PACS Data Reduction
Guide: Photometry

Issue user. Version 15
March 2017

Build 15.0.3262

PACS Data Reduction Guide: Photometry

Build 15.0.3262

Table of Contents

L1 PACS LAUNCN PAOS ...ttt 1
N 1 01 0o [0 w1 To o O PP PTRR 1
1.2. PACS Data Launch Paduuiiiiiiiiiiii e 1

12,2 TEMINOIOGY ..ueeeeriieeeei ettt eeae s 1
1.2.2. Getting and saving PACS 0bSEIVatioNScovuviieiiiiiieeiiieeeceie e 1
1.2.3. Looking at your fully-reduced dataooeeveviieiiiiiiieei e 2
1.3. PACS Photometry Launch Padccoouuiiiiiiiiiiiiiie e 3
1.3.1. Does the observation data need re-proCeSSIiNg?vveereinieeeiiinneeeiineeeenen 3
1.3.2. Re-processing with the pipeling SCriptScccuvieiiiiiii e 3
1.3.3. Considerations when running the pipelingccooveiiiiiiiiii e, 4
1.3.4. FUINEr PrOCESSING . .ccevvueeietti ettt e e ettt e ettt e e ettt e e ettt e e e eeb e e e enta e aeens 4

2. Setting UP the PIPEIING ...t et 6
2.1 TEMINOIOGY -.eevvnneteeti ettt ettt ettt ettt e et e et e et e e e et e e e e eba s 6
2.2. Getting and saving your obServation dataoveiiiviiieeiiiieee e 6

22,0, GEELING +.eeeeeti ettt ettt e et e e e e e 6
2.2.2. SAVING .ttt 7
2.3. What and where are the pipeling SCriptS?ooeiiriiiiiiiiie e 8
2.4. How much can you improve on the automatic pipeline?ccoovviviiiiniiiiiiiniecennnn, 9
2.5. Cdlibration files and the calibration treeoooviiiiiiii e 9
2.5.1. Ingtalling and updating the calibration filescccooooeiii 9
2.5.2. Checking what has been updatedccoooiiiiiiiii 9
2.5.3. The calibration treeo i e 11
2.5.4, Comparing calibration file VErSioNScccoiiiiiiiiiiiiiic e 11
2.6. Saving your ObservationContext and its calibration treeto poolc.cocceieeennen. 12

3. In the Beginning is the Pipeline. PROLOMELIYoooiiiiiiiiii e 13
I3 B [L (oo (8o (o o EO PP PP 13
3.2. Science case interactive Pipeling SCHPLScoveuuieiiiiiie et 14

3.2.1. Point sources; high pass filtering and photProjectcoocveviviviiiiinneennnn, 14
3.2.2. Extended sources: MADMARP ...ttt 23
3.2.3. Extended SOUICES: JSCANAIMccveruneeietieeeteiia e et et e et e e et e e e 40
3.2.4. Extended SoUrces: UNIMEDieiiiiieeiiiieeeeiie e e e 47
3.3. Chopped point SOUrCE PIPEITNE 59
3.3.1. Differencesin processing between chopped and scanned observations 59
3.3.2. A typical processing script for chopped PSAOT data..........ccevvvnveviiiinneeens 59

4. Selected topics of data reduction. PROLOMELIYoeiiiiiiieiiiiie e 64
A1 INEFOAUCTION ...ttt e et e e et e e et e e e e 64
A.2. USEA IMBSKS ... 64
4.3. Second level deglitChingc.uu e 64

4.3.1. Pre-requisites and what is second level deglitching?cccooovviiiiiiinnen. 65
4.3.2. ComMMANG-1iNE SYNEAXcceevunieeiiiiiee ettt e e 65
4.3.3. The most important SyNtaX OPLiONSceuuueiereiieiiiie e 66
4.3.4. A detailed ook at the MapIndex taskooeveeviieiiiiinieiiii e, 67
4.3.5. A detailed look at the secondLevelDeglitch taskccovviveviiiiiiiiiiiinienenns 71
4.3.6. Deglitching without Maplndex (mapDeglitch)coiviiiiiiiiiiiiiiiieeenenn. 73
4.3.7. MaplndexViewer: a useful tool for diagnostic and finetuning 73
A4, MMT DEGITCHING ... eeietiie ettt ettt 77
4.4.1. Details and Results of the implementationcccooevveiiieiiiiinecii e 79
4.5. photRespFIatFieldCOrTECtiONcciieeiieeeeiie e 81
4.6. PhotHIghPaSSIIITEreeeie e 81
A7, PROIPIOJECE ...ttt 82
4.8. PhOtPrOjECIPOINISOUICEeevtieeieiii ettt eeeeas 85
4.9. Features of the Map MONITOFcoouuiiiiiiiie e 86
4.10. Errors in PACS MaDS .. .ceeeeieeeiiii ettt ettt et e e et e eeeans 87
4.10.1. High Pass Flteringooeeieiiiieiii e 87
A.10.2. JSCANGIM ...ttt ettt ettt e et et et e e 88

PACS Data Reduction Guide: Photometry Build 15.0.3262

4.11.
4.12.

4.13.

