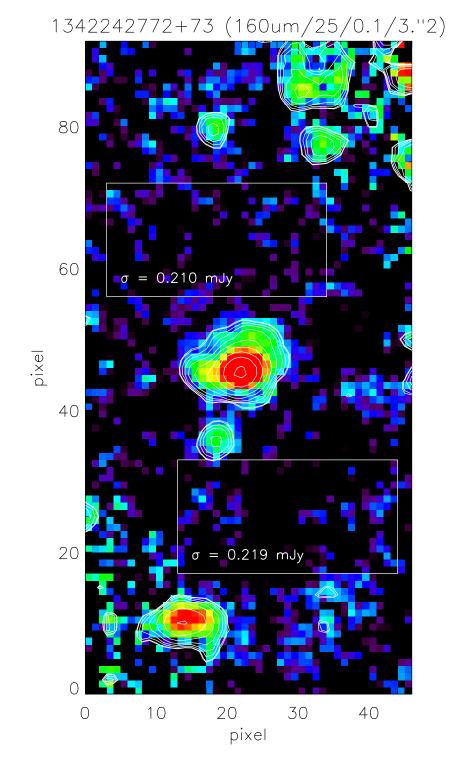


Figure 199: 160 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 25, pixfrac 0.1 and output pixel size of 3".2 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

PACS Herschel	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 157

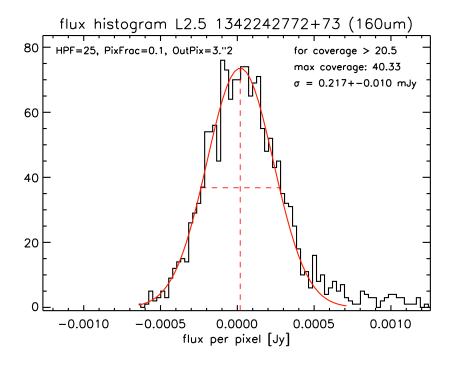


Figure 200: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

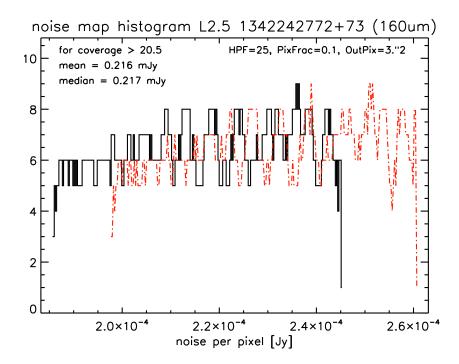


Figure 201: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 158

5.3 160 µm: HPF radius 50, Pixfrac 0.1, Pixsize 3".2

5.3.1 L 2.0 OBSID 1342242772

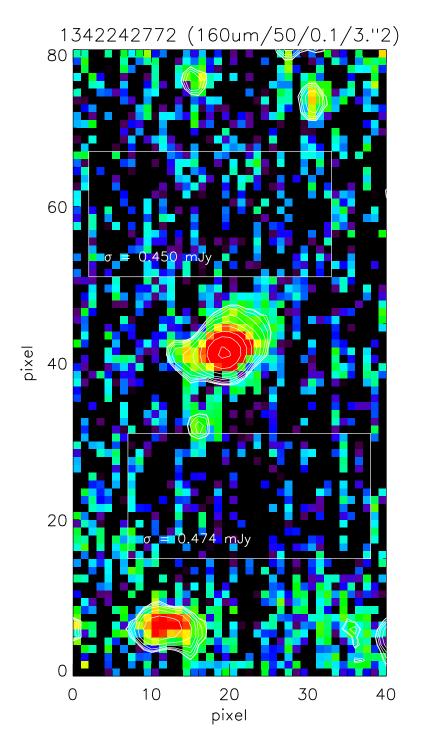


Figure 202: 160 μ m L2.0 map for OBSID 1342242772 with HPF radius 50, pixfrac 0.1 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 159

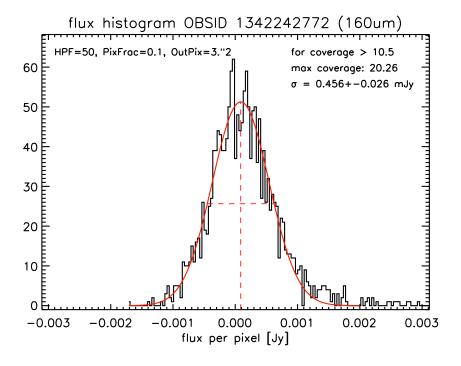


Figure 203: Noise determination for the 160 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

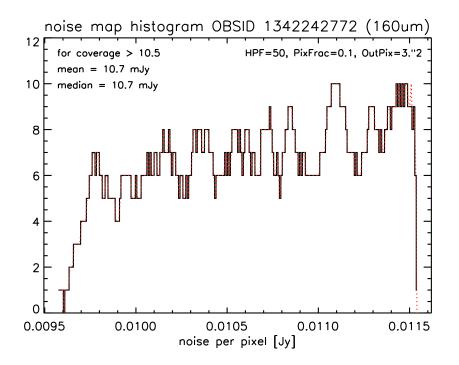


Figure 204: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\underset{\text{Herschel}}{\text{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 160

5.4 160 µm: HPF radius 25, Pixfrac 0.1, Pixsize 4".8

$5.4.1 \quad L\, 2.0 \ OBSID \ 1342242772$

Figure 205: 160 μ m L2.0 map for OBSID 1342242772 with HPF radius 25, pixfrac 0.1 and output pixel size of 4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 161

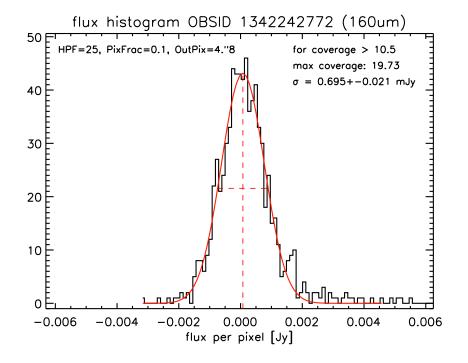


Figure 206: Noise determination for the 160 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

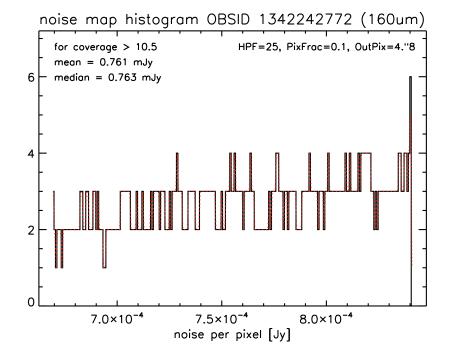


Figure 207: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 162

5.4.2 L 2.0 OBSID 1342242773

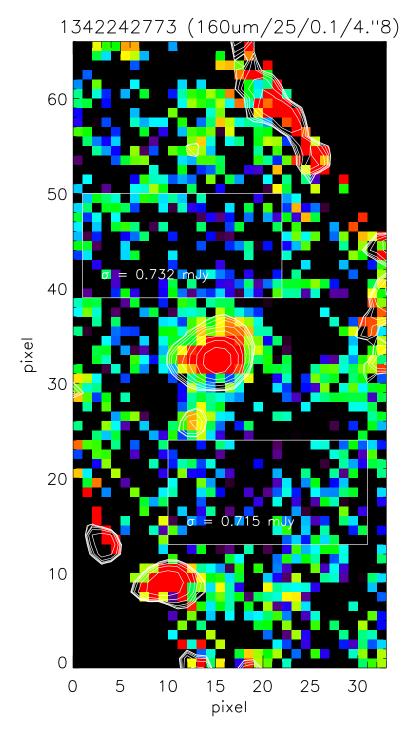


Figure 208: 160 μ m L2.0 map for OBSID 1342242773 with HPF radius 25, pixfrac 0.1 and output pixel size of 4".8. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 163

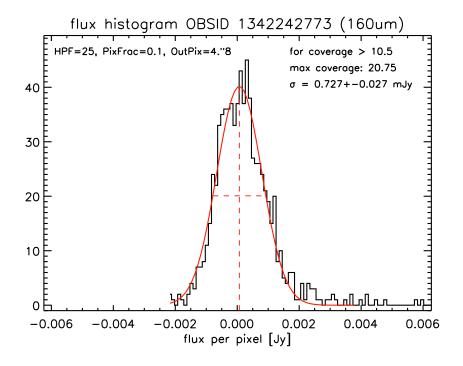


Figure 209: Noise determination for the 160 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

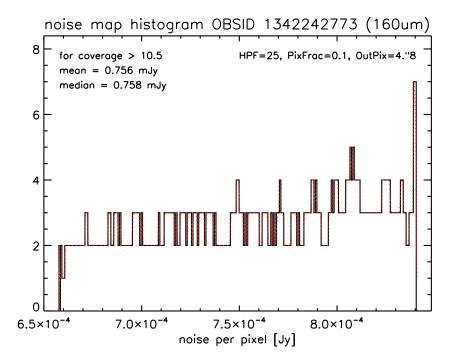


Figure 210: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 164

5.4.3 L 2.5 OBSIDs 1342242772+1342242773

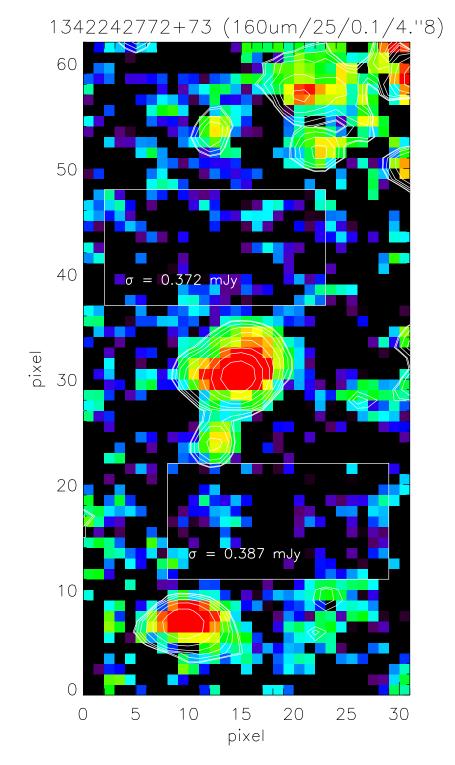


Figure 211: 160 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 25, pixfrac 0.1 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 165

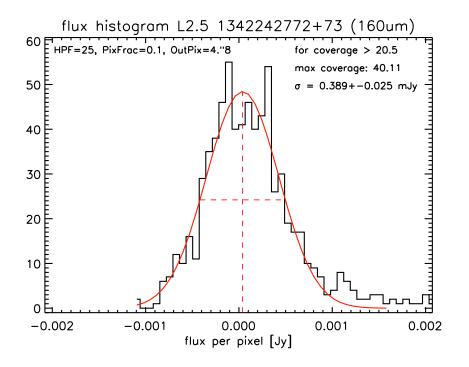


Figure 212: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

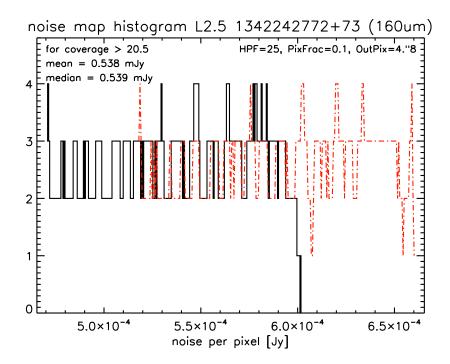


Figure 213: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 166

5.5 160 µm: HPF radius 25, Pixfrac 0.1, Pixsize 6.4

5.5.1 L 2.0 OBSID 1342242772

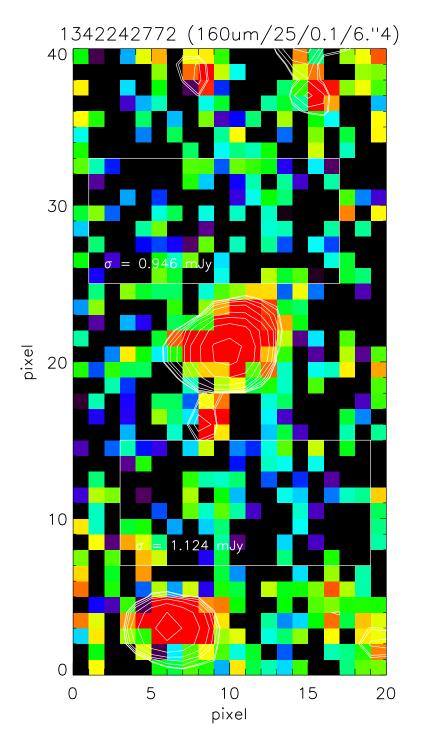


Figure 214: 160 μ m L2.0 map for OBSID 1342242772 with HPF radius 25, pixfrac 0.1 and output pixel size of 6^{''}.4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 167

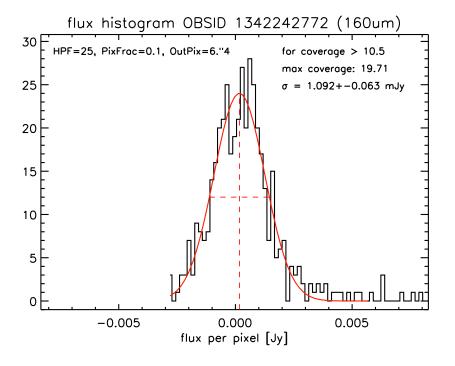


Figure 215: Noise determination for the 160 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

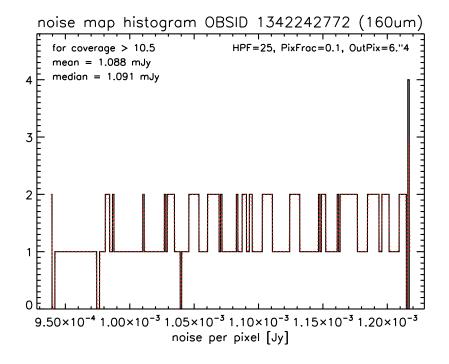


Figure 216: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 168

5.5.2 L 2.0 OBSID 1342242773

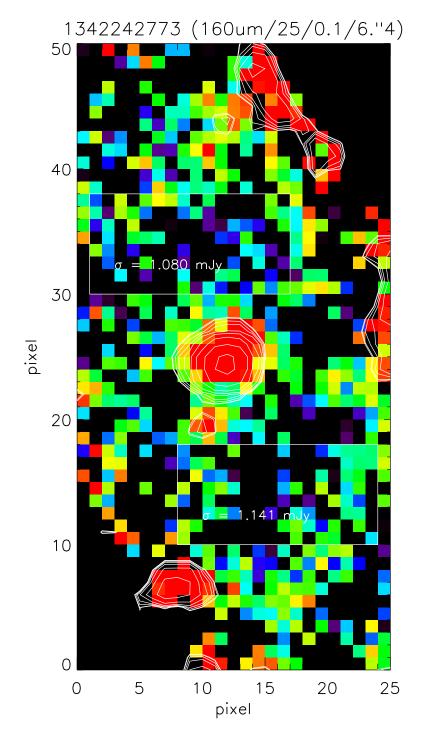


Figure 217: 160 μ m L2.0 map for OBSID 1342242773 with HPF radius 25, pixfrac 0.1 and output pixel size of 6^{''}.4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 169

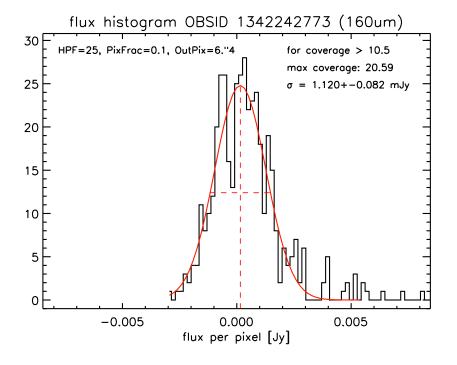


Figure 218: Noise determination for the 160 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

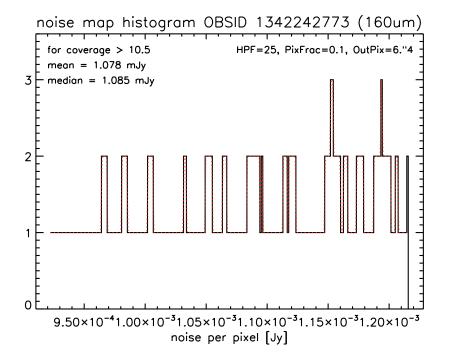


Figure 219: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 170

5.5.3 L 2.5 OBSIDs 1342242772+1342242773

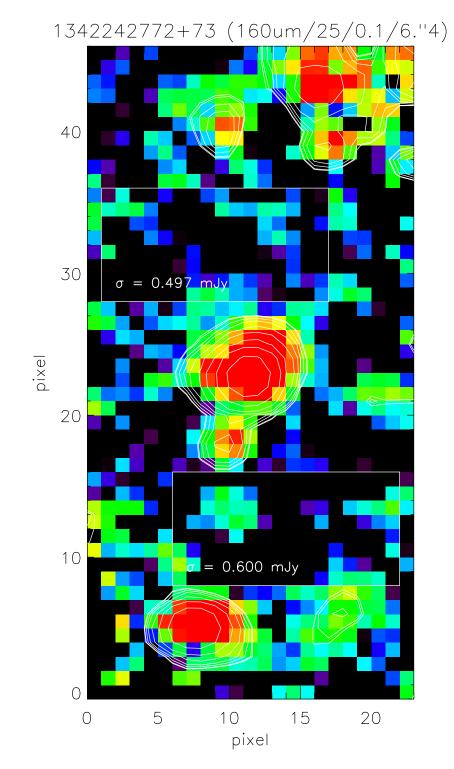


Figure 220: 160 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 25, pixfrac 0.1 and output pixel size of 6.4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 171

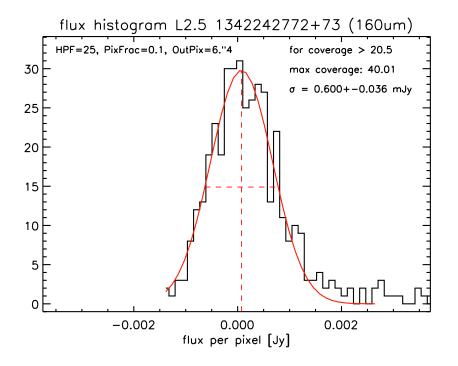


Figure 221: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

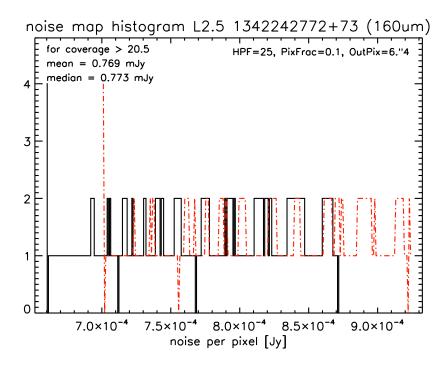


Figure 222: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{{ m Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 172