4.14.

g 0o T U141 7= 88
Reducing minimaps (combining scan and CroSS-SCaN)cccvvveerneeeinierinierenneennnns 88
Dealing with Solar System 0bJECtS (SSOS) ...cvvvneviiiiiiiieeii e, 94
4.12.1. COMMECIRADECASSDcuieeeieeiee ettt e e e e e e eees 94
Branching off after levell ..o 95
4.13.1. CONVEILLITOSCANGINucerneetieieie et et e e e e e e e e e e e e e e eneees 95
Photometry on PACS images - aperture CorreCtioncooeveuiveeunneinnieeeineeennnennns 95
4.14.1. photApertureCorrectionPOINESOUICEcvvvuieeieeei e eeeiee e e e 96

Build 15.0.3262

List of Figures

2.1. Updating the calibration filEScoouuiiiiiii e 10
3.1. The function of MADmap is to remove the effect of 1/f noise. Left: image created without
MADmap processing. Right: The same image after MADmap processing. The central object

has DEEN MASKEH OUL. ...t e e 24
3.2. The map of the median of the signalsin each pixel showing the pixel to pixel electronic
(0] 1 £ = SO PSPPSR 25

3.3. A single dice (one single time-point) of araw signal Frame after the offset (pixel to pixel)
image removal step (i.e. after subtracting Figure 3.2 from the original Frames). While the pix-

el to pixel variation is mitigated, the result shows two modules are systematically at a different
Signal level than the FESE. ... e 26
3.4. The power spectrum of the full data stream after the drift removals (averaged for all pix-

els). Some structure is expected due to the astrophysical sources and from the unremoved

glitches (not the final figure, just a placeholder until | get thereal ONE).ccceveveviiiiiennnnnn, 30
3.5. Impact of the correlated noise in the form of stripes following the scan lines. 34
3.6. Paint source artifact in aform of crosses places on bright point SOUrCES.cceevennee.. 35
3.7. Post-processed image with the artifacts removed.ccoooiiiiiiii 36
3.8. The point source artifacts that Were removed.coouviiiiiiiiieii e 37

3.9. The minimum median ???) plotted versus readout index. There appearsto be achangein
the magnitude of the drift, likely caused by a cosmic ray or charged particle impact on the
readout electronics. Y ou can see this by the break in the lines that fit the data: the scan direc-
tion data are described by a green and pale brown line ("scanA fit" and "scanB fit"), which do
not have the same slope; and similarly for the cross-scan reddish and purple lines ("X scanA fit

AN "XSCANB FIT"). ..ttt e e aba s 38
3.10. An expanded region of time-ordered data, near where the drift shows an abrupt change
in magnitude in Figure 3.9. Thereis a clear break in the signal near readout value 9900 39
3.11. Thefinal mosaic with aclearly visible "checkered" noise pattern super imposed on the
sky. This artifact is due to improper correction for the module-to-module drift 39

3.12. An example of the point source artifact around a very bright source. The MADmap re-
duction creates regions of negative (dark) stripes in the scan and cross-scan direction centred

ON e POINE SOUICE. ... ettt ettt ettt ettt e et e et e et et e e e e et e e e eena s 40
3.13. The UNimap PIPEIINE. ...cceeeeieieei e et e e e 51
3.14. Detection of ajump (in red) on the detector timeline.c.ccooeviiiiiiiiiiic 51
3.15. The Crab field before and after onset COrrection.oevvvviieiiiiinieii e, 51

3.16. Effect of the synchronisation on a Galactic field (Ieft image). On the right image isthe
difference image between a map with and another without the time-shift compensation. The

impact of the compensation is appreciated in particular on maps acquired at fast scan speed

(B0 BICSEC/SEC). . eevtueeeett ettt ettt ettt e e s 52
3.17. A Galactic Plane field before and after drift correction.ccoevieeiiiiiiiiiiiinee, 52
3.18. 70 micron maps of the bright Ceres: Clockwise: Naive, GL S without pixel-noise com-
pensation, GL S with pixel-noise compensation, WGL S. The strong distortions introduced by

the GL S (without pixel noise) are not efficiently recovered by the WGLS, while they are com-
pletely compensated by taking into account the pixel noise within the GLS algorithm 53
3.19. Clockwise: GLS, GLS-minus-Rebin, PGLS, GLS-minus-PGL S maps. The distortionsin-
troduced by the GL S algorithm are highlighted on the difference maps and they are no longer

Present in the PGLS M@,u ittt e e e e e e e eeees 54
3.20. The distortions present in the PGL S-minus-GL S map (left image) are properly masked
(right image) by the WGLS algorithm.ooooiiiiiii e 54

3.21. . Isthe WGLS map (left image) reliable? Artifacts visible in the PGLS-minus-GL S map

are not present into the WGL S-minus-Rebin map (right image), where only the pattern of the
correlated NOISE CaN DB SEEN. ... i 58
3.22. Final map of a chopped PS AOT observation. Only the central image of the object con-

tains the correct properties. The surrounding eight images are a byproduct of the shift-and-add

algorithm and MUSE NOL DB USE. ... cciiiiiiiiii e e 63
4.1. Vector of roughly 250 signal contributions to map pixel (85, 98)oevvvviieiiiiiieeiinnnnn. 65
4.2. Maplindex and MapElEMENTScoouuiiiiii e 67

PACS Data Reduction Guide: Photometry Build 15.0.3262

4.3. The numbering scheme of the tiles for iterative deglitching. Thismap is sliced into 4 rows

and 4 columns. ThiS resSUltS iN 16 IS,ieiiiii e 69
4.4, Deglitching Slices 5,6 and 10oiuiiiiiii e e 70
4.5. Deglitching performed with the submap Optionccooiiiiiii e, 71
4.6. Mapping a small bUt StrONG SOUICEciiiiiii e e e e e e e e e 72
4.7. The MapIndexViewer GUIcoouiiiiiii i e e e e e eaas 74
4.8. Preview of the signal arrays Mean, Median and nSigmavalUues:c.cccveviiiieiinneennnnn. 75
4.9. Detector numbering scheme for the blue photometer array:ccooveviiiiiiiien e, 76
(O T (o o = .- PP 83
R 74 L= OSSP 84

Vi

Build 15.0.3262

Chapter 1. PACS Launch Pads

1.1. Introduction

Welcome to the PACSdata reduction guide (PDRG) #. We hope you have gotten some good data from
PACSand want to get stuck in to working with them. This guide begins with a series of "launch pads"
that from Chap. 1; essentially quick-start guides to working with PACS data. These will show you the
fastest waysto get your data into HIPE, to inspect the HSA-pipeline reduced images, and will outline
what you need to consider beforeyou start to reduce the data your self through the pipeline. A complete
archive of PACSdocumentation, fromdata reduction and product advice, through calibration reports,
to highly technical notes, can be found on the Herschel documentation archive: the HELL pages.

Contents: Chap. 2 takesyou through what you need to do and know before you start pipeline processing
your data, Chap. 3 isdealing with the different PACS photometry pipelines and Chaps 4 and 5 contain
more detailed information about photometry data processing (e.g. deglitching and MADmap).

Additional reading can be found on the HIPE help page, which you can access from the HIPE
"Help>Help Contents' menu. This coversthetopics of: HIPE itself, 1/0, scripting in HIPE, and using
the various data inspection and analysis tools provided in HIPE. We will link you to the most useful
bits of this documentation—we do not repeat the information given there, only material that is PACS-
specificisin this PDRG. You can aso consult the PACS public wiki for the Observer's Manual and
calibration information and documentation (herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibra-
tionWed?template=viewprint). Thisis aso linked from the PACS section of the HIPE help page. In-
formation on the calibration of PACS datais not covered in this PDRG.

1.2. PACS Data Launch Pad

1.2.1.

1.2.2.

Terminology

The following Help documentation acronyms are used here (the names are links): DAG: the Data
Analysis Guide; SG, the Scripting Guide.

Level O products are raw and come straight from the satellite. L evel 0.5 products have been partially
reduced, corrected for instrument effects generally by tasks for which no interaction is required by
the user. Level 1 products have been more fully reduced, some pipeline tasks requiring inspection
and maybe interaction on the part of the user. Level 2 products are fully reduced, including tasks that
requirethe highest level of inspection and interaction on the part of the user. L evel 2.5 products, which
are found for some of the pipelines, are generally those where observations have been combined or
where simple manipul ations have been done on the data.

Text written like this usually means we are referring to the class of a product (or referring to any
product of that class). Different classes have different (java) methods that can be applied to them and
different taskswill run (or not) onthem, whichit why it isuseful to know the class of aproduct. Seethe
SG to learn more about classes. Text written| i ke t hi s isused to refer to the parameter of atask.

Getting and saving PACS observations

Herschel data are stored in the HSA.

e They are identified with a unique number known as the Observation ID (obsid). You can find the
obsid viathe HSA.

* They can be downloaded directly into HIPE, or one at atime to disc, or many as atarball.

e Thedatayou get from the HSA isan Observation Context, which isacontainer for all the science
dataand al the auxiliary and calibration data that are associated with an observation, and includes

https://www.cosmos.esa.int/web/herschel/legacy-documentation-pacs
http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb?template=viewprint
http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb?template=viewprint
../../dag/html/dag.html
../../um/html/um.html
../../um/html/um.html

PACS Launch Pads Build 15.0.3262

1.2.3.

the SPG products. The entire observations is stored on disk asindividual FITSfiles organisedin a
layered directory structure. The ObservationContext you load into HIPE contains links to all these
files, and GUIs are provided to navigate through the layers.

There are several ways to get and save observations from the HSA or disk via HIPE. It does not
matter which method you use.

Get the data directly from the HSA into HI PE on the command line, and then saveto disk:

obsid = 134....... # enter your own obsid
To load into H PE
myobs = get Cbservati on(obsid, useHsa=True)

To load into HPE and at the sane tine to save to disk

A to save to the "MyHsa" directory (HOVE/ .hcss/ MyHsa)

myobs = get Cbservation(obsid, useHsa=True, save=True)

B: to save to your "local store" (usually HOVE/ .hcss/|store)
myobs = get Cbservati on(obsid, useHsa=True)

saveObservat i on(nyobs)

C to save to another disk location entirely, use:

pool | = "/Vol unes/ Bi ghi sk/"

pool n = "NGC3333"

myobs = get Cbservati on(obsid, useHsa=True)

saveObservati on(nyobs, pool Locati on=pool |, pool Nane=pool n)

See the DAG sec. 1.4.5 for more information on getObservation (for example, how to log on to the
HSA before you can get the data. For full parameters of getObservation, seeits URM entry.