5.5.4 L 2.0 OBSID 1342242773

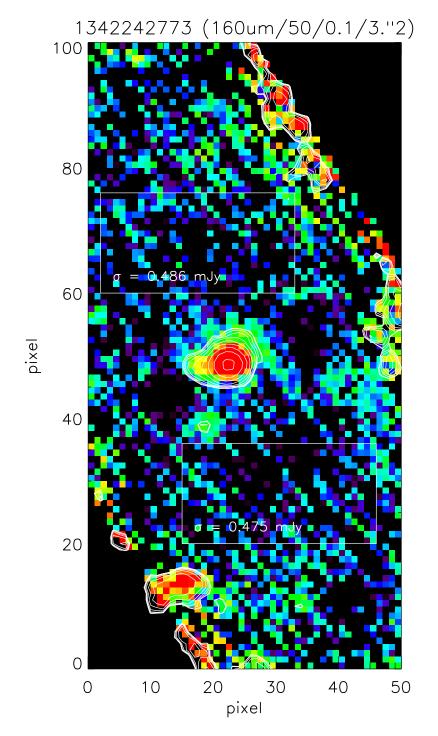


Figure 223: 160 μ m L2.0 map for OBSID 1342242773 with HPF radius 50, pixfrac 0.1 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 173

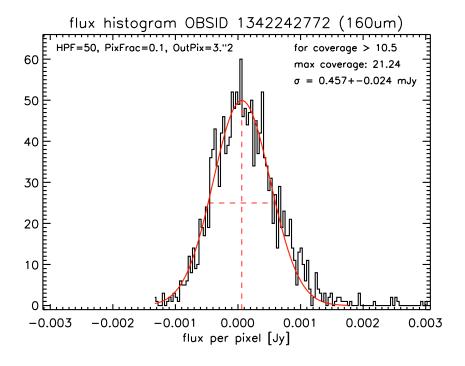


Figure 224: Noise determination for the 160 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

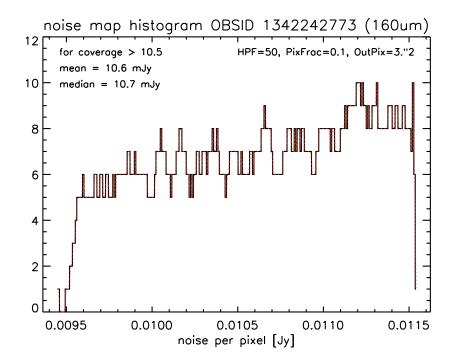


Figure 225: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 174

5.5.5 L 2.5 OBSIDs 1342242772+1342242773

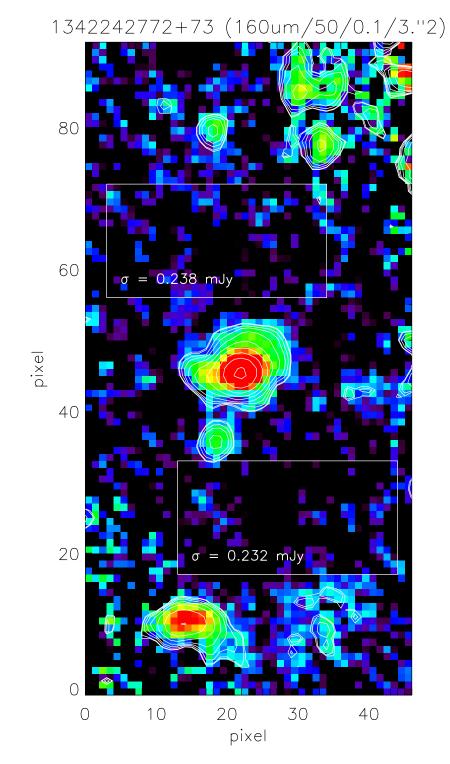


Figure 226: 160 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 50, pixfrac 0.1 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\underset{\text{Herschel}}{\text{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 175

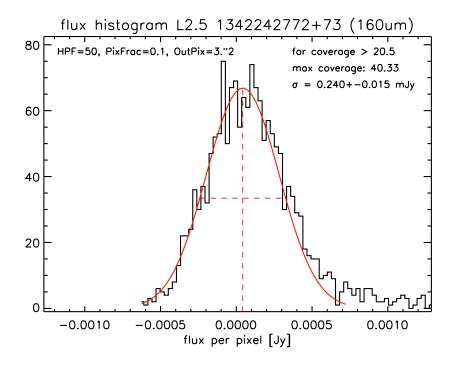


Figure 227: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

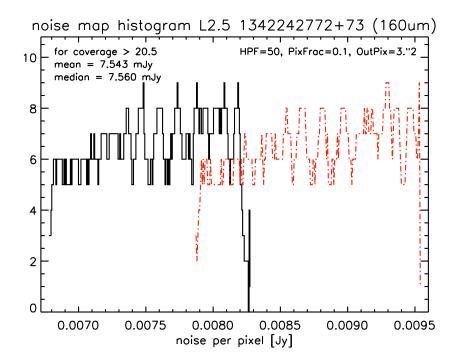


Figure 228: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\underset{\text{Herschel}}{\text{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 176

5.6 160 $\mu m:$ HPF radius 25, Pixfrac 0.5, Pixsize 3."2

5.6.1 L 2.0 OBSID 1342242772

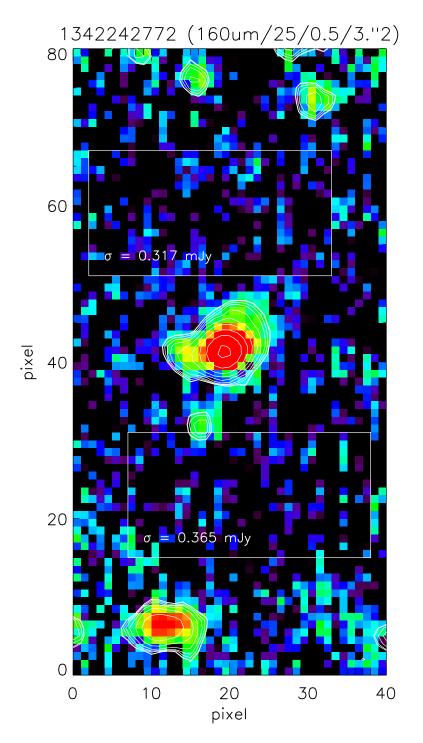


Figure 229: 160 μ m L2.0 map for OBSID 1342242772 with HPF radius 25, pixfrac 0.5 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 177

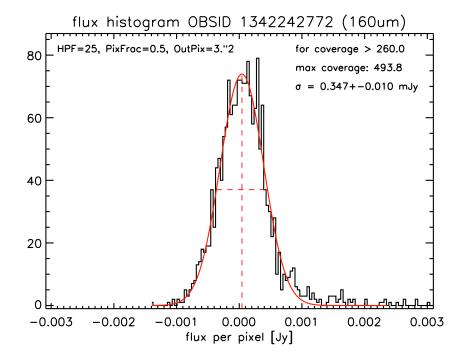


Figure 230: Noise determination for the 160 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

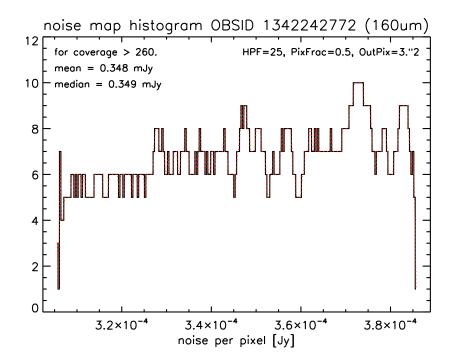


Figure 231: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 178

5.6.2 L 2.0 OBSID 1342242773

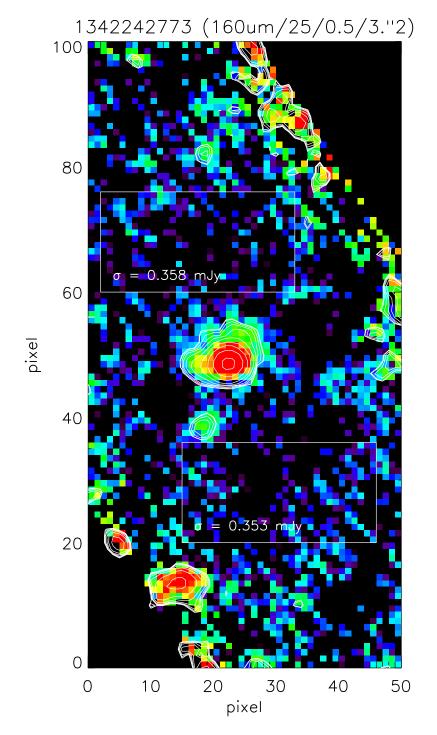


Figure 232: 160 μ m L2.0 map for OBSID 1342242773 with HPF radius 25, pixfrac 0.5 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 179

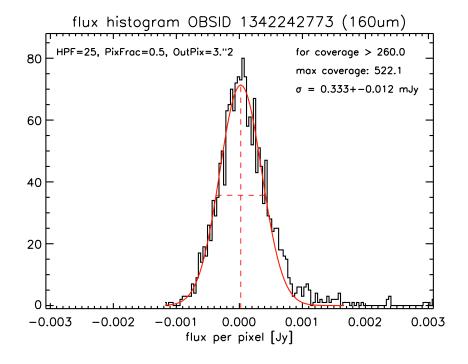


Figure 233: Noise determination for the 160 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

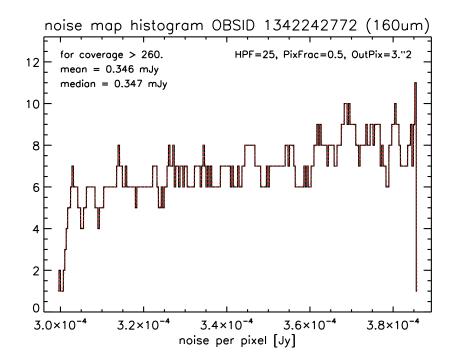


Figure 234: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\underset{\mathrm{Herschel}}{\mathrm{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 180

5.6.3 L 2.5 OBSIDs 1342242772+1342242773

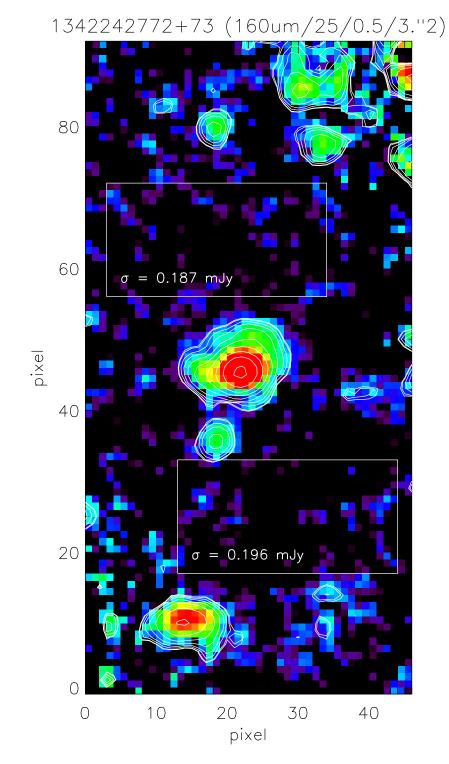


Figure 235: 160 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 25, pixfrac 0.5 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\underset{\text{Herschel}}{\mathbf{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 181

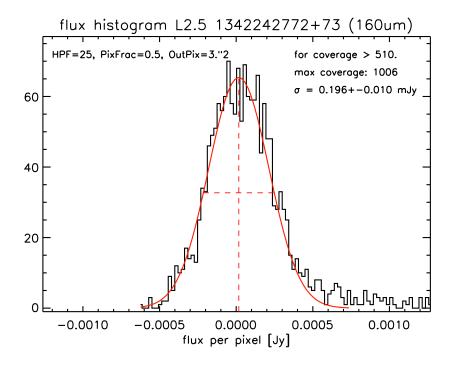


Figure 236: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).



Figure 237: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	d mini-maps	Page 182

5.7 160 µm: HPF radius 25, Pixfrac 1.0, Pixsize 2".1

5.7.1 L 2.0 OBSID 1342242772

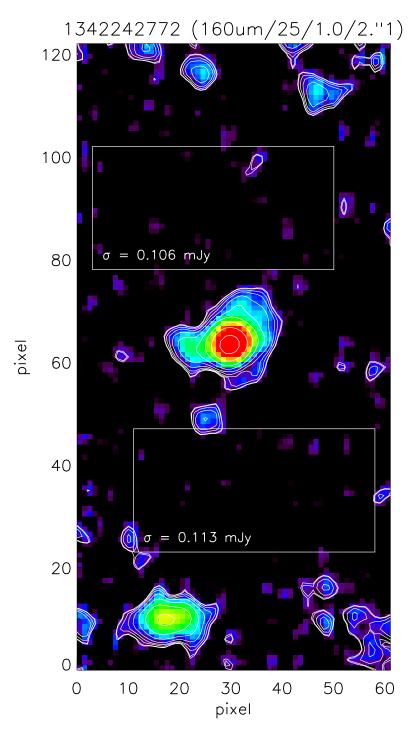


Figure 238: 160 μ m L2.0 map for OBSID 1342242772 with HPF radius 25, pixfrac 1.0 and output pixel size of 2".1 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 183

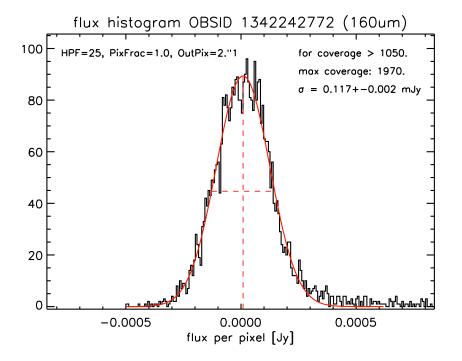


Figure 239: Noise determination for the 160 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

For this map parameter combination no error map analysis was done.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 184

5.7.2 L 2.0 OBSID 1342242773

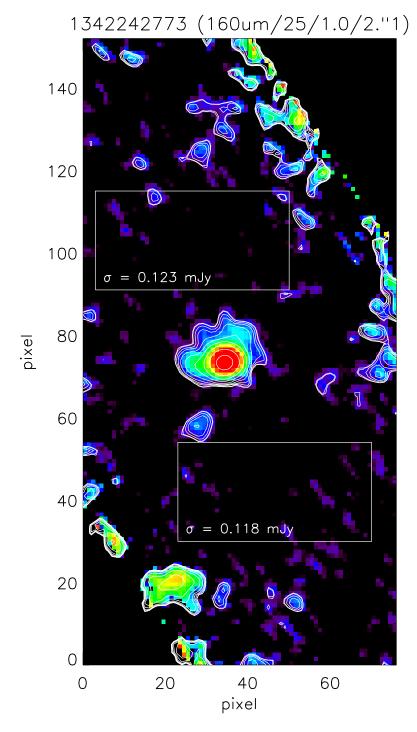


Figure 240: 160 μ m L2.0 map for OBSID 1342242773 with HPF radius 25, pixfrac 1.0 and output pixel size of 2".1. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	l mini-maps	Page 185

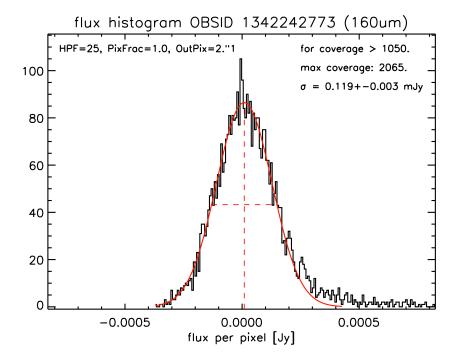


Figure 241: Noise determination for the 160 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

For this map parameter combination no error map analysis was done.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	l mini-maps	Page 186

5.7.3 L 2.5 OBSIDs 1342242772+1342242773

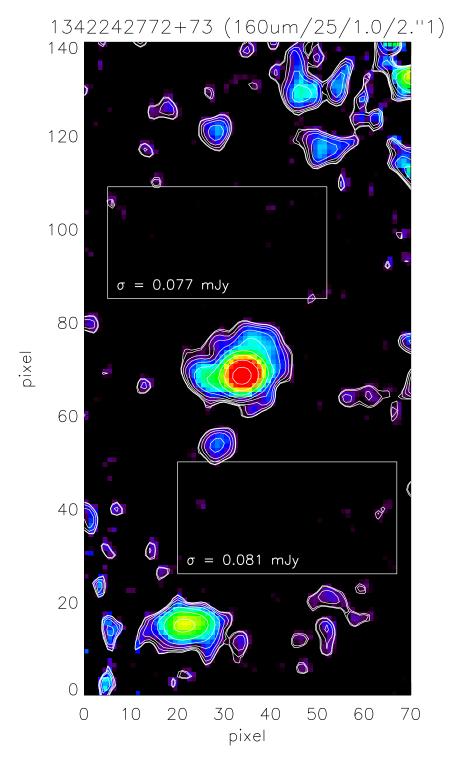


Figure 242: 160 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 25, pixfrac 1.0 and output pixel size of 2".1 (SPG product parameter set). The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	d mini-maps	Page 187

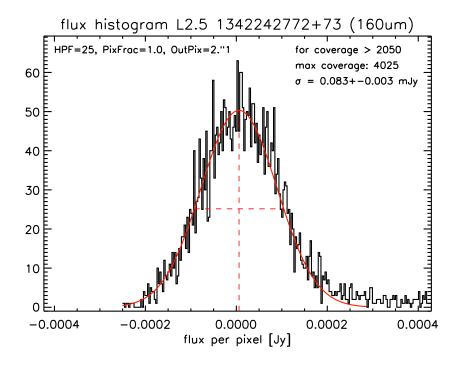


Figure 243: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

For this map parameter combination no error map analysis was done.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 188

5.8 160 µm: HPF radius 25, Pixfrac 1.0, Pixsize 3".2

5.8.1 L 2.0 OBSID 1342242772

Figure 244: 160 μ m L2.0 map for OBSID 1342242772 with HPF radius 25, pixfrac 1.0 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 189

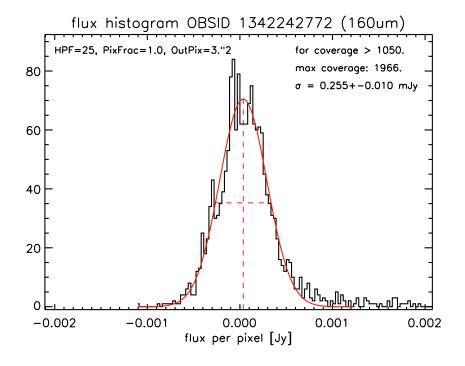


Figure 245: Noise determination for the 160 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

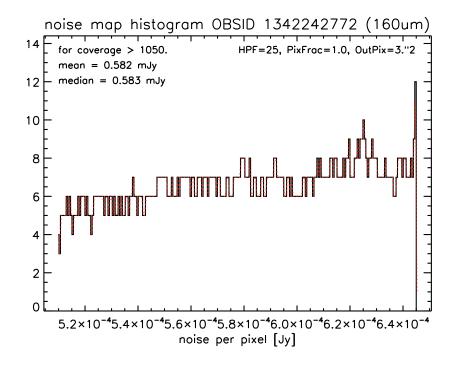


Figure 246: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 190

5.8.2 L 2.0 OBSID 1342242773

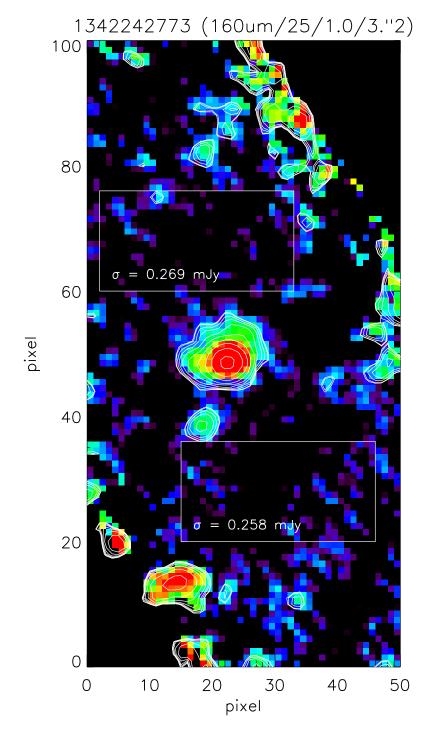


Figure 247: 160 μ m L2.0 map for OBSID 1342242773 with HPF radius 25, pixfrac 1.0 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass fi	ltered mini-maps	Page 191