To get the data back from disk into HIPE:

A and B: If you saved the data to disk with the default name and location (either [HOME]/.hc-
ss’MyHSA or [HOME]/.hcsg/Istore) then you need only specify the obsid:

obsid = 134...... # enter your obsid here
myobs=get Gbser vat i on(obsi d)

C: If you used saveObservation with apool Nane and/or pool Locat i on specified:

obsid = 134...... # enter your obsid here

pool | = "/ Vol unes/ Bi gbi sk/ "

pool n = "NGC3333"

myobs=get Gbser vati on(obsi d, pool Locati on=pool |, pool Name=pool n)

To learn about the GUI methods for getting data, see chap. 1 of the DAG.

Looking at your fully-reduced data

Once the data are in HIPE, the ObservationContext will appear in the HIPE Variables panel. To look
at the fully-reduced, final Level 2 product (images for the photometer) do the following,

Double-click on your observation (or right-click and select the Observation Viewer)

In the directory-like listing on the | eft of the Observation viewer (titled "Data"), click on the + next
to the "level2"

Go to HPPMAPB to get the blue map or the HPPMAPR to get the red Naive map. The map will
opento theright of thedirectory-likelisting, but if you want to view it in anew window then instead
double-click on the "HPPMAPB" (or right-click to select the Standard I mage Viewer

If there is a "level2 5" then you can aso look at any of the maps in there, these in fact being a
combination of level2 maps from related observations, and hence of better sensitivity.

To learn more about the layers of the ObservationContext and what the products therein are, see the
PPE in PACS Products Explained.

../../dag/html/Dag.DataIO.Hsa.html#sec-direct-data-download
../../hcss_urm/html/herschel.ia.toolbox.util.GetObsTask.html
../../dag/html/dag.html

PACS Launch Pads Build 15.0.3262

1.3. PACS Photometry Launch Pad

1.3.1.

1.3.2.

The following Help documentation acronyms are used here: DAG: the Data Analysis Guide; PDRG:
PACS Data Reduction Guide.

Does the observation data need re-processing?

It isunlikely that you will need to reprocess you data: normally if there is something wrong with the
data, (i) there will be a qualitySummary comment discussing that, and (ii) you will be able to see
if directly in the images. The final data in the archive have the best possible calibration and for the
majority of observations, the JScanam or Unimap maps at Level 2.5 or the maps at Level 2 (where
thereis no Level 2.5) cannot be bettered: possible exceptions are observations of afield of very low
intrinsic SNR or with complex structure, and these may benefit from a personal data reduction.

Re-processing with the pipeline scripts

The subsequent chapter of the PDRG, linked to below, cover different pipelines each.
The pipeline script you will run will depend on the observing mode and the science target,

» Chopped point source data: see Sec. 3.3 for observations taken in chop-nod photometry mode (an
old mode).

 scan-map and mini scan-map for point sources: see Sec. 3.2.1 for observations containing mainly
point sources and small extended sources

» Extended sources using MADMap: see Chap. 3.2.2 for observations of extended sources (only use
when scan and cross scan data are taken).

» Extended source using JScanam see Sec. 3.2.3 for observations of extended sour ces (only use when
scan and cross scan data are taken).

» Extended source using Unimap see Sec. 3.2.4.2 for observations of extended sources.

» Thepipeline scripts contain al the pipeline tasks and simpl e descriptions of what the task are doing.
But if you want to know all the details you need to consult the pipeline chapters (links above).
Individual pipeline tasks are also described in the PACS User's Reference Manual (PACS URM).

* The pipelines take you from Level 1 ((calibrated data cubes in Jy/detector pixel)) to Level 2 (ful-
ly-processed). If aLevel 2.5 is done, that means maps have been combined.

To accessthe scripts, go to the HIPE menu Pipelines>PACS> Photometer. The scripts assume:

» Thedataare already on disk or you can get them from the HSA using getObservation (so you must
know the Observation ID)

* You havethe cdlibration files on disk; normally you will use the latest update, but you can run with
any calibration tree version: see Sec. 2.5.3 to know how to change the version of the calibration
tree you are using.

» You choseto do the red or the blue camera separately
Torun thescripts,
» Read the instructions at the top, and at least skim-read the entire script before running it

 Although you can run most al in one go, it is highly recommended you run line by line at least
for the first time

PACS Launch Pads Build 15.0.3262

1.3.3.

1.3.4.

« If you are going to comment within the script or change parameters, then first copy the script to
anew, personalised location and work on that one (HIPE menu File>Save As): otherwise you are
changing the script that comes with your HIPE installation

Asyou run the scripts,

» Plotting and printing tasks are included with which you can inspect the images and masks them-
selves. The plots will open as separate windows

e The scripts will save the data into FITS files after each Level (thisis a difference with the spec-
troscopy pipeline)

Information about calibration files held in the calibration tree:
» When you start HIPE, HIPE will begin by looking for a calibration file update: Sec. 2.5.1.

» Tocheck what version of calibration files and the pipeline your HSA-gotten datawere reduced with,
and to compare that to the current version and to see what has changed, see Sec. 2.5.4.

* You can aso look at the Meta data called cal TreeVersion, see Sec. 2.5.4.

* Toload the calibration tree into HIPE when you pipeline process, see Sec. 2.5.3.

Considerations when running the pipeline

Considerations concerning the technicalities of running the pipeline are:

« If you chose to run the pipeline remotely or as part of bulk processing you might want to disable
the plotting tasks by commenting out the lines starting with "Display(...)"

* Memory vs speed: the amount memory you assign to HIPE to run the pipeline depends on how
much data you have, but >=4Gb for sure is recommended.

If you wish to fiddle with your data (other than using the plotting tasks provided in the pipeline) it
would be agood ideato do that in a separate running of HIPE.

» Saveyour data at least at the end of each Level, because if HIPE crashes you will lose everything
that was held only in memory (the scripts, by default save your data after each Level so DO NOT
modify that part)

Thingsto look out for in your data as you run the pipeline are:
» Saturated and Glitched data

» Non-smooth coverage map (the coverage map is not uniform but the transitions should be fairly
smooth towards the edges)

» Up and down scan offsets (distorted Point Spread Function)

» Dark spots around bright point sources (sign of inappropriate high-pass filtering)

Further processing

There are anumber of tasksthat can be used to inspect and analyse your PACS Level 2 images. For a
first quick-look inspection (and even for some image manipulation) we recommend the tasks GUIs.
The tasks are listed in the Tasks panel under Applicable if the image is highlighted in the Variables
panel. Double-click on the task will call up its GUI, except for the Standard Image Viewer which
is invoked by aright-click on the image in the Variables panel and selecting Open with>Sandard
Image Viewer

PACS Launch Pads Build 15.0.3262

« If you just want to look at the images you can use the Standard Image Viewer: see Sec 4.4 of
the DAG:

» TheannularAperturePhotometry task: (see Sec 4.21 of the DAG) Performs aperture photometry
using simple circular aperture and a sky annulus. There are other aperture photometry tasks: fixed-
Sky, pacsAnnularSky, rectangular.

» The sour ceExtractor Daophot and sour ceExtractor Sussextractor: (see Sec 4.19 of the DAG)
Extracts sources from a simple image using different algorithms.

e The sourceFitter: (see Sec 4.20 of the DAG) Fits a 2D Gaussian to a source in a specified rectan-
gular region on an image.

See the image analysis chapter of the Data Analysis Guide chap. 4 for more information on image
processing in HIPE.

Build 15.0.3262

Chapter 2. Setting up the pipeline
2.1. Terminology

Level O products are raw and come straight from the satellite. L evel 0.5 products have been partially
reduced and corrected for instrument effects generally by tasks for which no interaction is required
by the user. Level 1 products have been more fully reduced, some pipeline tasks requiring inspection
and maybe interaction on the part of the user. Level 2 products are fully reduced, including tasks that
requirethe highest level of inspection and interaction on the part of the user. L evel 2.5 products, which
are found for some of the pipelines, are generally those where observations have been combined or
where simple manipul ations have been done on the data.

The ObservationContext is the product class of the entity that contains your entire observation: raw
data, HSC-reduced products (levels), calibration products the HSC reduced with, auxiliary products
such as telescope pointing, and etc. Y ou can think of it as a basket of data, and you can inspect it with
the Observation Viewer. This viewer is explained in the Herschel Owners Guide chap. 15, and what
you are looking at when you inspect a PACS ObservationContext is explained in the PPE in PACS
Products Explained.

The Level 2 (and also 2.5) photometry product is a Smplelmage that contains a standard two-dimen-
sional image, in particular the following arrays. "image" asan array 2D (e.g. double, integer); "error"
asan array 2D (e.g. double, integer); "exposure” asan array 2D (e.g. double, integer); "flag" asashort
integer array 2D. It also contains Meta data that provide unit and World Coordinate System informa-
tion. The definition of Frames give above isvalid also for photometry. The photometry pipeline does
not push the products into ListContexts as it does not use slicing.

To learn more about what is contained in the ObservationContext and Frames, see the PPE in PACS
Products Explained.

Thefollowing (Help) documentation acronyms are used here: DAG: the Data Analysis Guide; PDRG:
this PACS Data Reduction Guide; HOG: HIPE Owner's Guide.

2.2. Getting and saving your observation data
2.2.1. Getting

The fastest ways to get the ObservationContext into HIPE were explained in Sec. 1.2. We expand
on that here, but do first read Sec. 1.2. If you get your data via the HSA-GUI as a "send to external
application” then it should be an ObservationContext already.