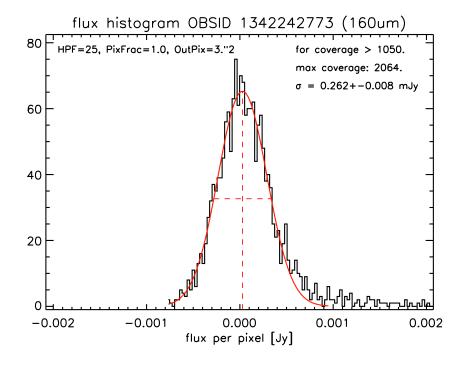


Figure 248: Noise determination for the 160 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

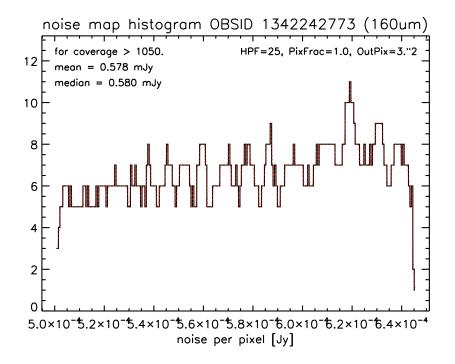


Figure 249: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 192

5.8.3 L 2.5 OBSIDs 1342242772+1342242773

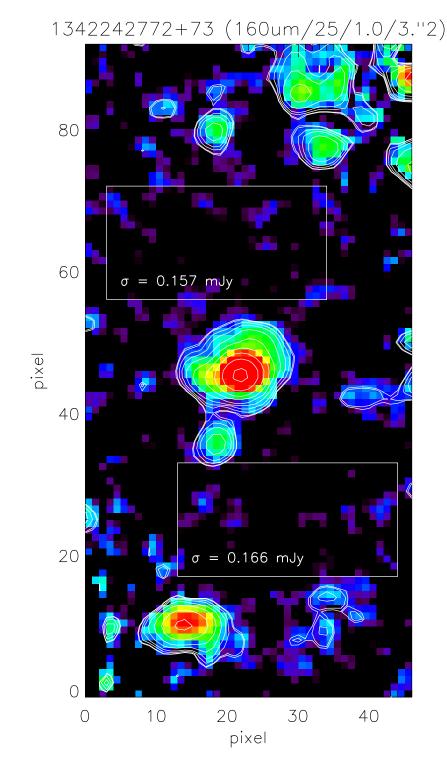


Figure 250: 160 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 25, pixfrac 1.0 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 193

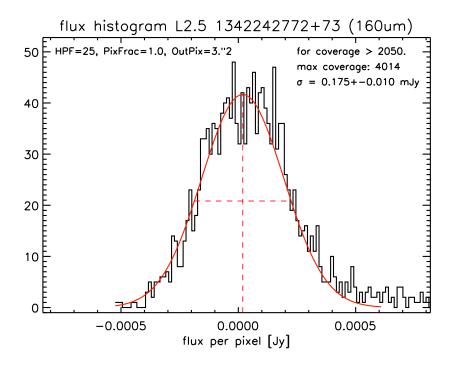


Figure 251: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

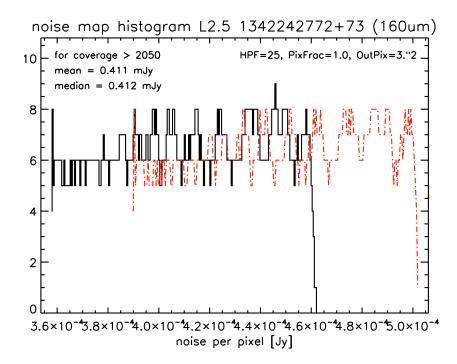


Figure 252: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\textbf{PACS}}_{\text{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 194

5.9 160 $\mu m:$ HPF radius 50, Pixfrac 1.0, Pixsize $3\rlap.^{\prime\prime}2$

5.9.1 L 2.0 OBSID 1342242772

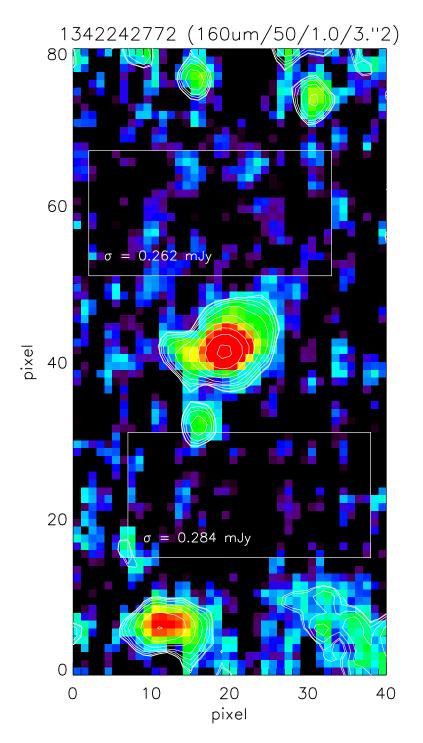


Figure 253: 160 μ m L2.0 map for OBSID 1342242772 with HPF radius 50, pixfrac 1.0 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 195

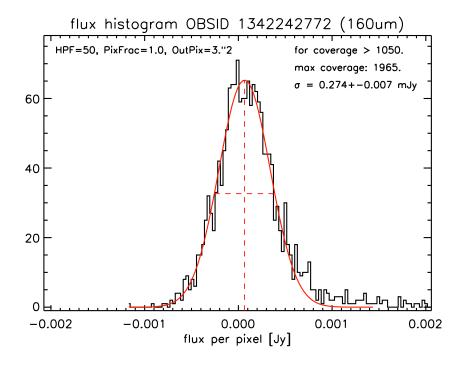


Figure 254: Noise determination for the 160 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

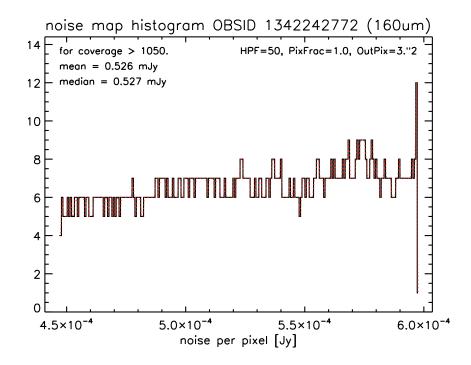


Figure 255: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 196

5.9.2 L 2.0 OBSID 1342242773

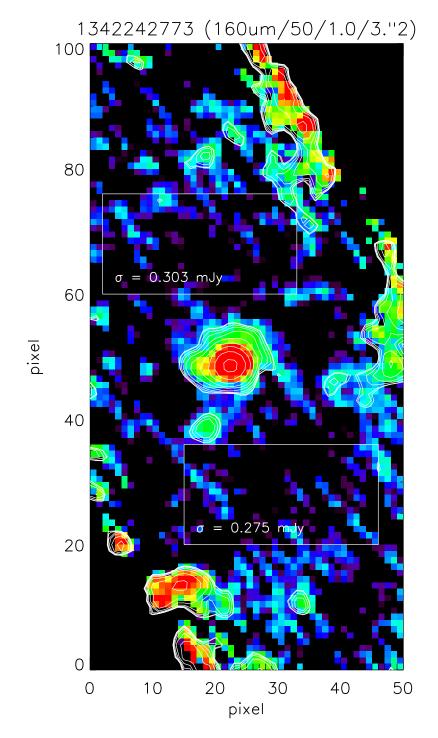


Figure 256: 160 μ m L2.0 map for OBSID 1342242773 with HPF radius 50, pixfrac 1.0 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 197

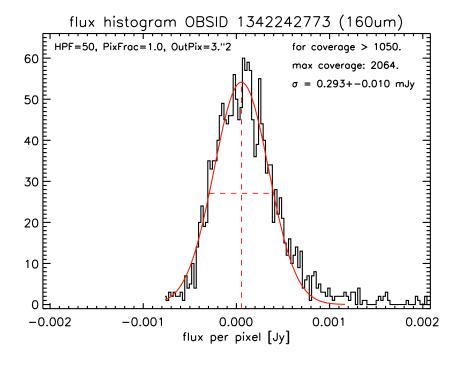


Figure 257: Noise determination for the 160 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

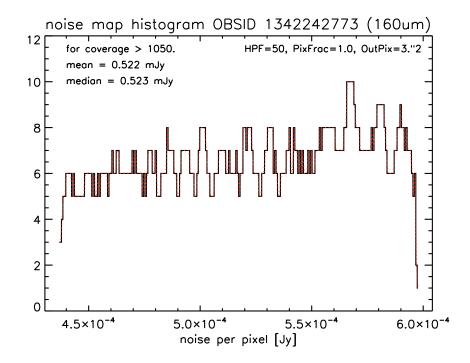


Figure 258: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 198

5.9.3 L 2.5 OBSIDs 1342242772+1342242773

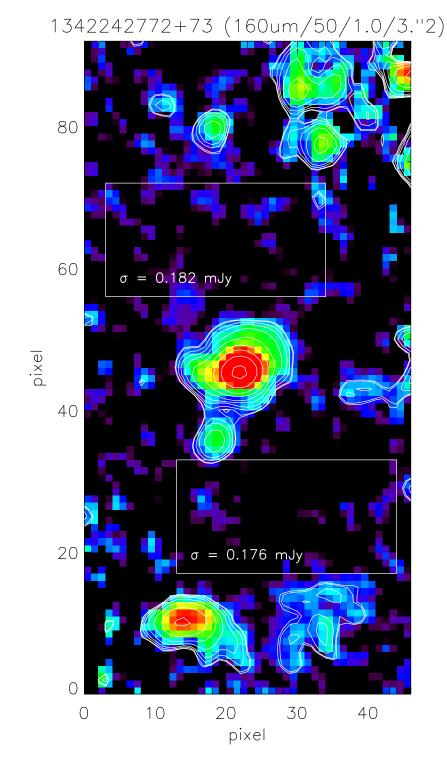


Figure 259: 160 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 50, pixfrac 1.0 and output pixel size of 3".2. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

PACS Herschel	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 199

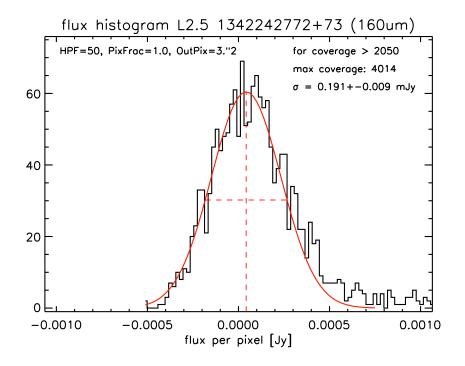


Figure 260: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

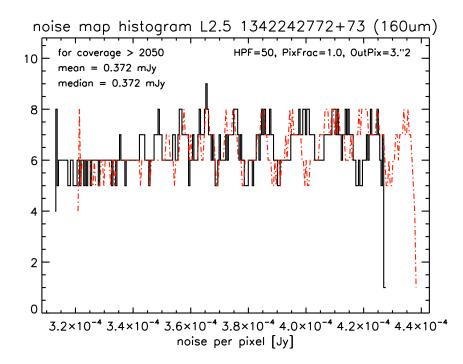


Figure 261: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\underset{\text{Herschel}}{\text{PACS}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 200

5.10 160 µm: HPF radius 25, Pixfrac 1.0, Pixsize 4".8

5.10.1 L 2.0 OBSID 1342242772

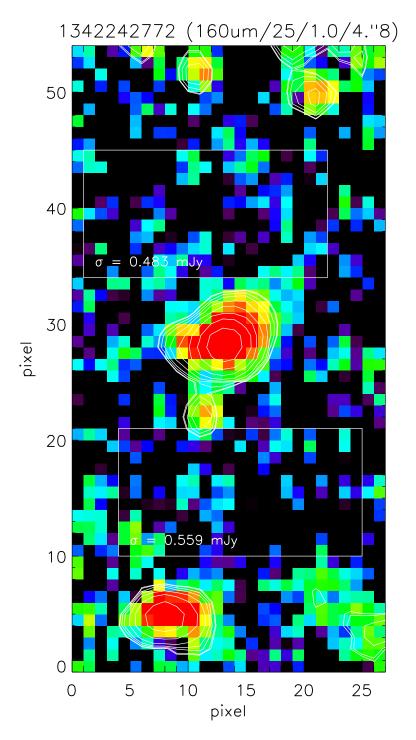


Figure 262: 160 μ m L2.0 map for OBSID 1342242772 with HPF radius 25, pixfrac 1.0 and output pixel size of 4".8. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 201

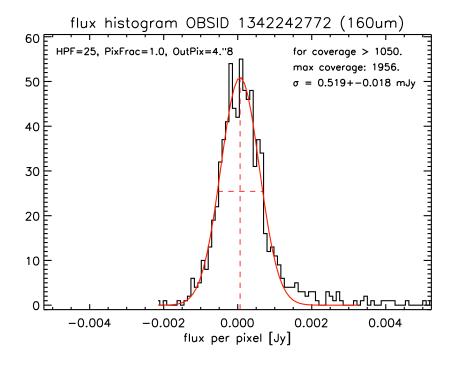


Figure 263: Noise determination for the 160 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

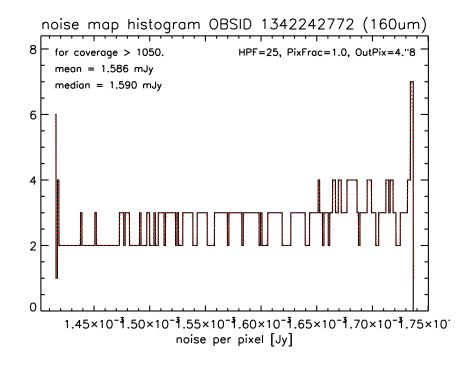


Figure 264: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 202

5.10.2 L 2.0 OBSID 1342242773

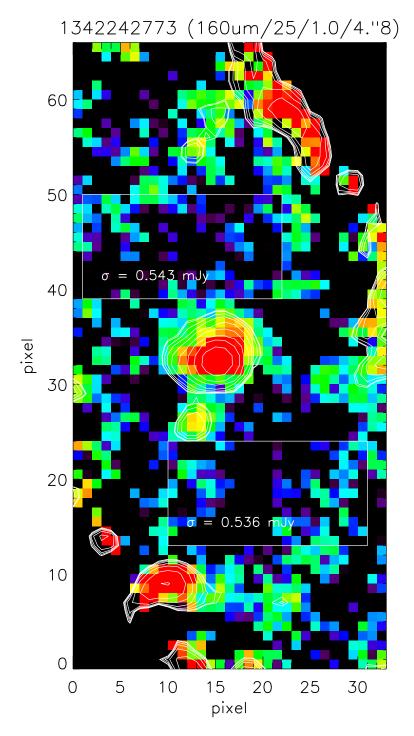


Figure 265: 160 μ m L2.0 map for OBSID 1342242773 with HPF radius 25, pixfrac 1.0 and output pixel size of 4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass	filtered mini-maps	Page 203

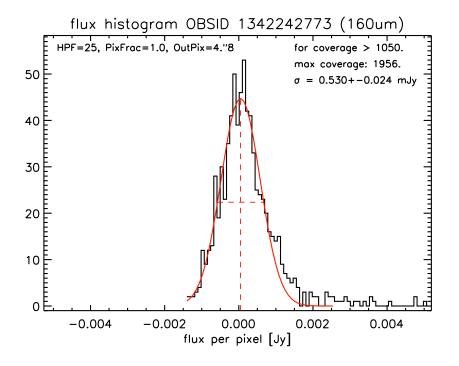


Figure 266: Noise determination for the 160 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

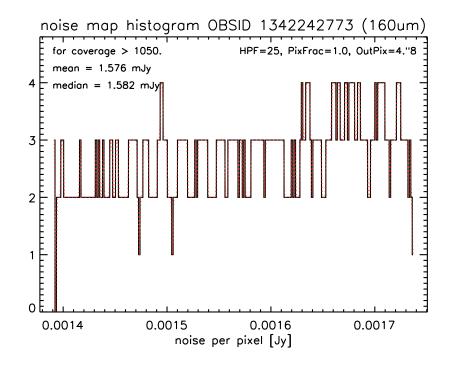


Figure 267: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered mini-maps		Page 204

5.10.3 L 2.5 OBSIDs 1342242772+1342242773

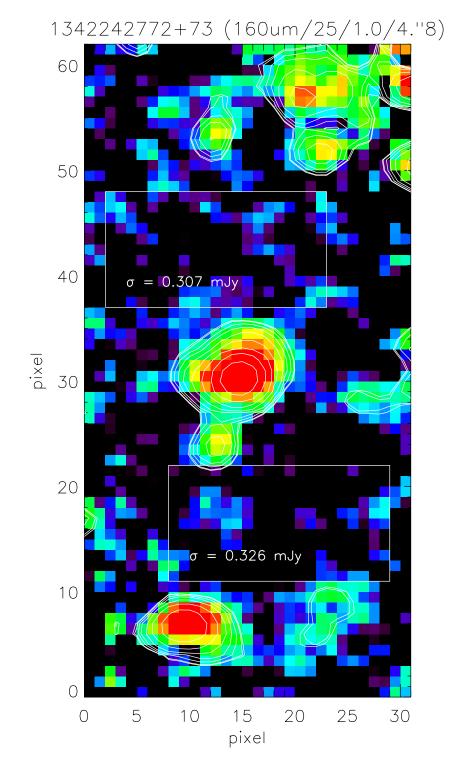


Figure 268: 160 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 25, pixfrac 1.0 and output pixel size of 4".8. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filter	Page 205	