If you have the data already on disk but as gotten fromthe HSA as a tarball:

on disk, untar the tarball, e.g
cd / Users/ ne/fromHSA

tar xvf nmenmel342.tar

look at it: |Is nmenel342

in H PE

myobsi d=1342. # enter your obsid

nmypat h="/ User s/ me/ f r omHSA/ ne1342

myobs=get Cbser vat i on(obsi d=nmyobsi d, pat h=nmypat h)

obsid is necessary only if nore than one observation

#is in that directory, i.e. if your tarfile has severa
obsids in it

Get the data from the HSA directly on the command line:

../../hipeowner/html/sec-viewers-in-hipe.html
../../howtos/html/howtos.html
../../hipeowner/html/hipeowner.html

Setting up the pipeline Build 15.0.3262

2.2.2.

obsid = 134...... # enter your obsid here

Direct |

Get the data fromthe HSA and then save to
|/ Users/ mel/.hcss/| store/ MyPool Nane
nmyobs=get Cbser vati on(obsi d, useHsa=True)
saveObservati on(nyobs, pool Nane=" M/Pool Nane")
Then, to later get those data

myobs=get Cbser vati on(obsi d, pool Name="M/Pool Nane")
#

Get the data fromthe HSA and then save to
|/ Users/mel/.hcss/Istore/[obsid as a string]
nmyobs=get Cbser vati on(obsi d, useHsa=True)
saveObservati on(nyobs)

Then, to later get those data

myobs=get Cbser vat i on(obsi d)

You nust be | ogged on to the HSA for this to work:
See the DAG sec. 1.4.5.
See later to | earn about saving and then
restoring the caltree
Direct 11
Get the data fromthe HSA and i nmedi atel y save
to /Users/ nme/. hcss/| st ore/ MyPool Nane
myobs=get Cbservati on(obsi d, useHsa=True, save=True, pool Nanme="M/Pool Nane")
Then to | ater get those data
myobs=get Cbser vati on(obsi d, pool Name="M/Pool Nane")

H* #H

Or if the data are on a pool on disk (not ex-tarfile format, but HIPE-format), you use:

for data in [HOVE] . hcss/ | store/ nel1234
obsi d=1342. # enter your obsid
myobs=get Cbser vat i on(obsi d, pat h=nypat h)

The full set of parameters for getObservation can be found in its URM entry: here. (Note: there are
two "getObservation”s in the URM. The one | link you to is the correct one, it is also the first in the
URM list.)

Saving
Y ou use the task saveObservation for this, and to run this task with all the parameters set:

To save in /[Users/ne/bi ghi sk/ NGC1 where "bi gDi sk" is a replacenment for
the "local store" default |ocation (see bel ow

pool n="NGC1"

pool ="/ User s/ me/ bi gDi sk"

saveObservati on(obs, pool Name=pool n, pool Locati on=pool |,

saveCal Tree=True| Fal se, verbose=True| Fal se)

Where the only parameter you need to set is the "obs'—by default the data is saved to HOME/.hc-
ss/lstore/[obsid as astring]. All other parameters are optional. The data will be saved to a pool (direc-
tory) located in the local store, whether that local store is the default HOME/.hesg/Istore or /Users/
me/bigDisk asin the example above.

Or, as already mentioned above, you can save as you get the data:

Direct 11l

Get the data fromthe HSA and i medi ately save

to /Users/ne/.hcss/| storel/ M/Pool Nane

myobs=get Cbservati on(obsi d, useHsa=True, save=True, pool Nanme="M/Pool Nane")
Then to | ater get those data

nmyobs=get Cbser vati on(obsi d, pool Nanme="M/Pool Nane")

Y ou can saveto anywhere on disk, though by default the datago to [HOME]/.hcss/Istorewithapool -
Nane that isthe obsid (observation number) as a string. If the directory does not exist, it will be cre-

../../howtos/html/Dag.DataIO.Hsa.html#sec-direct-data-download
../../hcss_urm/html/herschel.ia.toolbox.util.GetObsTask.html

Setting up the pipeline Build 15.0.3262

ated. If it does, then new data are added to it. Note that if you add the same obsid to the same pool a
second time, then using getObservation later to get the ObservationContext will get you only the latest
saved data. Thereisaparameter, saveCal Tr ee, whichisaswitch to ask to save the calibration tree
that is contained in the ObservationContext (myobs): True will save it, and the default False will not.
Saving with the caltree takes up more space on disk and more time to work, but if you want to be able
to accessthe calibration tree that the datawere reduced with by the pipeline (either that which the HSA
ran or that which you run), you should first attach the calibration tree to the ObservationContext and
then set this parameter to True. If you have gotten the datajust now from the HSA then the calibration
tree will be attached.

Alternatively, the task getObservation also has a parameter that will save the data to disk, to your
MyHSA, and including the calibration tree. See the URM entry to learn more, and see also the DAG
sec. 1.4 to learn more about getObservation, used on data from the HSA or from disk.

2.3. What and where are the pipeline scripts?

In the following chapters we describe how to run the photometry pipelines that are offered via the
HIPE Pipeline menu. In this chapter we explain the setting up of the pipelines. Y ou will then skip to
the chapter that is of the pipeline appropriate for your AOT.

All the photometry pipelines are standalone and provide a full processing of your data, with al the
necessary stepsrequired to produce aFI TSimage of your sciencetarget. Herewe give ashort summary
of the purpose of each pipeline, athough their names are quite self explanatory.

» Chopped point source data: see Sec. 3.3 for observations taken in chop-nod photometry mode (an
old mode).

» scan-map and mini scan-map for point sources: see Sec. 3.2.1 for observations containing mainly
point sources and small extended sources

» Extended sources using MADMap: see Chap. 3.2.2 for observations of extended sources (only use
when scan and cross scan data are taken).