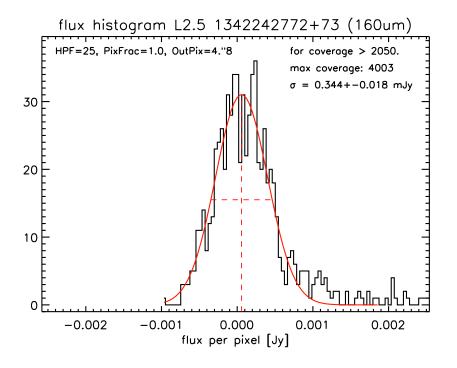


Figure 269: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

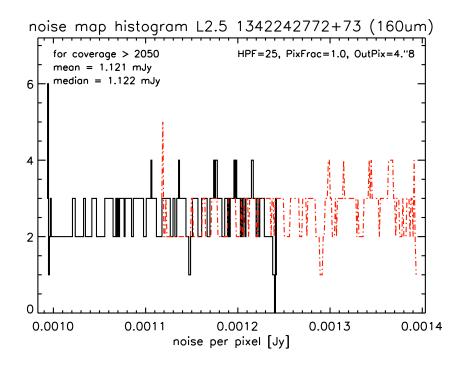


Figure 270: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filter	Page 206	

5.11 160 µm: HPF radius 25, Pixfrac 1.0, Pixsize 6."4

5.11.1 L 2.0 OBSID 1342242772

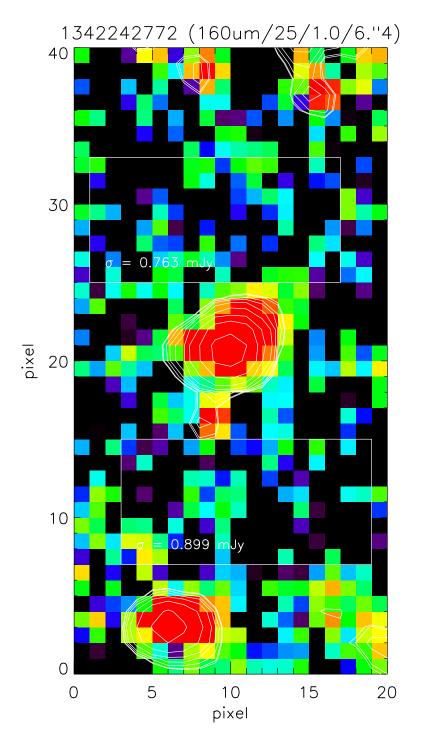


Figure 271: 160 μ m L2.0 map for OBSID 1342242772 with HPF radius 25, pixfrac 1.0 and output pixel size of 6^{''}.4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass fil	tered mini-maps	Page 207

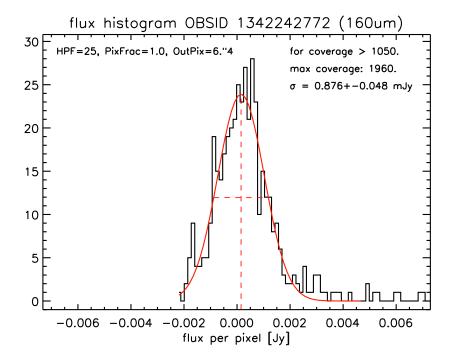


Figure 272: Noise determination for the 160 µm L2.0 map of OBSID 1342242772 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

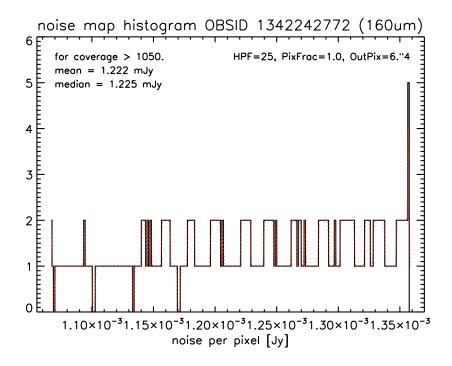


Figure 273: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	ed mini-maps	Page 208

5.11.2 L 2.0 OBSID 1342242773

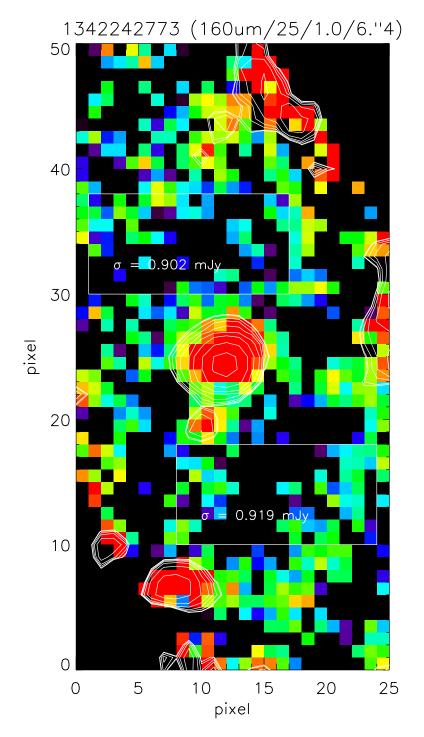


Figure 274: 160 μ m L2.0 map for OBSID 1342242773 with HPF radius 25, pixfrac 1.0 and output pixel size of 6^{''}.4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass fi	Page 209	

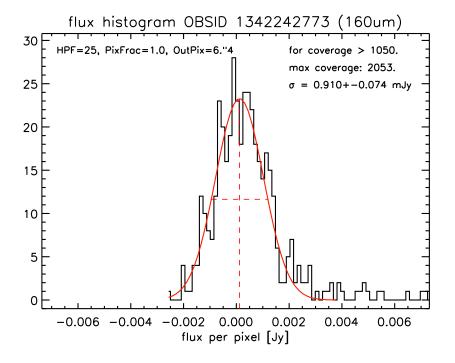


Figure 275: Noise determination for the 160 µm L2.0 map of OBSID 1342242773 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

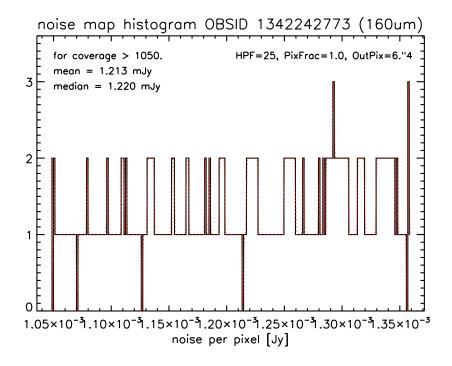


Figure 276: Histogram of the noise value distribution in the error map above the coverage threshold indicated in the plot. Mean and median value of the distribution are given. The red dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0	
Noise characterization of high-pass filter	Noise characterization of high-pass filtered mini-maps		

5.11.3 L 2.5 OBSIDs 1342242772 + 1342242773

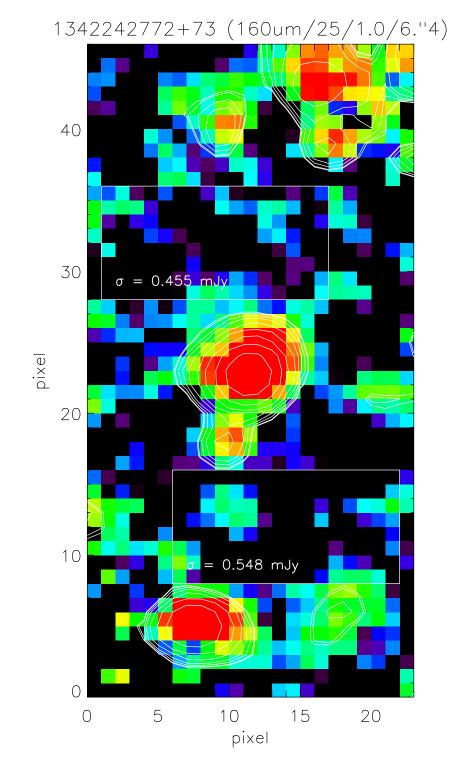


Figure 277: 160 μ m L2.5 combined map for OBSIDs 1342242772+73 with HPF radius 25, pixfrac 1.0 and output pixel size of 6.4. The two background fields for noise determination are outlined by the white boxes and the respective σ is indicated.

$\mathop{\textbf{PACS}}_{\text{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass	Page 211	

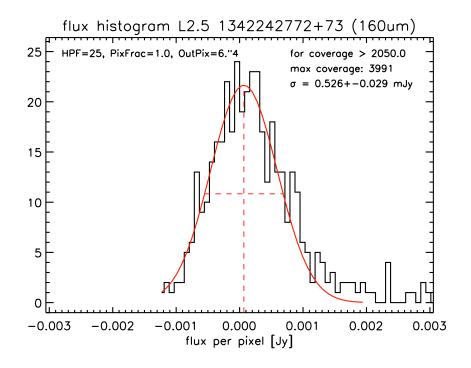


Figure 278: Noise determination for the 160 µm coadded L2.5 map of OBSIDs 1342242772+73 with the histogram method (only the flux distribution around the background level is shown). The red curve represents the Gauss fit. The vertical red dashed line indicates the position of the average background level. The horizontal red dotted line indicates the FWHM (= $2\sqrt{2 \ln 2} \sigma_{\text{hist}}$).

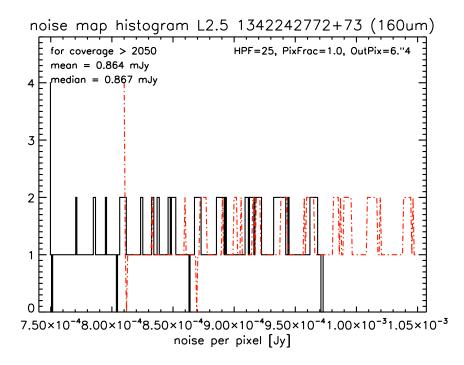


Figure 279: Histogram of the noise value distribution in the L2.5 error map above the coverage threshold indicated in the plot (in black). Mean and median value of the distribution are given. The red dashed-dotted line shows a reference histogram of the noise value distribution computed from the coverage map via Eqns. 3 and 2.

$\mathop{\mathrm{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filter	Page 212	

$6 \quad \text{Results for } 70\,\mu\text{m maps}$

6.1 Measurement of flux standard deviation in source-free areas

Table 4 lists the measured noise of the background as determined in two source-free areas per map.

Table 4: Measurement of flux standard deviation at $70 \,\mu\text{m}$ in source-free areas for the L2.0 products, IDs 1342242772 and 1342242773 and the co-added L2.5 product. The position of the boxes is indicated in Figs. 7 through 73. Note, that the cut levels for all $70 \,\mu\text{m}$ map displays are identical. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG). The map parameter combination in italics was typical for the PACS photometric flux calibration analysis.

HPF/pixfrac/outpix	box size	L2.0	ID 134224	42772	L2.0	ID 134224	42773	L2.5 ID	1342242	772+73
		$\sigma_{ m box1}$	$\sigma_{ m box2}$	$\sigma_{ m mean}$	$\sigma_{ m box1}$	$\sigma_{ m box2}$	$\sigma_{ m mean}$	$\sigma_{ m box1}$	$\sigma_{ m box2}$	$\sigma_{\rm mean}$
	(pixels)	(mJy)								
15 / 0.1 / 1.11	88×44	0.120	0.124	0.122	0.122	0.120	0.121	0.064	0.068	0.066
15 / 0.1 / 1.00%	61×31	0.186	0.189	0.188	0.183	0.184	0.184	0.106	0.109	0.107
30 / 0.1 / 1."6	61×31	0.200	0.200	0.200	0.192	0.192	0.192	0.111	0.116	0.114
15 / 0.1 / 2.4	41×21	0.296	0.317	0.306	0.301	0.320	0.310	0.175	0.190	0.183
15 / 0.1 / 3.2	31×16	0.441	0.465	0.453	0.431	0.466	0.449	0.230	0.253	0.241
15 / 0.5 / 1."6	61×31	0.146	0.152	0.149	0.145	0.147	0.146	0.089	0.093	0.091
15 / 1.0 / 1".1	88×44	0.054	0.057	0.056	0.054	0.054	0.054	0.036	0.039	0.038
15 / 1.0 / 1.0 / 1.6	61×31	0.109	0.116	0.112	0.107	0.110	0.109	0.072	0.076	0.074
30 / 1.0 / 1.46	61×31	0.120	0.122	0.121	0.117	0.116	0.116	0.076	0.082	0.079
15 / 1.0 / 24	41×21	0.224	0.238	0.231	0.222	0.233	0.227	0.147	0.154	0.149
15 / 1.0 / 3."2	31×16	0.356	0.385	0.371	0.360	0.383	0.371	0.212	0.232	0.222

There is a systematic variation of the measured noise in the image maps depending on the selection of the mapping parameters:

- 1) For identical *pixfrac* and *outpix* the noise increases with increasing HPF due to less good suppression of the 1/f-noise.
- 2) For identical *HPF* and *outpix* the noise decreases with increasing *pixfrac*, which is due to the drop size covering more output pixels and hence correlating the noise in a pixel cluster.
- 3) The noise increases with increasing *outpix* size, because there is more flux in each output pixel and hence also the amplitude increases. However, if the noise inside a standard photometry measurement aperture is considered ($\sigma_{aperture} = \sqrt{N_{outpixinaper}} \times \sigma_{pix}$), then these noise values are much more similar for the same HPF/pixfrac combination, as shown in Table 5. But there is the trend, that they are larger the larger the *outpix* sizes. This is, however, an effect of not yet corrected correlated noise, cf. Sect. 6.7.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	mini-maps	Page 213

Table 5: Noise per measurement aperture σ_{aperture} at 70 µm derived from the noise per pixel σ_{pix} according to $\sigma_{\text{aperture}} = \sqrt{N_{\text{outpixinaper}}} \times \sigma_{\text{pix}}$). N_{outpixinaper} has been calculated for an aperture radius of 5."6. Note, these noise values are not yet corrected for correlated noise effects (cf. Table 11).

HPF/pixfrac/outpix	$\sigma_{ m pix}$	N _{outpixinaper}	$\sigma_{ m aperture}$
	(mJy/pix)		(mJy)
15 / 0.1 / 1."1	0.122	81.4	1.10
15 / 0.1 / 1."6	0.186	38.5	1.15
30 / 0.1 / 1."6	0.196	38.5	1.22
15 / 0.1 / 2.4	0.308	17.1	1.27
15 / 0.1 / 3.2	0.451	9.6	1.40
15 / 0.5 / 1."6	0.148	38.5	0.92
15 / 1.0 / 1.11	0.055	81.4	0.50
15 / 1.0 / 1.0 / 1.06	0.111	38.5	0.69
30 / 1.0 / 1.46	0.119	38.5	0.74
15 / 1.0 / 2.4	0.229	17.1	0.95
15 / 1.0 / 3."2	0.371	9.6	1.15

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	mini-maps	Page 214

6.2 Measurement of flux standard deviation by histogram method

Table 6 lists the noise values in the image maps determined with the histogram and Gauss fit method, including the uncertainty of the fit.

Table 6: Measurement of flux standard deviation at 70 μ m with the histogram method for the L2.0 products, IDs 1342242772 and 1342242773 and the co-added L2.5 product. The coverage threshold used to determine $\sigma_{\rm hist}$ and the maximum coverage for each map are listed. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG). The map parameter combination in italics was typical for the PACS photometric flux calibration analysis.

HPF/pixfrac/outpix	L2.0 ID 1342242772		L2.0 ID 1342242773			L2.5 ID 1342242772+73			
	$\sigma_{ m hist}$	coverage	$\operatorname{cover}_{\max}$	$\sigma_{ m hist}$	coverage	$\operatorname{cover}_{\max}$	$\sigma_{ m hist}$	coverage	$\operatorname{cover}_{\max}$
	(mJy)	>		(mJy)	>		(mJy)	>	
15 / 0.1 / 1."1	0.123	10	19.96	0.122	10	20.70	0.066	20	39.41
	± 0.003			± 0.002			± 0.001		
15 / 0.1 / 1.00%	0.185	10	19.84	0.185	10	19.36	0.109	20	39.02
	± 0.003			± 0.004			± 0.002		
30 / 0.1 / 1.00%	0.194	10	19.84	0.186	10	19.36	0.117	20	38.63
	± 0.005			± 0.004			± 0.002		
15 / 0.1 / 2.4	0.306	10	19.42	0.306	10	19.78	0.178	20	38.37
	± 0.007			± 0.007			± 0.003		
15 / 0.1 / 3.2	0.448	10	19.02	0.441	10	19.07	0.228	20	37.85
	± 0.013			± 0.013			± 0.006		
15 / 0.5 / 1."6	0.153	240	476.7	0.147	240	476.6	0.091	480	948.6
	± 0.003			± 0.003			± 0.002		
15 / 0.1 / 1".1	0.056	950	1897	0.055	950	1901	0.038	1900	3787
	± 0.001			± 0.001			± 0.001		
15 / 1.0 / 1.0 / 1.0	0.112	950	1894	0.107	950	1894	0.074	1900	3782
	± 0.002			± 0.002			± 0.001		
30 / 1.0 / 1.46	0.123	950	1894	0.109	950	1894	0.078	1900	3782
	± 0.002			± 0.002			± 0.002		
15 / 1.0 / 24	0.234	950	1893	0.229	950	1892	0.145	1900	3778
	± 0.006			± 0.005			± 0.004		
15 / 1.0 / 3."2	0.363	950	1891	0.374	950	1889	0.216	1900	3775
	± 0.018			± 0.014			± 0.007		

The derived noise values in Table 6 are quite similar to the values found for the source free areas, cf. Table 4, which indicates that the coverage range of the source free areas is above the threshold used for the histogram method. This is indeed the case as exemplarily shown in Fig. 280 for the SPG mapping parameter combination 15 / 0.1 / 1."6. Therefore, a consistent behaviour as described in Sect. 6.1 is found.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 215	

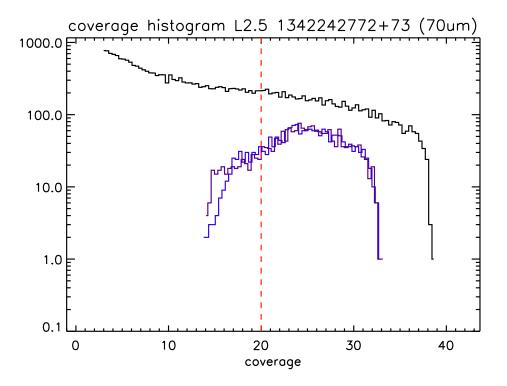


Figure 280: Histogram of the distribution of coverage for the L2.5 product with the SPG mapping parameter combination 15 / 0.1 / 1."6 (black, all values below a coverage value of 3.0 are cut). The red dashed line indicates the coverage threshold used in the noise analysis. The dark blue and violet histograms give the coverage distribution inside the source-free noise measurement areas 1 and 2, respectively. The corresponding image map is shown in Fig. 13.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 216	

6.3 Ratio of L2.5 to L2.0 noise

Table 7 lists the noise ratio $\frac{\sigma_{\text{histL2.5}}}{\sigma_{\text{histL2}}}$ derived from Table 6. For a perfect square root scaling with time a ratio of 0.707 $(\frac{1}{\sqrt{2}})$ would be expected. The results show that the noise of the L2.5 product can be better by 5 – 27%. This indicates that the "mosaic" task, which generates the L2.5 product out of the two L2.0 products, introduces some additional noise correlation, depending on the map parameter combination: The largest noise reduction in L2.5 maps relative to the L2 maps is for the small pixfrac 0.1. Maps with drop sizes equal to the native pixel size (pixfrac = 1.0) and small output pixel size are close to the expected ratio of 0.707. Fig. 281 provides an overview.

Table 7: Noise ratio of $\sigma_{\rm histL2.5}$ to $\sigma_{\rm histL2}$. The expected ratio for square root scaling of time would be 0.707. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG). The map parameter combination in italics was typical for the PACS photometric flux calibration analysis.

HPF/pixfrac/outpix	$rac{\sigma_{ m histL2.5}}{\sigma_{ m histL2}}$
15 / 0.1 / 1.11	0.539
15 / 0.1 / 1.00%	0.589
30 / 0.1 / 1."6	0.616
15 / 0.1 / 24	0.582
15 / 0.1 / 3."2	0.513
15 / 0.5 / 1."6	0.607
15 / 0.1 / 1".1	0.685
15 / 1.0 / 1.0 / 1.06	0.676
30 / 1.0 / 1.0 / 1.16	0.672
15 / 1.0 / 2."4	0.626
15 / 1.0 / 3."2	0.586

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 217	

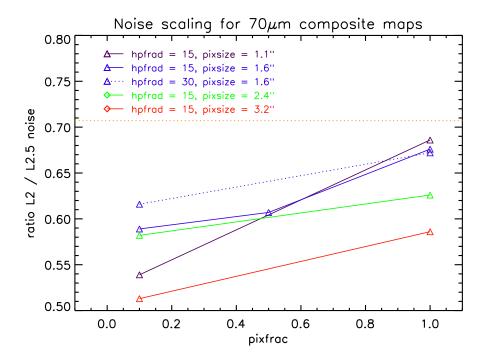


Figure 281: Ratio of L2 to L2.5 (composite of two L2 maps, hence double integration time) noise depending on the mapping parameters. The dotted orange line is the $\frac{1}{\sqrt{2}}$ -ratio.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 218	

6.4 Noise of the associated error maps

In Figs. 9 through 75 the noise histograms of the error maps above the identical coverage threshold as used for the histogram method on the image maps are shown (Note: No error map analysis was done for the map parameter combinations 15 / 0.1 / 1.1 and 15 / 1.0 / 1.11). Note, that these noise values contain already the correction of correlated noise.

For a verification of the implementation, the histogram was also derived using the coverage map information and applying Eqns. 3 and 2 (displayed by red dotted lines for L2.0 or dashed-dotted lines for L2.5 maps). For the L2.0 products, there is hardly any difference between the two distributions, while for the L2.5 products some small shift can occur. The modifications of the errors are negligible.

Table 8 lists the mean values of the noise above the coverage threshold as given by the associated error maps. Note, that these values contain already the correction for correlated noise. The ratios $\frac{\sigma_{\text{meanL2.5}}^{\text{error}}}{\sigma_{\text{meanL2.0}}^{\text{error}}}$ are all very close to $\frac{1}{\sqrt{2}}$.

Table 8: Mean $\sigma_{\text{mean}}^{\text{error}}$ of the error maps at 70 µm associated with the L2.0 products, IDs 1342242772 and 1342242773, and the L2.5 product. Note that these values contain already the correction of correlated noise. The respective coverage thresholds used for each map are listed. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG).

HPF/pixfrac/outpix		L2.0 ID 1342242772	L2.0 ID 1342242773		L2.5 1342242772+73
	coverage	$\sigma^{ m error}_{ m mean}$	$\sigma^{ m error}_{ m mean}$	coverage	$\sigma_{ m mean}^{ m error}$
	>	(mJy)	(mJy)	>	(mJy)
15 / 0.1 / 1.00	10	0.290	0.290	20	0.205
30 / 0.1 / 1."6	10	0.342	0.341	20	0.241
15 / 0.1 / 2.4	10	0.387	0.386	20	0.273
15 / 0.1 / 3.2	10	0.556	0.556	20	0.393
15 / 0.5 / 1.00%	240	0.259	0.259	480	0.183
15 / 1.0 / 1.46	950	0.249	0.249	1900	0.176
30 / 1.0 / 1.0 / 1.16	950	0.299	0.299	1900	0.211
15 / 1.0 / 2.4	950	0.339	0.339	1900	0.239
15 / 1.0 / 3."2	950	0.469	0.469	1900	0.331

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 219	

6.5 Comparison of the L2.0 product image noise with the noise of the associated error maps

Table 9 provides the noise values based on the histogram method and the Gauss fit and derives the noise corrected for correlated noise effects, $\sigma_{\rm corr}$, by multiplying with the f-factor (Eq. 2). These noise values are compared with the corresponding mean values from the associated error maps. The ratio $\frac{\sigma_{\rm mean}^{\rm error}}{\sigma_{\rm corr}}$ scatters around 1 within <20%. Hence the error maps, building on a statistical knowledge of the noise behaviour in homogeneous deep field maps, are an adequate overall representation of noise in 70 µm PACS maps, in particular also for the mini-maps analysed in this study.

Table 9: Comparison of the mean flux standard deviation at 70 μ m for the L2.0 products, IDs 1342242772 and 1342242773, from Table 6 and corrected for correlated noise effects, with the mean of the error maps associated with the product. The correlated noise factor f and the coverage thresholds used for each map are listed. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG).

HPF/pixfrac/outpix			L	2.0 ID 13	42242772		L	2.0 ID 13	342242773	
	coverage	f	$\sigma_{ m hist}$	$\sigma_{ m corr}$	$\sigma^{ m error}_{ m mean}$	$\frac{\sigma_{\text{mean}}^{\text{error}}}{\sigma_{\text{hist}}}$	$\sigma_{ m hist}$	$\sigma_{\rm corr}$	$\sigma_{ m mean}^{ m error}$	$rac{\sigma_{ m mean}^{ m error}}{\sigma_{ m corr}}$
	>		(mJy)	(mJy)	(mJy)		(mJy)	(mJy)	(mJy)	
15 / 0.1 / 1.00	10	1.386	0.185	0.256	0.290	1.13	0.185	0.256	0.290	1.13
30 / 0.1 / 1."6	10	1.536	0.194	0.298	0.341	1.14	0.186	0.286	0.341	1.19
15 / 0.1 / 2.4	10	1.304	0.306	0.399	0.387	0.97	0.306	0.399	0.386	0.97
15 / 0.1 / 3.2	10	1.176	0.448	0.527	0.556	1.06	0.441	0.519	0.556	1.07
15 / 0.5 / 1."6	240	1.897	0.153	0.290	0.259	0.89	0.147	0.279	0.259	0.93
15 / 1.0 / 1.46	950	2.342	0.112	0.264	0.249	0.94	0.107	0.251	0.249	0.99
30 / 1.0 / 1.46	950	2.600	0.123	0.320	0.299	0.93	0.109	0.283	0.299	1.06
15 / 1.0 / 2.4	950	1.641	0.234	0.384	0.339	0.88	0.229	0.376	0.339	0.90
15 / 1.0 / 3.2	950	1.512	0.363	0.549	0.469	0.85	0.374	0.566	0.469	0.83

Fig. 282 presents a graphical overview of the results in Table 9. The error map noise tends to be similar or larger wrt. the image noise for small pixfracs (0.1), and similar or smaller wrt. the image noise for large pixfracs (1.0).

$\mathop{\mathrm{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 220	

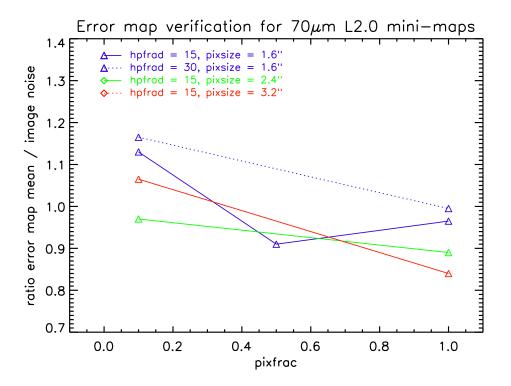


Figure 282: Ratio of mean noise determined from the error maps and image noise derived by the histogram method depending on pixfrac, hpfrad and output pixel size.

$\mathop{\mathrm{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtere	Page 221	

6.6 Comparison of the L2.5 product image noise with the noise of the associated error maps

Table 10 provides the corresponding information for the L2.5 products. Since we noted in Sect. 6.3 that the "mosaic" task introduces additional noise correlation, we define an additional correlated noise correction factor

$$f_{\text{mosaicL2.5}} = \frac{0.707}{\frac{\sigma_{\text{histL2.5}}}{\sigma_{\text{histL2}}}},$$

with the ratios $\frac{\sigma_{\text{histL2.5}}}{\sigma_{\text{histL2}}}$ from Table 7. Again the ratio $\frac{\sigma_{\text{mean}}^{\text{error}}}{\sigma_{\text{corr}}}$ scatters around 1 within <20% and the ratios for a certain map parameter combination are quite similar for the L2.5 and L2.0 products when comparing with Table 9. If we omitted the correction factor $f_{\text{mosaicL2.5}}$, then there would be a systematic shift by about +20%-30% for the ratio.

Table 10: Comparison of the mean flux standard deviation at $70 \,\mu\text{m}$ for the co-added L2.5 products, IDs 1342242772+73, from Table 6 and corrected for correlated noise effects, with the mean of the error maps associated with the product. The correlated noise factor f, the "mosaic" task correlated noise factor f_{mosaicL2.5} and the coverage thresholds used for each map are listed. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG).

HPF/pixfrac/outpix			L2.5 ID 1342242772+73				
	coverage	f	$f_{\rm mosaicL2.5}$	$\sigma_{\rm hist}$	$\sigma_{ m corr}$	$\sigma^{ m error}_{ m mean}$	$\frac{\sigma_{\text{mean}}^{\text{error}}}{\sigma_{\text{corr}}}$
	>			(mJy)	(mJy)	(mJy)	com
15 / 0.1 / 1.00	20	1.386	1.200	0.109	0.181	0.205	1.13
30 / 0.1 / 1."6	20	1.536	1.148	0.117	0.206	0.241	1.17
15 / 0.1 / 24	20	1.304	1.215	0.178	0.282	0.273	0.97
15 / 0.1 / 3.2	20	1.176	1.378	0.228	0.370	0.393	1.06
15 / 0.5 / 1."6	480	1.897	1.165	0.091	0.201	0.183	0.91
15 / 1.0 / 1."6	1900	2.342	1.046	0.074	0.181	0.176	0.97
30 / 1.0 / 1.0 / 1.16	1900	2.600	1.052	0.078	0.213	0.211	0.99
15 / 1.0 / 24	1900	1.641	1.129	0.145	0.269	0.239	0.89
15 / 1.0 / 3."2	1900	1.512	1.207	0.216	0.394	0.331	0.84

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 222	

6.7 Final photometric noise values of L2.0 products corrected for correlation effects

In Table 11 the final photometric noise values corrected for correlation effects have been calculated for the different mapping parameters. Input values as σ_{pix} were the averaged σ_{hist} values of the two L2.0 products for OBSIDs 1342242772 and 1342242773. After calculating the noise inside the photometric aperture and correcting it for correlated noise effects, the final noise values are quite homogeneous for the same high pass filter width: weighted mean values (uncertainties with 3 decimal places were used as weight) are $1.63\pm0.02 \text{ mJy}$ for HPF = 15 and $1.85\pm0.03 \text{ mJy}$ for HPF = 30, whereby the softer high pass filter width (30) gives a slightly higher final noise.

Table 11: Noise per measurement aperture $\sigma_{\text{aperture,corr}}$ at 70 µm (aperture radius of 5."6) corrected for noise correlation effects by the f-factor. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG). The map parameter combination in italics was typical for the PACS photometric flux calibration analysis.

HPF/pixfrac/outpix	$\sigma_{ m pix}$	$N_{outpixinaper}$	$\sigma_{ m aperture}$	f	$\sigma_{ m aperture, corr}$
	(mJy/pix)		(mJy)		(mJy)
15 / 0.1 / 1."1	$0.123 {\pm} 0.001$	81.4	$1.11 {\pm} 0.01$	1.470	$1.63 {\pm} 0.01$
$15 \ / \ 0.1 \ / \ 1.0\%$	$0.185 {\pm} 0.004$	38.5	$1.15 {\pm} 0.02$	1.386	$1.59{\pm}0.03$
30 / 0.1 / 1."6	$0.190 {\pm} 0.005$	38.5	$1.18 {\pm} 0.03$	1.536	$1.81{\pm}0.05$
15 / 0.1 / 2.4	$0.306 {\pm} 0.007$	17.1	$1.27 {\pm} 0.03$	1.304	$1.66 {\pm} 0.04$
15 / 0.1 / 3.2	$0.445 {\pm} 0.013$	9.6	$1.38 {\pm} 0.04$	1.176	$1.62{\pm}0.05$
15 / 0.5 / 1."6	$0.150 {\pm} 0.003$	38.5	$0.93 {\pm} 0.02$	1.897	$1.76 {\pm} 0.04$
15 / 1.0 / 1".1	$0.056 {\pm} 0.001$	81.4	$0.51 {\pm} 0.01$	3.127	$1.58 {\pm} 0.03$
15 / 1.0 / 1.0 / 1.0	$0.110 {\pm} 0.002$	38.5	$0.68 {\pm} 0.01$	2.342	$1.59{\pm}0.03$
30 / 1.0 / 1.46	$0.116 {\pm} 0.002$	38.5	$0.72 {\pm} 0.01$	2.600	$1.87{\pm}0.03$
15 / 1.0 / 2.4	$0.232 {\pm} 0.006$	17.1	$0.96 {\pm} 0.02$	1.641	$1.57{\pm}0.04$
15 / 1.0 / 32	$0.369 {\pm} 0.016$	9.6	$1.14{\pm}0.05$	1.512	$1.72{\pm}0.08$

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 223	

6.8 Final photometric noise values of L2.5 products corrected for correlation effects

In Table 12 the final photometric noise corrected for correlation effects of the co-added maps has been calculated for the different mapping parameters. We have used an adapted correction factor $f_{L2.5} = f \times f_{mosaicL2.5}$, with f being the standard correlated noise correction factor from Table 3 and $f_{mosaicL2.5}$ as defined in Sect. 6.6. Input values as σ_{pix} were the σ_{hist} values of the L2.5 products for OBSIDs 1342242772+73. After calculating the noise inside the photometric aperture and correcting it for correlated noise effects, the final noise values are quite homogeneous for the same high pass filter width: weighted mean values (uncertainties with 3 decimal places were used as weight) are $1.17\pm0.02 \text{ mJy}$ for HPF = 15 and $1.29\pm0.02 \text{ mJy}$ for HPF = 30, whereby the softer high pass filter width (30) gives a slightly higher final noise.

Table 12: Noise per measurement aperture $\sigma_{\text{aperture,corr}}$ at 70 µm (aperture radius of 5."6) corrected for noise correlation effects by the $f_{\text{L2.5}}$ -factor for the co-added maps. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG). The map parameter combination in italics was typical for the PACS photometric flux calibration analysis.

HPF/pixfrac/outpix	$\sigma_{ m pix}$	$N_{\rm outpixinaper}$	$\sigma_{ m aperture}$	$f_{L2.5}$	$\sigma_{ m aperture, corr}$
	(mJy/pix)		(mJy)		(mJy)
15 / 0.1 / 1."1	$0.066 {\pm} 0.001$	81.4	$0.60{\pm}0.01$	1.929	1.15 ± 0.02
$15 \ / \ 0.1 \ / \ 1.0\%$	0.109 ± 0.002	38.5	$0.68 {\pm} 0.01$	1.663	$1.12{\pm}0.02$
30 / 0.1 / 1."6	0.117 ± 0.002	38.5	$0.73 {\pm} 0.01$	1.763	$1.28 {\pm} 0.02$
15 / 0.1 / 2.4	$0.178 {\pm} 0.003$	17.1	$0.74{\pm}0.01$	1.584	$1.17 {\pm} 0.02$
15 / 0.1 / 3.2	0.228 ± 0.006	9.6	$0.71 {\pm} 0.02$	1.621	$1.15 {\pm} 0.03$
15 / 0.5 / 1."6	$0.091 {\pm} 0.002$	38.5	$0.56 {\pm} 0.01$	2.210	$1.25 {\pm} 0.03$
15 / 1.0 / 1".1	$0.038 {\pm} 0.001$	81.4	$0.34{\pm}0.01$	3.227	$1.11 {\pm} 0.03$
15 / 1.0 / 1.46	$0.074{\pm}0.001$	38.5	$0.46 {\pm} 0.01$	2.728	$1.25 {\pm} 0.02$
30 / 1.0 / 1.46	0.078 ± 0.002	38.5	$0.48 {\pm} 0.01$	2.735	$1.32{\pm}0.03$
15 / 1.0 / 2.4	0.145 ± 0.004	17.1	$0.60 {\pm} 0.02$	1.853	$1.11 {\pm} 0.03$
15 / 1.0 / 3."2	$0.216 {\pm} 0.007$	9.6	$0.67 {\pm} 0.02$	1.825	1.22 ± 0.04

$\operatorname{PACS}_{\operatorname{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtere	Page 224	

7 Results for $100 \,\mu m$ maps

7.1 Measurement of flux standard deviation in source-free areas

Table 13 lists the measured noise of the background as determined in two source-free areas per map.

Table 13: Measurement of flux standard deviation at $100 \,\mu\text{m}$ in source-free areas for the L2.0 products, IDs 1342242770 and 1342242771 and the co-added L2.5 product. The position of the boxes is indicated in Figs. 100 through 166. Note, that the cut levels for all 100 μm map displays are identical. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG). The map parameter combination in italics was typical for the PACS photometric flux calibration analysis.

HPF/pixfrac/outpix	box size	L2.0	ID 13422	42770	L2.0	ID 134224	42771	L2.5 ID	1342242	770+71
		$\sigma_{ m box1}$	$\sigma_{ m box2}$	$\sigma_{ m mean}$	$\sigma_{ m box1}$	$\sigma_{ m box2}$	$\sigma_{ m mean}$	$\sigma_{\rm box1}$	$\sigma_{ m box2}$	$\sigma_{\rm mean}$
	(pixels)	(mJy)	(mJy)	(mJy)						
15 / 0.1 / 1.4	70×35	0.150	0.160	0.155	0.153	0.152	0.153	0.071	0.076	0.074
15 / 0.1 / 1.00%	61×31	0.172	0.187	0.179	0.177	0.178	0.178	0.091	0.099	0.095
30 / 0.1 / 1."6	61×31	0.184	0.199	0.192	0.189	0.190	0.190	0.097	0.105	0.101
15 / 0.1 / 2.4	41×21	0.293	0.293	0.293	0.287	0.291	0.289	0.154	0.166	0.160
15 / 0.1 / 3.2	31×16	0.420	0.428	0.424	0.422	0.411	0.417	0.212	0.214	0.216
15 / 0.5 / 1."6	61×31	0.136	0.144	0.140	0.138	0.139	0.138	0.077	0.082	0.079
15 / 1.0 / 1".4	70×35	0.079	0.081	0.080	0.079	0.080	0.079	0.049	0.050	0.049
15 / 1.0 / 1.46	61×31	0.101	0.103	0.102	0.101	0.102	0.101	0.062	0.064	0.063
30 / 1.0 / 1.46	61×31	0.109	0.114	0.111	0.109	0.109	0.109	0.067	0.068	0.068
15 / 1.0 / 24	41×21	0.208	0.209	0.208	0.207	0.210	0.208	0.121	0.125	0.123
15 / 1.0 / 3."2	31×16	0.330	0.337	0.334	0.336	0.326	0.331	0.178	0.180	0.179

There is a systematic variation of the measured noise in the image maps depending on the selection of the mapping parameters:

- 1) For identical *pixfrac* and *outpix* the noise increases with increasing HPF due to less good suppression of the 1/f-noise.
- 2) For identical *HPF* and *outpix* the noise decreases with increasing *pixfrac*, which is due to the drop size covering more output pixels and hence correlating the noise in a pixel cluster.
- 3) The noise increases with increasing *outpix* size, because there is more flux in each output pixel and hence also the amplitude increases. However, if the noise inside a standard photometry measurement aperture is considered ($\sigma_{aperture} = \sqrt{N_{outpixinaper}} \times \sigma_{pix}$), then these noise values are much more similar for the same HPF/pixfrac combination, as shown in Table 14. But there is the trend, that they are larger the larger the *outpix* sizes. This is, however, an effect of not yet corrected correlated noise, cf. Sect. 7.7.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 225	

Table 14: Noise per measurement aperture σ_{aperture} at 100 µm derived from the noise per pixel σ_{pix} according to $\sigma_{\text{aperture}} = \sqrt{N_{\text{outpixinaper}}} \times \sigma_{\text{pix}}$). N_{outpixinaper} has been calculated for an aperture radius of 6.48. Note, these noise values are not yet corrected for correlated noise effects (cf. Table 20).