» Extended source using JScanam see Sec. 3.2.3 for observations of extended sources (only use when
scan and cross scan data are taken).

» Extended source using Unimap see Sec. 3.2.4.2 for observations of extended sources.

The pipeline scripts can be found in the HIPE Pipelines> PACS>Photometer menu. Load and copy
(File>Save As) to a unique name/location the pipeline script you want to run, because otherwise if
you make changes and save the file, you will be overwriting the HIPE default version of that pipeline
script. Henceforth, to load your saved script you will use the HIPE File>Open File menu. Read the
instructions at the beginning of the script and at |east skim read the entire script before running it. They
are designed such that they can be run all in one go, after you have set up someinitial parameters, but
it is recommended that you run them line by line, so you have better control over them.

Weremind you herethat you should consult the AOT release notes and associated documenta-
tion before reducing your data. These inform you of the current state of the instrument and the cali-
bration. Information about the calibration of the instrument will beimportant for your pipeline reduc-
tions—any corrections you may need to apply to your data after pipeline processing will be written
here. Information about spectral leakages, sensitivity, saturation limits, and PSFs can also be found
here. These various documents can be found on the HSC website, in the PACS public wiki: here.

Note

@ Spacing/tabbing is very important in jython scripts, both present and missing spaces. In-
dentation is necessary in loops, and avoid having any spaces at the end of linesin loops,
especidly after the start of the loop (theif or for statement). Y ou can put commentsin the
script using # at the start of the line.

../../howtos/html/Dag.DataIO.Hsa.html
http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb

Setting up the pipeline Build 15.0.3262

2.4. How much can you improve on the auto-
matic pipeline?

Before you being pipeline reducing the data yourself, it is a valid question to ask: how much can
| improve on what | have already seen in the HSA-obtained Level 2 product (better known as the
"SPG"—Standard Product Generation—data)? The answer to this depends on when the datayou have
were reduced by the PACS Standard Product Generation pipeline that is run by the Herschel Science
Centre to populate the Herschel Science Archive, and on the type of observation you have. The data
products contained in the Herschel Science Archive might be produced by aprevious pipeline version,
and therefore some of the algorithms and calibration files it used may be older than those in your
version of HIPE(how to check is shown in Sec. 2.5.4). Note that you can always use the on-demand
processing option provided by the Herschel Science Archive to run the latest version of the PACS
Standard Product Generation pipeline. Thisoption isespecialy interesting for those who do not have a
machine with tens of Gigabytes of RAM that is heeded to perform PACS datareduction. The pipeline
is continually being updated. In any way it is always advisable to inspect your level2/level 2.5 data to
seewhether the parameterswith which the SPG pipelinewas run are appropriate for your observations.
To check which version of HIPE the SPG data were reduced with, type, in the Console of HIPE, the
following: HIPE> print obs.getMeta()["creator"].string where "obs" is your ObservationContext; you
can also look at the version of the calibration tree with: HIPE> print myobs.["cal TreeVersion"].long.
If you are reading this PDRG via HIPE then you will be working in Track 10|11 of HIPE. To figure
out what calibration treeis the latest, smply load it and look:

cal Tr ee=get Cal Tr e(obs- nyobs)
print cal Tree
version nunber is printed near top of listing

2.5. Calibration files and the calibration tree

2.5.1.

2.5.2.

Installing and updating the calibration files

First, you should consult the AOT release notes and associated documentation (e.g. Observer's
Manual and Performanceand Calibration documents), these being important for informing you of
the current state of theinstrument and the calibration. Information about spectral |eakages, sensitivity,
saturation limits, ghosts and PSFs can also be found there. These various documents can be found on
the HSC website, in the PACS public wiki: here.

The calibration files are not provided with the HIPE build, rather you are offered to chance to update
them only when they need to be updated. If you open HIPE and you get a pop-up telling you to install
the calibration products, it means that the calibration file set has been updated by the PACS team and
you are being offered the chance to get that update. Click on "Install" and the new calibration products
will be downloaded and installed. They are placed in [HOM E]/.hcss/data/pcal -community (or pcal-
icc, but only for the PACS team).

If thisisthe very first timeyou are using HIPE and hence you have never installed any calibration files
before, then you should select "Install", otherwise you will have no calibration files at all. If you have
done this before, and hence you do have a calibration file set, then you can chose whether to update or
not. Why would you not? Well, if you are in the middle of processing data you may want to continue
with the calibration filesyou are already using, rather than downloading new files and possibly having
to start again (for consistency's sake), although just because you update does not mean you need to
use the updated calibration tree: see Sec. 2.5.3 for information about how to set the calibration tree
version you use in the pipeline.

Checking what has been updated

The updater GUI tells you which calibration files have been changed. To see the relevant information
about the release, in the calibration updater pop-up click on "Show details...". In the new pandl that

http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb

Setting up the pipeline Build 15.0.3262

appears, look at the "Release Notes' tab for a summary of the new set version. In there will be listed
the calibration files (the FITS files) that have been included in the update and information about the
changes made.

You can also look at theindividual "Files' tab to see what (if anything) has changed in the individual
files that are being updated. Some files will have no information in them, most of the information is
in the Release Notes tab, and in the Filestab in the files called PCalBase_TimeDependency FM_v#,
which also contain asummary of the release. If more than one version number of calibration files are
listed, you will be more interested in the highest version number.