HPF/pixfrac/outpix	$\sigma_{ m pix} \ ({ m mJy/pix})$	$N_{outpixinaper}$	$\sigma_{ m aperture} \ ({ m mJy})$
15 / 0.1 / 1."4	0.154	74.1	1.33
15 / 0.1 / 1."6	0.179	56.7	1.35
30 / 0.1 / 1."6	0.191	56.7	1.44
15 / 0.1 / 2.4	0.291	25.2	1.46
15 / 0.1 / 3."2	0.421	14.2	1.59
15 / 0.5 / 1."6	0.139	56.7	1.05
15 / 1.0 / 1.14	0.080	74.1	0.69
15 / 1.0 / 1.0 / 1.0	0.102	56.7	0.77
30 / 1.0 / 1.46	0.110	56.7	0.83
15 / 1.0 / 2.4	0.208	25.2	1.04
15 / 1.0 / 3."2	0.333	14.2	1.25

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 226	

7.2 Measurement of flux standard deviation by histogram method

Table 15 lists the noise values in the image maps determined with the histogram and Gauss fit method, including the uncertainty of the fit.

Table 15: Measurement of flux standard deviation at 100 μ m with the histogram method for the L2.0 products, IDs 1342242770 and 1342242771 and the co-added L2.5 product. The coverage threshold used to determine $\sigma_{\rm hist}$ and the maximum coverage for each map are listed. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG). The map parameter combination in italics was typical for the PACS photometric flux calibration analysis.

HPF/pixfrac/outpix	L2.	0 ID 134224	12770	L2.	0 ID 134224	12771	L2.5	ID 1342242'	770+71
	$\sigma_{ m hist}$	coverage	$\operatorname{cover}_{\max}$	$\sigma_{ m hist}$	coverage	$\operatorname{cover}_{\max}$	$\sigma_{ m hist}$	coverage	$\operatorname{cover}_{\max}$
	(mJy)	>		(mJy)	>		(mJy)	>	
15 / 0.1 / 1.4	0.152	10	20.10	0.145	10	19.29	0.072	20	38.68
	± 0.008			± 0.003			± 0.002		
15 / 0.1 / 1.07	0.178	10	19.89	0.172	10	19.38	0.091	20	38.79
	± 0.005			± 0.007			± 0.003		
30 / 0.1 / 1.00%	0.186	10	19.89	0.184	10	19.38	0.100	20	38.79
	± 0.005			± 0.005			± 0.002		
15 / 0.1 / 2.4	0.284	10	19.39	0.285	10	19.32	0.155	20	38.16
	± 0.007			± 0.007			± 0.005		
15 / 0.1 / 3.2	0.433	10	19.07	0.416	10	19.05	0.208	20	37.88
	± 0.012			± 0.012			± 0.008		
15 / 0.5 / 1.46	0.141	240	476.7	0.131	240	476.7	0.075	480	948.3
	± 0.004			± 0.005			± 0.001		
15 / 1.0 / 1".4	0.081	950	1895	0.074	950	1898	0.048	1900	3780
	± 0.002			± 0.002			± 0.001		
15 / 1.0 / 1.46	0.104	950	1893	0.094	950	1897	0.063	1900	3781
	± 0.003			± 0.003			± 0.002		
30 / 1.0 / 1.46	0.113	950	1893	0.104	950	1897	0.066	1900	3781
	± 0.004			± 0.002			± 0.002		
15 / 1.0 / 2.4	0.208	950	1892	0.197	950	1896	0.122	1900	3777
	± 0.008			± 0.005			± 0.003		
15 / 1.0 / 3.2	0.328	950	1890	0.332	950	1892	0.182	1900	3775
	± 0.012			± 0.009			± 0.004		

The derived noise values in Table 15 are quite similar to the values found for the source free areas, cf. Table 13, which indicates that the coverage range of the source free areas is above the threshold used for the histogram method. This is indeed the case as exemplary shown in Fig. 283 for the SPG mapping parameter combination 15 / 0.1 / 1."6. Therefore, a consistent behaviour as described in Sect. 7.1 is found.

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 227	

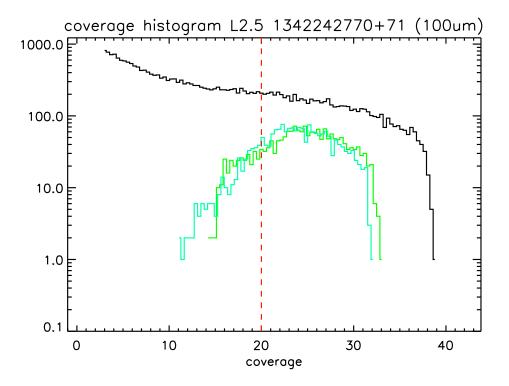


Figure 283: Histogram of the distribution of coverage for the L2.5 product with the SPG mapping parameter combination 15 / 0.1 / 1."6 (black, all values below a coverage value of 3.0 are cut). The red dashed line indicates the coverage threshold used in the noise analysis. The dark and light green histograms give the coverage distribution inside the source-free noise measurement areas 1 and 2, respectively. The corresponding image map is shown in Fig. 106.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 228	

7.3 Ratio of L2.5 to L2.0 noise

Table 16 lists the noise ratio $\frac{\sigma_{\text{histL2.5}}}{\sigma_{\text{histL2}}}$ derived from Table 15. For a perfect square root scaling with time a ratio of 0.707 $(\frac{1}{\sqrt{2}})$ would be expected. The results show that the noise of the L2.5 product can be better by 5 – 31%. This indicates that the "mosaic" task, which generates the L2.5 product out of the two L2.0 products, introduces some additional noise correlation, depending on the map parameter combination: The largest noise reduction in L2.5 maps relative to the L2 maps is for the small pixfrac 0.1. Maps with drop sizes equal to the native pixel size (pixfrac = 1.0) and small output pixel size are closer to the expected value. Fig. 284 provides an overview.

Table 16: Noise ratio of $\sigma_{histL2.5}$ to σ_{histL2} . The expected ratio for square root scaling of time would be 0.707. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG). The map parameter combination in italics was typical for the PACS photometric flux calibration analysis.

HPF/pixfrac/outpix	$rac{\sigma_{ m histL2.5}}{\sigma_{ m histL2}}$
15 / 0.1 / 1."4	0.485
$15 \ / \ 0.1 \ / \ 1.0\%$	0.520
30 / 0.1 / 1."6	0.541
15 / 0.1 / 2."4	0.545
15 / 0.1 / 3."2	0.490
15 / 0.5 / 1."6	0.552
15 / 1.0 / 1".4	0.619
15 / 1.0 / 1.16	0.636
30 / 1.0 / 1.46	0.608
15 / 1.0 / 24	0.603
15 / 1.0 / 3."2	0.552

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 229	

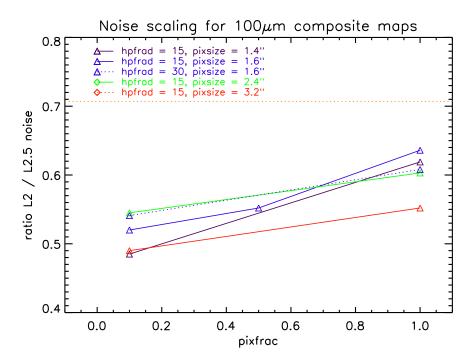


Figure 284: Ratio of L2 to L2.5 (composite of two L2 maps, hence double integration time) noise depending on the mapping parameters. The dotted orange line is the $\frac{1}{\sqrt{2}}$ -ratio.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 230	

7.4 Noise of the associated error maps

In Figs. 102 through 168 the noise histograms of the error maps above the identical coverage threshold as used for the histogram method on the image maps are shown (Note: No error map analysis was done for the map parameter combinations 15 / 0.1 / 1.4 and 15 / 1.0 / 1.4.4. Note, that these noise values contain already the correction of correlated noise.

For a verification of the implementation, the histogram was also derived using the coverage map information and applying Eqns. 3 and 2 (displayed by red dotted lines for L2.0 or dashed-dotted lines for L2.5 maps). For the L2.0 products, there is hardly any difference between the two histograms, while for the L2.5 products a systematic shift of the histograms occurs. The agreement between the two histograms for the L2.0 products is to be expected, since the underlying calculation is the same. In the case of the L2.5 maps, the error map is produced by the "mosaic" task from the two individual error maps of the L2.0 products rather than doing the calculation with the Popesso et al. algorithm starting from the coverage map. The values derived with the Popesso et al. algorithm from the coverage map are 6 - 8% higher than the ones of the error maps.

Table 17 lists the mean values of the noise above the coverage threshold derived from the associated error maps. The ratios $\frac{\sigma_{\text{mean}L2.5}^{\text{error}}}{\sigma_{\text{mean}L2.0}^{\text{error}}}$ are all very close to $\frac{1}{\sqrt{2}}$. The explanation for the higher L2.5 noise values derived with the Popesso et al. algorithm is explained by the fact, that the α -parameters in Eqn. 3 are different from -0.5. Only in the case of $\alpha = -0.5$, the noise scales with $\frac{1}{\sqrt{2}}$. Since $\alpha = -0.42 - -0.40$ (Table 3), the noise scales as $10^{-0.41 \log(2)} = 0.753$, which is about 6% higher than $\frac{1}{\sqrt{2}}$. For all 70 µm map parameter combinations α is close to -0.5 (see Table 3), therefore only small shifts between the two L2.5 histograms occur for these cases.

Table 17: Mean $\sigma_{\text{mean}}^{\text{error}}$ of the error maps at 100 µm associated with the L2.0 products, IDs 1342242770 and 1342242771, and the L2.5 product. Note that these values contain already the correction of correlated noise. The respective coverage thresholds used for each map are listed. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG).

HPF/pixfrac/outpix		L2.0 ID 1342242770	L2.0 ID 1342242771		L2.5 1342242770+71
	coverage	$\sigma^{ m error}_{ m mean}$	$\sigma^{ m error}_{ m mean}$	coverage	$\sigma^{ m error}_{ m mean}$
	>	(mJy)	(mJy)	>	(mJy)
15 / 0.1 / 1.00	10	0.247	0.247	20	0.175
30 / 0.1 / 1."6	10	0.282	0.282	20	0.199
15 / 0.1 / 2.4	10	0.344	0.344	20	0.243
15 / 0.1 / 3.2	10	0.484	0.483	20	0.341
15 / 0.5 / 1."6	240	0.210	0.210	480	0.148
15 / 1.0 / 1.0	950	0.205	0.205	1900	0.145
30 / 1.0 / 1.0 / 1.16	950	0.241	0.241	1900	0.170
15 / 1.0 / 24	950	0.288	0.288	1900	0.203
15 / 1.0 / 3."2	950	0.411	0.411	1900	0.290

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 231	

7.5 Comparison of the L2.0 product image noise with the noise of the associated error maps

Table 18 provides the noise values based on the histogram method and the Gauss fit and derives the noise corrected for correlated noise effects, $\sigma_{\rm corr}$, by multiplying with the f-factor (Eq. 2). These noise values are compared with the corresponding mean values from the associated error maps. The ratio ranges from around 1 for map parameter combinations pixfrac = 0.1 to around 0.8–0.9 for map parameter combinations with pixfrac = 1.0. Hence the error maps, building on a statistical knowledge of the noise behaviour in homogeneous deep field maps, are an adequate overall representation of noise in 100 µm PACS maps, in particular also for the mini-maps analysed in this study.

Table 18: Comparison of the mean flux standard deviation at $100 \,\mu\text{m}$ for the L2.0 products, IDs 1342242770 and 1342242771, from Table 15 and corrected for correlated noise effects, with the mean of the error maps associated with the product. The correlated noise factor f and the coverage thresholds used for each map are listed. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG).

HPF/pixfrac/outpix			L	2.0 ID 13	342242770		L	2.0 ID 13	42242771	
	coverage	f	$\sigma_{ m hist}$	$\sigma_{ m corr}$	$\sigma^{ m error}_{ m mean}$	$\frac{\sigma_{\text{mean}}^{\text{error}}}{\sigma_{\text{hist}}}$	$\sigma_{ m hist}$	$\sigma_{ m corr}$	$\sigma^{ m error}_{ m mean}$	$\frac{\sigma_{\text{mean}}^{\text{error}}}{\sigma_{\text{corr}}}$
	>		(mJy)	(mJy)	(mJy)		(mJy)	(mJy)	(mJy)	
15 / 0.1 / 1.00	10	1.412	0.178	0.251	0.247	0.98	0.172	0.243	0.247	1.02
30 / 0.1 / 1."6	10	1.537	0.186	0.286	0.282	0.99	0.184	0.283	0.282	1.00
15 / 0.1 / 24	10	1.333	0.284	0.379	0.344	0.91	0.285	0.380	0.344	0.91
15 / 0.1 / 3."2	10	1.188	0.433	0.514	0.484	0.94	0.416	0.494	0.483	0.98
15 / 0.5 / 1."6	240	1.909	0.141	0.269	0.210	0.78	0.131	0.250	0.210	0.84
15 / 1.0 / 1.46	950	2.370	0.104	0.247	0.205	0.83	0.094	0.223	0.205	0.92
30 / 1.0 / 1.46	950	2.603	0.113	0.294	0.241	0.82	0.104	0.270	0.241	0.89
15 / 1.0 / 2.4	950	1.664	0.208	0.346	0.288	0.83	0.197	0.328	0.288	0.88
15 / 1.0 / 3."2	950	1.518	0.328	0.498	0.411	0.83	0.332	0.504	0.411	0.82

Fig. 282 presents a graphical overview of the results in Table 18. The error map noise tends to be similar or larger wrt. the image noise for small pixfracs (0.1), and similar or smaller wrt. the image noise for large pixfracs (1.0).

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 232	

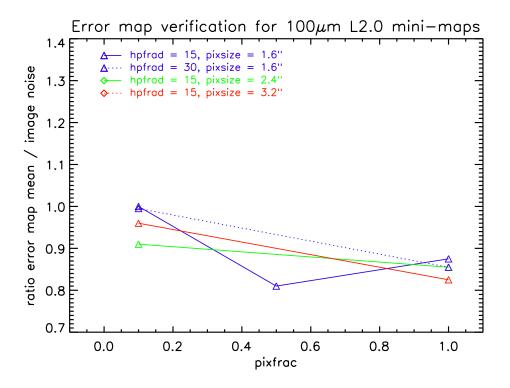


Figure 285: Ratio of mean noise determined from the error maps and image noise derived by the histogram method depending on pixfrac, hpfrad and output pixel size.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filter	Page 233	

7.6 Comparison of the L2.5 product image noise with the noise of the associated error maps

Table 19 provides the corresponding information for the L2.5 products. Since we noted in Sect. 7.3 that the "mosaic" task introduces additional noise correlation, we define an additional correlated noise correction factor

$$f_{\text{mosaicL2.5}} = \frac{0.707}{\frac{\sigma_{\text{histL2.5}}}{\sigma_{\text{histL2}}}},$$

with the ratios $\frac{\sigma_{\text{histL2.5}}}{\sigma_{\text{histL2}}}$ from Table 16. Again the ratio ranges from around 1 for map parameter combinations pixfrac = 0.1 to around 0.8–0.9 for map parameter combinations with pixfrac = 1.0. The ratios for a certain map parameter combination are quite similar for the L2.5 and L2.0 products when comparing with Table 18. If we omitted the correction factor $f_{\text{mosaicL2.5}}$, then there would be a systematic shift by about +20%–+40% for the ratio.

Table 19: Comparison of the mean flux standard deviation at 100 μ m for the co-added L2.5 products, IDs 1342242770+71, from Table 15 and corrected for correlated noise effects, with the mean of the error maps associated with the product. The correlated noise factor f, the "mosaic" task correlated noise factor f_{mosaicL2.5} and the coverage thresholds used for each map are listed. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG).

HPF/pixfrac/outpix			L2.5 ID 1342242770+71					
	coverage >	f	$f_{\rm mosaicL2.5}$	$\left(\begin{array}{c} \sigma_{\mathrm{hist}} \\ \mathrm{(mJy)} \end{array} \right)$	$\sigma_{\rm corr}$ (mJy)	$\sigma_{ m mean}^{ m error}$ (mJy)	$rac{\sigma_{ m mean}^{ m error}}{\sigma_{ m corr}}$	
15 / 0.1 / 1.00	20	1.412	1.360	0.091	0.175	0.175	1.00	
30 / 0.1 / 1."6	20	1.537	1.307	0.100	0.201	0.199	0.99	
15 / 0.1 / 2.4	20	1.333	1.297	0.155	0.268	0.243	0.91	
15 / 0.1 / 3."2	20	1.188	1.443	0.208	0.357	0.341	0.96	
15 / 0.5 / 1."6	480	1.909	1.281	0.075	0.183	0.148	0.81	
15 / 1.0 / 1.0	1900	2.370	1.112	0.063	0.166	0.145	0.87	
30 / 1.0 / 1.0 / 1.0	1900	2.603	1.163	0.066	0.200	0.170	0.85	
15 / 1.0 / 24	1900	1.664	1.173	0.122	0.238	0.203	0.85	
15 / 1.0 / 3."2	1900	1.518	1.281	0.182	0.354	0.290	0.82	

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 234	

7.7 Final photometric noise values of L2.0 products corrected for correlation effects

In Table 20 the final photometric noise values corrected for correlation effects have been calculated for the different mapping parameters. Input values as σ_{pix} were the averaged σ_{hist} values of the two L2.0 products for OBSIDs 1342242770 and 1342242771. After calculating the noise inside the photometric aperture and correcting it for correlated noise effects, the final noise values are quite homogeneous for the same high pass filter width: weighted mean values (uncertainties with 3 decimal places were used as weight) are 1.90 ± 0.01 mJy for HPF = 15 and 2.14 mJy for HPF = 30, whereby the softer high pass filter width (30) gives a slightly higher final noise.

Table 20: Noise per measurement aperture $\sigma_{\text{aperture,corr}}$ at 100 µm (aperture radius of 6.''8) corrected for noise correlation effects by the f-factor. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG). The map parameter combination in italics was typical for the PACS photometric flux calibration analysis.

HPF/pixfrac/outpix	$\sigma_{\rm pix}$	$\mathrm{N}_{\mathrm{outpixinaper}}$	$\sigma_{ m aperture}$	f	$\sigma_{ m aperture, corr}$
	(mJy/pix)		(mJy)		(mJy)
15 / 0.1 / 1."4	$0.149{\pm}0.005$	74.1	$1.28 {\pm} 0.04$	1.436	$1.84{\pm}0.06$
$15 \ / \ 0.1 \ / \ 1.0\%$	$0.175 {\pm} 0.004$	56.7	$1.32{\pm}0.03$	1.412	$1.86 {\pm} 0.04$
30 / 0.1 / 1."6	$0.185{\pm}0.001$	56.7	$1.39 {\pm} 0.01$	1.537	$2.14{\pm}0.01$
15 / 0.1 / 24	$0.285{\pm}0.001$	25.2	$1.43 {\pm} 0.01$	1.333	$1.91 {\pm} 0.01$
15 / 0.1 / 3.2	$0.425 {\pm} 0.012$	14.2	$1.60 {\pm} 0.05$	1.188	$1.90 {\pm} 0.05$
15 / 0.5 / 1."6	$0.136{\pm}0.007$	56.7	$1.02 {\pm} 0.05$	1.909	$1.96 {\pm} 0.10$
15 / 1.0 / 1".4	$0.078 {\pm} 0.005$	74.1	$0.67 {\pm} 0.04$	2.650	$1.78 {\pm} 0.11$
15 / 1.0 / 1.0 / 1.06	$0.099 {\pm} 0.007$	56.7	$0.75 {\pm} 0.05$	2.370	$1.77 {\pm} 0.12$
30 / 1.0 / 1.46	$0.109 {\pm} 0.006$	56.7	$0.82 {\pm} 0.05$	2.603	$2.14{\pm}0.12$
15 / 1.0 / 24	$0.203 {\pm} 0.008$	25.2	$1.02 {\pm} 0.04$	1.664	$1.70 {\pm} 0.07$
15 / 1.0 / 3."2	$0.330 {\pm} 0.003$	14.2	$1.24{\pm}0.01$	1.518	$1.89 {\pm} 0.02$

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtere	Page 235	

7.8 Final photometric noise values of L2.5 products corrected for correlation effects

In Table 21 the final photometric noise corrected for correlation effects of the co-added maps has been calculated for the different mapping parameters. We have used an adapted correction factor $f_{L2.5} = f \times f_{mosaicL2.5}$, with f being the standard correlated noise correction factor from Table 3 and $f_{mosaicL2.5}$ as defined in Sect. 7.6. Input values as σ_{pix} were the σ_{hist} values of the L2.5 products for OBSIDs 1342242770+71. After calculating the noise inside the photometric aperture and correcting it for correlated noise effects, the final noise values are quite homogeneous for the same high pass filter width: weighted mean values (uncertainties with 3 decimal places were used as weight) are $1.31\pm0.02 \text{ mJy}$ for HPF = 15 and $1.51\pm0.005 \text{ mJy}$ for HPF = 30, whereby the softer high pass filter width (30) gives a slightly higher final noise.

Table 21: Noise per measurement aperture $\sigma_{\text{aperture,corr}}$ at 100 µm (aperture radius of 6.78) corrected for noise correlation effects by the f_{L2.5}-factor for the co-added maps. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG). The map parameter combination in italics was typical for the PACS photometric flux calibration analysis.

HPF/pixfrac/outpix	$\sigma_{ m pix}$	$N_{\rm outpixinaper}$	$\sigma_{ m aperture}$	$f_{L2.5}$	$\sigma_{ m aperture, corr}$
	(mJy/pix)		(mJy)		(mJy)
15 / 0.1 / 1.4	$0.072 {\pm} 0.002$	74.1	$0.62{\pm}0.02$	2.094	1.30 ± 0.04
$15 \ / \ 0.1 \ / \ 1.00\%$	$0.091{\pm}0.003$	56.7	$0.68 {\pm} 0.02$	1.920	$1.32{\pm}0.04$
30 / 0.1 / 1."6	0.100 ± 0.002	56.7	$0.75 {\pm} 0.02$	2.009	$1.51{\pm}0.03$
15 / 0.1 / 2.4	$0.155 {\pm} 0.005$	25.2	$0.78 {\pm} 0.03$	1.729	1.35 ± 0.04
15 / 0.1 / 3.2	$0.208 {\pm} 0.008$	14.2	$0.78 {\pm} 0.03$	1.714	$1.34{\pm}0.05$
15 / 0.5 / 1."6	$0.075 {\pm} 0.001$	56.7	$0.56 {\pm} 0.01$	2.445	1.38 ± 0.02
15 / 1.0 / 1".4	$0.048 {\pm} 0.001$	74.1	$0.41 {\pm} 0.01$	3.026	1.25 ± 0.03
15 / 1.0 / 1.0 / 1.06	0.063 ± 0.002	56.7	$0.47 {\pm} 0.02$	2.635	1.25 ± 0.04
30 / 1.0 / 1.46	$0.066 {\pm} 0.002$	56.7	$0.50{\pm}0.02$	3.027	$1.50 {\pm} 0.05$
15 / 1.0 / 2.4	$0.122 {\pm} 0.003$	25.2	$0.61 {\pm} 0.02$	1.952	1.18 ± 0.03
15 / 1.0 / 3."2	0.182 ± 0.004	14.2	$0.69 {\pm} 0.02$	1.945	1.33 ± 0.03

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 236	

8 Results for $160 \,\mu m$ maps

8.1 Measurement of flux standard deviation in source-free areas

Table 22 lists the measured noise of the background as determined in two source-free areas per map.

Table 22: Measurement of flux standard deviation at 160 μ m in source-free areas for the L2.0 products, IDs 1342242772 and 1342242773 and the co-added L2.5 product. The position of the boxes is indicated in Figs. 193 through 259. Note, that the cut levels for all 160 μ m map displays are identical. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG). The map parameter combination in italics was typical for the PACS photometric flux calibration analysis.

HPF/pixfrac/outpix	box size	L2.0	ID 13422	42772	L2.0	ID 134224	42773	L2.5 ID	1342242	772+73
		$\sigma_{ m box1}$	$\sigma_{ m box2}$	$\sigma_{ m mean}$	$\sigma_{ m box1}$	$\sigma_{ m box2}$	$\sigma_{ m mean}$	$\sigma_{ m box1}$	$\sigma_{ m box2}$	$\sigma_{ m mean}$
	(pixels)	(mJy)								
25 / 0.1 / 2.1	47×24	0.229	0.245	0.237	0.248	0.256	0.252	0.137	0.140	0.139
$25 \ / \ 0.1 \ / \ 3^{\prime\prime}_{\cdot\prime}2$	31×16	0.407	0.447	0.426	0.431	0.440	0.435	0.210	0.219	0.214
50 / 0.1 / 3.2	31×16	0.450	0.474	0.462	0.486	0.475	0.481	0.238	0.232	0.235
25 / 0.1 / 4."8	21×11	0.660	0.810	0.735	0.732	0.715	0.723	0.372	0.387	0.379
25 / 0.1 / 6.4	16×8	0.946	1.124	1.035	1.080	1.141	1.110	0.497	0.600	0.548
25 / 0.5 / 3.2	31×16	0.317	0.365	0.341	0.358	0.353	0.355	0.187	0.196	0.192
25 / 1.0 / 2".1	47×24	0.106	0.113	0.109	0.123	0.118	0.120	0.077	0.081	0.079
25 / 1.0 / 3.2	31×16	0.235	0.259	0.247	0.269	0.258	0.263	0.157	0.166	0.161
50 / 1.0 / 3.2	31×16	0.262	0.284	0.273	0.303	0.275	0.289	0.182	0.176	0.179
25 / 1.0 / 48	21×11	0.483	0.559	0.521	0.543	0.536	0.540	0.307	0.326	0.317
25 / 1.0 / 6."4	16×8	0.763	0.899	0.831	0.902	0.919	0.910	0.455	0.548	0.501

There is a systematic variation of the measured noise in the image maps depending on the selection of the mapping parameters:

- 1) For identical *pixfrac* and *outpix* the noise increases with increasing HPF due to less good suppression of the 1/f-noise.
- 2) For identical *HPF* and *outpix* the noise decreases with increasing *pixfrac*, which is due to the drop size covering more output pixels and hence correlating the noise in a pixel cluster.
- 3) The noise increases with increasing *outpix* size, because there is more flux in each output pixel and hence also the amplitude increases. However, if the noise inside a standard photometry measurement aperture is considered ($\sigma_{aperture} = \sqrt{N_{outpixinaper}} \times \sigma_{pix}$), then these noise values are much more similar for the same HPF/pixfrac combination, as shown in Table 23. But there is the trend, that they are larger the larger the *outpix* sizes. This is, however, an effect of not yet corrected correlated noise, cf. Sect. 8.7.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 237	

Table 23: Noise per measurement aperture σ_{aperture} at 160 µm derived from the noise per pixel σ_{pix} according to $\sigma_{\text{aperture}} = \sqrt{N_{\text{outpixinaper}}} \times \sigma_{\text{pix}}$). N_{outpixinaper} has been calculated for an aperture radius of 10.77. Note, these noise values are not yet corrected for correlated noise effects (cf. Table 29).

HPF/pixfrac/outpix	$\sigma_{ m pix}$	N _{outpixinaper}	$\sigma_{ m aperture}$
	(mJy/pix)		(mJy)
25 / 0.1 / 2."1	0.245	81.6	2.21
25 / 0.1 / 3."2	0.431	35.1	2.55
50 / 0.1 / 3.2	0.472	35.1	2.79
25 / 0.1 / 4."8	0.729	15.6	2.88
25 / 0.1 / 6.4	1.073	8.8	3.18
25 / 0.5 / 3.2	0.348	35.1	2.06
25 / 1.0 / 2."1	0.115	81.6	1.04
25 / 1.0 / 3.2	0.255	35.1	1.51
50 / 1.0 / 3.2	0.289	35.1	1.71
25 / 1.0 / 4."8	0.531	15.6	2.10
25 / 1.0 / 6.4	0.905	8.8	2.68

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 238	

8.2 Measurement of flux standard deviation by histogram method

Table 24 lists the noise values in the image maps determined with the histogram and Gauss fit method, including the uncertainty of the fit.

Table 24: Measurement of flux standard deviation at 160 μ m with the histogram method for the L2.0 products, IDs 1342242772 and 1342242773 and the co-added L2.5 product. The coverage threshold used to determine $\sigma_{\rm hist}$ and the maximum coverage for each map are listed. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG). The map parameter combination in italics was typical for the PACS photometric flux calibration analysis.

HPF/pixfrac/outpix	L2.0 ID 1342242772		12772	L2.	L2.0 ID 1342242773			L2.5 ID 1342242772+73		
	$\sigma_{ m hist}$	coverage	$\operatorname{cover}_{\max}$	$\sigma_{ m hist}$	coverage	cover _{max}	$\sigma_{ m hist}$	coverage	$\operatorname{cover}_{\max}$	
	(mJy)	>		(mJy)	>		(mJy)	>		
25 / 0.1 / 2.1	0.238	10.5	20.52	0.240	10.5	21.64	0.134	20.5	40.94	
	± 0.006			± 0.006			± 0.005			
$25 \ / \ 0.1 \ / \ 3^{\prime\prime}_{\cdot\prime}2$	0.416	10.5	20.29	0.399	10.5	21.24	0.217	20.5	40.33	
	± 0.013			± 0.018			± 0.010			
50 / 0.1 / 3.2	0.456	10.5	20.26	0.457	10.5	21.24	0.240	20.5	40.33	
	± 0.026			± 0.024			± 0.015			
25 / 0.1 / 4."8	0.695	10.5	19.73	0.727	10.5	20.75	0.389	20.5	40.11	
	± 0.021			± 0.027			± 0.025			
25 / 0.1 / 6.4	1.092	10.5	19.71	1.120	10.5	20.59	0.600	20.5	40.01	
	± 0.063			± 0.082			± 0.036			
$25 / 0.5 / 3''_{2}$	0.347	260	493.8	0.333	260	522.1	0.196	510	1006	
	± 0.010			± 0.012			± 0.010			
25 / 1.0 / 2".1	0.117	1050	1970	0.119	1050	2065	0.083	2050	4025	
	± 0.002			± 0.003			± 0.003			
25 / 1.0 / 3."2	0.255	1050	1966	0.262	1050	2064	0.175	2050	4014	
	± 0.010			± 0.008			± 0.010			
50 / 1.0 / 3.2	0.274	1050	1965	0.293	1050	2064	0.191	2050	4014	
	± 0.007			± 0.010			± 0.009			
25 / 1.0 / 4."8	0.519	1050	1956	0.530	1050	2059	0.344	2050	4003	
	± 0.018			± 0.024			± 0.018			
25 / 1.0 / 6.4	0.876	1050	1960	0.910	1050	2053	0.526	2050	3991	
. ,	± 0.048			± 0.074			± 0.029			

The derived noise values in Table 24 are quite similar to the values found for the source free areas, cf. Table 22, which indicates that the coverage range of the source free areas is above the threshold used for the histogram method. This is indeed the case as exemplary shown in Fig. 286 for the SPG mapping parameter combination $25 / 0.1 / 3''_{.2}$. Therefore, a consistent behaviour as described in Sect. 8.1 is found.

$\mathbf{PACS}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 239	

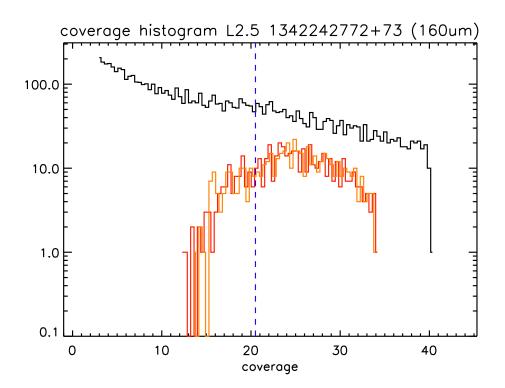


Figure 286: Histogram of the distribution of coverage for the L2.5 product with the SPG mapping parameter combination 25 / 0.1 / 3."2 (black, all values below a coverage value of 3.0 are cut). The blue dashed line indicates the coverage threshold used in the noise analysis. The red and orange histograms give the coverage distribution inside the source-free noise measurement areas 1 and 2, respectively. The corresponding image map is shown in Fig. 199.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 240	

8.3 Ratio of L2.5 to L2.0 noise

Table 25 lists the noise ratio $\frac{\sigma_{\text{histL2.5}}}{\sigma_{\text{histL2}}}$ derived from Table 24. For a perfect square root scaling with time a ratio of 0.707 $(\frac{1}{\sqrt{2}})$ would be expected. The results show that the noise of the L2.5 product can be better by 0.5 – 26%. This indicates that the "mosaic" task, which generates the L2.5 product out of the two L2.0 products, introduces some additional noise correlation, depending on the map parameter combination: The largest noise reduction in L2.5 maps relative to the L2 maps is for the small pixfrac 0.1. Maps with drop sizes equal to the native pixel size (pixfrac = 1.0) and small output pixel size are close to the expected value. Fig. 287 provides an overview.

Table 25: Noise ratio of $\sigma_{histL2.5}$ to σ_{histL2} . The expected ratio for square root scaling of time would be 0.707. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG). The map parameter combination in italics was typical for the PACS photometric flux calibration analysis.

HPF/pixfrac/outpix	$\sigma_{\rm histL2.5}$
III I / pixitac/outpix	$\sigma_{\rm histL2}$
	1130112
25 / 0.1 / 2."1	0.560
$25 \ / \ 0.1 \ / \ 3.^{\prime\prime}2$	0.534
50 / 0.1 / 3."2	0.526
25 / 0.1 / 4."8	0.547
25 / 0.1 / 6.4	0.544
25 / 0.5 / 32	0.577
25 / 1.0 / 21	0.704
25 / 1.0 / 32	0.675
	0.010
50 / 1.0 / 3.2	0.673
25 / 1.0 / 4."8	0.656
25 / 1.0 / 6."4	0.591
, ,	1

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 241	

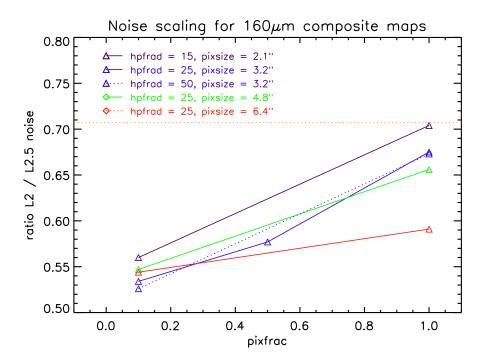


Figure 287: Ratio of L2 to L2.5 (composite of two L2 maps, hence double integration time) noise depending on the mapping parameters. The dotted orange line is the $\frac{1}{\sqrt{2}}$ -ratio.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 242	

8.4 Noise of the associated error maps

In Figs. 195 through 261 the noise histograms of the error maps above the identical coverage threshold as used for the histogram method on the image maps are shown (Note: No error map analyis was done for map parameter combinations 25 / 0.1 / 2''1 and 25 / 1.0 / 2''1). Note that these values contain already the correction of correlated noise.

For a verification of the implementation, the histogram was also derived using the coverage map information and applying Eqns. 3 and 2 (displayed by red dotted lines for L2.0 or dashed-dotted lines for L2.5 maps). For the L2.0 products, there is hardly any difference between the two histograms, while for the L2.5 products a systematic shift of the histograms occurs. The agreement between the two histograms for the L2.0 products is to be expected, since the underlying calculation is the same. In the case of the L2.5 maps, the error map is produced by the "mosaic" task from the two individual error maps of the L2.0 products rather than doing the calculation with the Popesso et al. algorithm starting from the coverage map. The values derived with the Popesso et al. algorithm from the coverage map are 5 - 14% higher than the ones of the error maps.

Table 26 lists the mean values of the noise above the coverage threshold as given by the associated error maps. The ratios $\frac{\sigma_{\text{meanL2.5}}^{\text{error}}}{\sigma_{\text{meanL2.0}}^{\text{error}}}$ are all very close to $\frac{1}{\sqrt{2}}$. The explanation for the higher L2.5 noise values derived with the Popesso et al. algorithm is explained by the fact, that the α -parameters in Eqn. 3 are different from -0.5. Only in the case of $\alpha = -0.5$, the noise scales with $\frac{1}{\sqrt{2}}$. Since $\alpha = -0.46 - -0.28$ (Table 3), the noise scales as $10^{-0.37 \log(2)} = 0.774$, which is about 9% higher than $\frac{1}{\sqrt{2}}$. This is a similar behaviour as was found for the 100 µm map parameter combinations (Sect. 7.4), while for all 70 µm map parameter combinations α is close to -0.5 (see Table 3), therefore only small shifts between the two L2.5 histograms occur for these cases (Sect. 6.4).

Table 26: Mean $\sigma_{\text{mean}}^{\text{error}}$ of the error maps at 160 µm associated with the L2.0 products, IDs 1342242772 and 1342242773, and the co-added L2.5 product. Note that these values contain already the correction of correlated noise. The respective coverage thresholds used for each map are listed. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG).

HPF/pixfrac/outpix		L2.0 ID 1342242772	L2.0 ID 1342242773		L2.5 1342242772+73
	coverage	$\sigma^{ m error}_{ m mean}$	$\sigma^{ m error}_{ m mean}$	coverage	$\sigma^{ m error}_{ m mean}$
	>	(mJy)	(mJy)	>	(mJy)
$25 \ / \ 0.1 \ / \ 3^{\prime\prime}_{\cdot\prime} 2$	10.5	0.307	0.304	20.5	0.216
50 / 0.1 / 3.2	10.5	10.7	10.6	20.5	7.54
25 / 0.1 / 4."8	10.5	0.761	0.756	20.5	0.538
25 / 0.1 / 6.4	10.5	1.088	1.078	20.5	0.769
25 / 0.5 / 3.2	260	0.348	0.346	510	0.246
25 / 1.0 / 3.2	1050	0.582	0.578	2050	0.411
50 / 1.0 / 3.2	1050	0.526	0.532	2050	0.372
25 / 1.0 / 4."8	1050	1.586	1.576	2050	1.121
25 / 1.0 / 6."4	1050	1.222	1.213	2050	0.864

$\mathop{\rm PACS}_{\mathop{\rm Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 243	

8.5 Comparison of L2.0 product image noise with noise of associated error maps

Table 27 provides the noise values based on the histogram method and the Gauss fit and derives the noise corrected for correlated noise effects, $\sigma_{\rm corr}$, by multiplying with the f-factor. These noise values are compared with the corresponding mean values from the associated error maps. For 7 out of 9 combinations we find a reasonable consistency in that respect that the error map noise is on the $\approx 50 - 90\%$ level of the image noise. The SPG combination has the smallest ratio with 47%.

For the combination 50 / 0.1 / 3".2 the noise of the error map is more than ten times higher than measured in the image map. This is likely due to non-adequate α and β factors, as can be seen from Table 3 by comparing in particular with the α and β factors for the 25 / 0.1 / 3".2 combination. As can be seen from Table 3 of Popesso et al. (2012), the HPF range used in the fitting of the 20 parameters goes only up to 40 readouts, so that the extrapolation to 50 readouts likely fails in this case.

Also for the combination 25 / 1.0 / 4.8 a larger discrepancy is found with the noise of the error map being a factor 2 larger than the corrected noise of the image map. Here the parameter combination is inside the parameter space used for fitting, so that the fitting result of the parameters does not well represent the real α and β values (as we will see in Sect. 8.7 also the f-factor for this map parameter combination is off, however since it is also applied in the error map calculation, it cannot be responsible for the discrepancy reported here).

Table 27: Comparison of the mean flux standard deviation at 160 μ m for the L2.0 products, IDs 1342242772 and 1342242773, from Table 24 and corrected for correlated noise effects, with the mean of the error maps associated with the product. The correlated noise factor f and the coverage thresholds used for each map are listed. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG).

HPF/pixfrac/outpix			L2.0 ID 1342242772			L	2.0 ID 13	342242773		
	coverage	f	$\sigma_{ m hist}$	$\sigma_{\rm corr}$	$\sigma_{ m mean}^{ m error}$	$\frac{\sigma_{\text{mean}}^{\text{error}}}{\sigma_{\text{hist}}}$	$\sigma_{ m hist}$	$\sigma_{\rm corr}$	$\sigma_{ m mean}^{ m error}$	$\frac{\sigma_{\text{mean}}^{\text{error}}}{\sigma_{\text{corr}}}$
	>		(mJy)	(mJy)	(mJy)	- mat	(mJy)	(mJy)	(mJy)	con
$25 \ / \ 0.1 \ / \ 3^{\prime\prime}_{\cdot\prime} 2$	10.5	1.545	0.416	0.643	0.307	0.48	0.399	0.646	0.304	0.47
50 / 0.1 / 3."2	10.5	1.748	0.456	0.797	10.7	13.4	0.457	0.811	10.6	13.1
25 / 0.1 / 4."8	10.5	1.439	0.695	1.001	0.768	0.77	0.727	1.042	0.756	0.73
25 / 0.1 / 6.4	10.5	1.251	1.092	1.366	1.100	0.81	1.120	1.394	1.078	0.77
25 / 0.5 / 3.2	260	1.934	0.347	0.671	0.354	0.53	0.333	0.669	0.346	0.52
25 / 1.0 / 3.2	1050	2.510	0.255	0.640	0.590	0.92	0.262	0.658	0.578	0.88
50 / 1.0 / 3.2	1050	2.728	0.274	0.748	0.536	0.72	0.293	0.805	0.532	0.66
25 / 1.0 / 4."8	1050	1.515	0.519	0.786	1.606	2.04	0.530	0.780	1.576	2.02
25 / 1.0 / 6."4	1050	1.542	0.876	1.351	1.240	0.92	0.910	1.442	1.213	0.84

Fig. 288 presents a graphical overview of the results in Table 27. The error map noise is only on the 50% level for the small pixfrac (0.1,0.5) and output pixel size (3.22) combinations, whereas for the large pixfrac (1.0) and larger output pixel sizes in combination with the small pixfrac the consistency with the noise measured in the image is better than 35%.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 244	

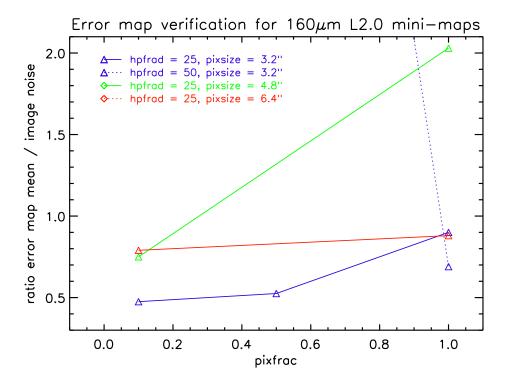


Figure 288: Ratio of mean noise determined from the error maps and image noise derived by the histogram method depending on pixfrac, hpfrad and output pixel size.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filter	Page 245	

8.6 Comparison of L2.5 product image noise with noise of associated error maps

Table 28 provides the corresponding information for the L2.5 products. Since we noted in Sect. 8.3 that the "mosaic" task introduces additional noise correlation, we define an additional correlated noise correction factor

$$f_{\text{mosaicL2.5}} = \frac{0.707}{\frac{\sigma_{\text{histL2.5}}}{\sigma_{\text{histL2}}}},$$

with the ratios $\frac{\sigma_{\text{histL2.5}}}{\sigma_{\text{histL2}}}$ from Table 25.

Again, for 7 out of 9 combinations we find a reasonable consistency in that respect that the error map noise is on the $\approx 50 - 90\%$ level of the image noise. The SPG combination has the smallest ratio with 49%. The ratios for a certain map parameter combination are quite similar for the L2.5 and L2.0 products when comparing with Table 18. If we omitted the correction factor $f_{\text{mosaicL2.5}}$, then there would be a systematic shift by about +15% for the ratio. The map parameter combinations 50 / 0.1 / 3".2 and 25 / 1.0 / 4".8 show the same deviations as were found for the L2 products. This is to expected, since the error map of the L2.5 product is constructed from the two conspicous L2 products.

Table 28: Comparison of the mean flux standard deviation at 160 μ m for the co-added L2.5 products, IDs 1342242772+73, from Table 24 and corrected for correlated noise effects, with the mean of the error maps associated with the product. The correlated noise factor f, the "mosaic" task correlated noise factor f_{mosaicL2.5} and the coverage thresholds used for each map are listed. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG).

HPF/pixfrac/outpix		L2.5 ID 1342242772+73					
	coverage >	f	$f_{\rm mosaicL2.5}$	$\left \begin{array}{c} \sigma_{\rm hist} \\ ({\rm mJy}) \end{array} \right $	$\sigma_{ m corr}$ (mJy)	$\sigma_{\rm mean}^{ m error}$ (mJy)	$rac{\sigma_{ m mean}^{ m error}}{\sigma_{ m corr}}$
25 / 0.1 / 3."2	20.5	1.545	1.324	0.217	0.444	0.216	0.49
50 / 0.1 / 3."2	20.5	1.748	1.344	0.240	0.564	7.54	13.4
25 / 0.1 / 4."8	20.5	1.439	1.293	0.389	0.724	0.538	0.74
25 / 0.1 / 6.4	20.5	1.251	1.300	0.600	0.976	0.769	0.79
25 / 0.5 / 3."2	510	1.934	1.225	0.196	0.464	0.246	0.53
25 / 1.0 / 3."2	2050	2.510	1.047	0.175	0.460	0.411	0.89
50 / 1.0 / 3."2	2050	2.728	1.051	0.191	0.548	0.372	0.68
25 / 1.0 / 4."8	2050	1.515	1.078	0.344	0.562	1.121	2.00
25 / 1.0 / 6.4	2050	1.542	1.196	0.526	0.970	0.864	0.89

$\mathop{\mathrm{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 246	

8.7 Final photometric noise values of L2.0 products corrected for correlation effects

In Table 29 the final photometric noise values corrected for correlation effects have been calculated for the different mapping parameters. Input values as σ_{pix} were the averaged σ_{hist} values of the two L2.0 products for OBSIDs 1342242772 and 1342242773. After calculating the noise inside the photometric aperture and correcting it for correlated noise effects, the final noise values are quite homogeneous for the same high pass filter width: weighted mean values (uncertainties with 3 decimal places were used as weight) are $3.93\pm0.07 \text{ mJy}$ for HPF = 25 (8 combinations) and $4.62\pm0.06 \text{ mJy}$ for HPF = 50, whereby the softer high pass filter width (30) gives a slightly higher final noise.

The only exception is the combination 25 / 1.0 / 4.''8, which was already conspicious wrt. the α and β -factors in Sect. 8.5. From Table 7 in Popesso et al. (2012), column 10" aperture and section HPF with 26 readouts (closest parameter combination to the one used in our study), which gives the values used as input for the parameter fitting, we see that for pixfrac equal 1 the f-factor values for output pixel size equal 1.0, 2.0, 3.0, 4.0 and 6.''4 are 7.05, 3.66, 2.53, 2.12, and 1.52, respectively, hence steadily decreasing. For an output pixel size of 4.''8, the interpolated value would be rather 1.92 than the derived (from the parameter set) 1.515. This would give a $\sigma_{aperture,corr} = 3.97$, well in accordance with the other parameter combinations and the average value given above.

Table 29: Noise per measurement aperture $\sigma_{\text{aperture,corr}}$ at 160 µm (aperture radius of 10".7) corrected for noise correlation effects by the f-factor. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG). The map parameter combination in italics was typical for the PACS photometric flux calibration analysis.

HPF/pixfrac/outpix	$\sigma_{ m pix}$	$N_{\rm outpixinaper}$	$\sigma_{ m aperture}$	f	$\sigma_{ m aperture, corr}$
	(mJy/pix)		(mJy)		(mJy)
25 / 0.1 / 21	$0.239 {\pm} 0.006$	81.6	$2.16 {\pm} 0.05$	1.746	$3.77 {\pm} 0.09$
$25 \ / \ 0.1 \ / \ 3.2''$	$0.408 {\pm} 0.016$	35.1	$2.42 {\pm} 0.09$	1.545	$3.73 {\pm} 0.15$
50 / 0.1 / 3.2	$0.457 {\pm} 0.025$	35.1	$2.71 {\pm} 0.15$	1.748	$4.73 {\pm} 0.26$
25 / 0.1 / 4."8	$0.711 {\pm} 0.024$	15.6	$2.81 {\pm} 0.09$	1.439	$4.04{\pm}0.14$
25 / 0.1 / 6.4	$1.106 {\pm} 0.073$	8.8	$3.28 {\pm} 0.22$	1.251	$4.10{\pm}0.27$
25 / 0.5 / 3.22	$0.340{\pm}0.011$	35.1	$2.01 {\pm} 0.07$	1.934	$3.90{\pm}0.13$
25 / 1.0 / 2".1	$0.118 {\pm} 0.003$	81.6	$1.07 {\pm} 0.03$	3.963	4.22 ± 0.11
25 / 1.0 / 3.22	$0.259 {\pm} 0.009$	35.1	$1.53 {\pm} 0.05$	2.510	$3.85 {\pm} 0.13$
50 / 1.0 / 3.2	$0.284 {\pm} 0.009$	35.1	$1.68 {\pm} 0.05$	2.728	$4.59 {\pm} 0.15$
25 / 1.0 / 4."8	$0.525 {\pm} 0.021$	15.6	$2.07 {\pm} 0.08$	1.515	$3.14{\pm}0.13$
25 / 1.0 / 6."4	0.893 ± 0.061	8.8	$2.65{\pm}0.18$	1.542	4.08 ± 0.28

$\mathop{\mathbf{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtere	Page 247	

8.8 Final photometric noise values of L2.5 products corrected for correlation effects

In Table 30 the final photometric noise corrected for correlation effects of the co-added maps has been calculated for the different mapping parameters. We have used an adapted correction factor $f_{L2.5} = f \times f_{mosaicL2.5}$, with f being the standard correlated noise correction factor from Table 3 and $f_{mosaicL2.5}$ as defined in Sect. 8.6. Input values as σ_{pix} were the σ_{hist} values of the L2.5 products for OBSIDs 1342242772+73. After calculating the noise inside the photometric aperture and correcting it for correlated noise effects, the final noise values are quite homogeneous for the same high pass filter width: weighted mean values (uncertainties with 3 decimal places were used as weight) are 2.78 ± 0.05 mJy for HPF = 25 (8 combinations) and 3.27 ± 0.05 mJy for HPF = 50, whereby the softer high pass filter width (30) gives a slightly higher final noise.

The combination 25 / 1.0 / 4."8 was excluded from the weighted mean calculation, since in the previous Section 8.7 the f-factor was found inadequate for the correlated noise correction.

Table 30: Noise per measurement aperture $\sigma_{aperture,corr}$ at 160 µm (aperture radius of 10.77) corrected for noise correlation effects by the f_{L2.5}-factor for the co-added maps. The map parameter combination high-lighted in bold face is used in the Standard Product Generation (SPG). The map parameter combination in italics was typical for the PACS photometric flux calibration analysis.

HPF/pixfrac/outpix	$\sigma_{ m pix}$	$N_{\rm outpixinaper}$	$\sigma_{ m aperture}$	f _{L2.5}	$\sigma_{ m aperture, corr}$
	(mJy/pix)		(mJy)		(mJy)
25 / 0.1 / 2."1	$0.134{\pm}0.005$	81.6	$1.21 {\pm} 0.05$	2.204	2.67 ± 0.10
$25 \ / \ 0.1 \ / \ 3^{\prime\prime}_{\cdot\prime} 2$	$0.217 {\pm} 0.010$	35.1	$1.29{\pm}0.06$	2.046	2.63 ± 0.12
50 / 0.1 / 3.2	$0.240{\pm}0.015$	35.1	$1.42 {\pm} 0.09$	2.349	$3.34{\pm}0.21$
25 / 0.1 / 4."8	$0.389 {\pm} 0.025$	15.6	$1.54{\pm}0.10$	1.861	$2.86{\pm}0.18$
25 / 0.1 / 6.4	$0.600 {\pm} 0.036$	8.8	$1.78 {\pm} 0.11$	1.626	$2.89{\pm}0.17$
25 / 0.5 / 3.2	$0.196 {\pm} 0.010$	35.1	$1.16 {\pm} 0.06$	2.369	2.75 ± 0.14
25 / 1.0 / 2".1	$0.083 {\pm} 0.003$	81.6	$0.75 {\pm} 0.03$	3.980	2.98 ± 0.11
25 / 1.0 / 3.2	$0.175 {\pm} 0.010$	35.1	$1.04{\pm}0.06$	2.628	2.72 ± 0.16
50 / 1.0 / 3.2	$0.191 {\pm} 0.009$	35.1	$1.13 {\pm} 0.05$	2.867	$3.24{\pm}0.15$
25 / 1.0 / 4."8	$0.344{\pm}0.018$	15.6	$1.36 {\pm} 0.07$	1.633	2.22 ± 0.12
25 / 1.0 / 6."4	$0.526 {\pm} 0.029$	8.8	$1.56{\pm}0.09$	1.844	$2.88{\pm}0.16$

$\mathop{\mathrm{PACS}}_{\mathop{\mathrm{Herschel}}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtered	Page 248	

9 Conclusions

The systematic study (with different mapping parameters HPF radius, pixfrac and output pixel size) of two L2.0 HPF mini-maps per filter and their respective L2.5 composite gave the following results:

For 70µm maps:

- 1) The error maps using the Popesso et al. algorithm are correctly implemented and give consistent results with the noise measured directly in the image map and corrected for correlated noise effects. This is in particular true for the map parameter combination used in Standard product Generation (SPG).
- 2) The mosaic task produces consistent error maps for the L2.5 in Hipe 14.2.0
- 3) The noise values for a standard photometry aperture including correction for correlated noise effects with the f-factors by Popesso et al. are quite similar independent of the pixfrac and output pixel size combination showing the consistent derivation of the f-factors (for larger HPF radius the noise values are systematically slightly higher).
- 4) For some mapping parameter combinations the noise of the L2.5 product can be considerably smaller (by up to 27%) wrt. the L2 products than the $\frac{1}{\sqrt{2}}$ scaling expected from the integration time ratio. We interpret this behaviour as another correlated noise effect introduced by the "mosaic" task. We have therefore derived special $f_{L2.5}$ correlated noise correction factors for the L2.5 maps which are listed in Table 12. Applying these $f_{L2.5}$ correction factors instead of the ones from Table 3, results in similar consistent final noise values for a standard photometry aperture as found for the L2.0 maps.

For $100\mu m$ maps:

- 1) The error maps using the Popesso et al. algorithm are correctly implemented and give consistent results with the noise measured directly in the image map and corrected for correlated noise effects. This is in particular true for the map parameter combination used in Standard product Generation (SPG).
- 2) The mosaic task produces consistent error maps for the L2.5 in Hipe 14.2.0
- 3) The noise values for a standard photometry aperture including correction for correlated noise effects with the f-factors by Popesso et al. are quite similar independent of the pixfrac and output pixel size combination showing the consistent derivation of the f-factors (for larger HPF radius the noise values are systematically slightly higher).
- 4) For some mapping parameter combinations the noise of the L2.5 product can be considerably smaller (by up to 31%) wrt. the L2 products than the $\frac{1}{\sqrt{2}}$ scaling expected from the integration time ratio. We interpret this behaviour as another correlated noise effect introduced by the "mosaic" task. We have therefore derived special $f_{L2.5}$ correlated noise correction factors for the L2.5 maps which are listed in Table 21. Applying these $f_{L2.5}$ correction factors instead of the ones from Table 3, results in similar consistent final noise values for a standard photometry aperture as found for the L2.0 maps.

For 160µm maps:

1) The error maps using the Popesso et al. algorithm are correctly implemented. For 7 out of 9 combinations they give reasonably consistent results (within the 50 – 90% level of the noise measured in the image directly). For two combinations the α and β parameters used in the error calculation turned out to be non-adequate, one because of bad extrapolation with the HPF parameter value being outside the fitted range and one with the fitting result of the parameter space not well representing the real values.

$\mathop{\mathrm{PACS}}_{\mathrm{Herschel}}$	Document: Date: Issue:	PICC-MA-TN-014 June 22, 2018 Issue 2.0
Noise characterization of high-pass filtere	Page 249	

- 2) The mosaic task produces consistent error maps for the L2.5 in Hipe 14.2.0 However, the noise pattern is systematically shifted to 5 14% lower values than the ones derived directly with the Popesso et al. algorithm from the coverage maps.
- 3) With one exception (due to non-adequate f-parameter), the noise values for a standard photometry aperture including correction for correlated noise effects with the f-factors by Popesso et al. are quite similar independent of the pixfrac and output pixel size combination showing the consistent derivation of the f-factors (for larger HPF radius the noise values are systematically slightly higher).
- 4) For some mapping parameter combinations the noise of the L2.5 product can be considerably smaller (by up to 25%) wrt. the L2 products than the $\frac{1}{\sqrt{2}}$ scaling expected from the integration time ratio. We interpret this behaviour as another correlated noise effect introduced by the "mosaic" task. We have therefore derived special $f_{L2.5}$ correlated noise correction factors for the L2.5 maps which are listed in Table 30. Applying these $f_{L2.5}$ correction factors instead of the ones from Table 3, results in similar consistent final noise values for a standard photometry aperture as found for the L2.0 maps.

From this study we found a solid procedure to determine consistent and homogeneous noise values via a Gauss fit to the flux distribution histogram which can be adjusted to the map coverage for the source area of interest.