Calibration Product Update

"I’j There is an update available for the PACS Calibration products.
‘l ” The following calibration set version will be updated: 41.
v
Products will be copied into the directory: /Users/kexter/.hcss/data/pcal-icc

This location can be changed in the Preferences panel.

Last update was: 08-May-2012 12:38:16
Hide details...

Release Notes Files

Release Notes
Release note for calibration set version v4 L

Release Note for Calibration Set v41

|After having finished verifying the new PACS photometer flux calibration, we are
ready to implement an update for four calibration entries in the calibration tree 2
[The should be made available all at the same time, because they depend on each &
other. Please, also remember to update the corresponding class definitions that are &
needed for the calibration tree inquiry. The four products cover:

@ response calibration (version 7) => calTree.refs["phatometer”]. product.refs &
[‘responsivity’].product :

= flat field (version 4, internal version number 7) => calTree.refs
[‘photometer”]. product.refs[flatField"]. product i

@ aperture correction (encircled energy fraction, version 3) => calTree.refs &
[‘photometer”]. product.refs[‘apertureCorrection’]. product

@ non-linearity correction (version 2) => calTree.refs['photometer”].product.
refs[*nonLinearCoef’].product

INote that the aperture correction calibration contains a new entry that corresponds
fto the FM7 response calibration. J+/°rgen said that the corresponding class
definition must be extended for that reason.

Updated calibration products

[The following calibration product has been added :

Figure 2.1. Updating the calibration files

To check on which pipelinetasksthiswill affect, check the pipeline scripts, asthey comment on which
calibration files are used by the tasks that use calibration files (e.g. you are told "# used cal files:
observedResponse, cal SourceFlux" for the task specDiffCs).

The calibration files take up about half a gigabyte, so you may needto install them in adirectory other
than the default [HOME]/.hcss/data/pcal -community. |If you want to install them elsewhere then: in
the updater pop-up click "Not Now"; go to the HIPE Preferences panel (from the Edit menu); click
on Data Access>Pacs Calibration; in the "Updater" tab that is now in the main panel change the
name of the directory in the space provided. Do not click on anything else—you do want to use the
"Community Server" as these are the products that have been tested, the "ICC" ones are till in the
process of being validated. Click to Apply and Close. Then go to the Tools menu of HIPE, and select
pacs-cal>run Updater. Voila

Y ou can also inspect the calibration sets and products with a Calibration SetsView. Thisallowsyou
to inspect the calibration sets that have been installed on your system. Y ou get to this view via the
HIPE menu Window> Show View>Wor kbench> Calibration sets. The view will show the release notes
for the selected set (numbered boxes at the top), or the calibration filelist for the selected set (viewing
the notes or the file list are chosen via the central drop-down menu). The calibration file list isjust a
list of what calibration files, and their version numbers, areincluded in the sel ected set, and therelease
note you will seeisthe general one for that set. A new release of a calibration set will include some
updated calibration files and @l so all the rest that have not changed.

10

Setting up the pipeline Build 15.0.3262

2.5.3.

2.5.4.

The calibration tree

Before beginning the pipeline you will need to define the calibration tree to use with your reductions.
The calibration tree contains the information needed to calibrate your data, e.g. to translate grating
position into wavelength, to correct for the spectral response of the pixels, to determine the limits
above which flags for instrument movements are set. The calibration tree is simply a set of pointers
to the calibration files in your installation, it is not the calibration files themselves. Tasks that use
calibration fileswill have the parameter cal Tr ee, which you set to the name you have given to the
calibration tree (see below).

To usethe latest calibration tree you have in your installation is done with,

cal Tr ee=get Cal Tr ee(obs=nyobs)

Where "obs=myobs' is setting the parameter obs to the ObservationContext you are going to be
working on, here called "myobs". Thisisdone so that those few calibrations that are time-specific will
take, as their time, the time of your observation.

If you want to reduce your data with an older calibration tree, you can do this simply by typing

cal Tree=get Cal Tree(versi on=13) # to use version 13

If you want to use the calibration tree that is with the ObservationContext (assuming it has been saved
there), you type,

cal Tree=nyobs. cal i brati on

This will aways be present if you have just gotten the data from the HSA, and will be present if
whoever saved the ObservationContext remembered to save it with the cal Tree (see Sec. 2.6).

Comparing calibration file versions

To compare the version of the calibration files you will use by default when you begin pipeline pro-
cessing your data, to those used by the HSC when the automatic pipeline was run, you do the follow-
ing: where "myobs" is the name of the ObservationContext, type,

The caltree that cones with you data

print myobs.calibration

print nyobs. calibration. spectroneter

The caltree you have on disk, this is the coomand that | oads
the calibration tree

that you will later use when you run the pipeline

cal Tr ee=get Cal Tr ee(obs=nyobs)

And to then inspect it

print caltree

print caltree.spectroneter

Now you can conpare all the version nunbers that are printed
to Consol e

The parameter obs (set to myobs here) smply specifiesthat the calibration tree will take the versions
of the calibration filesthat are from the time that your observation took place, for those few calibration
fileswhich are time-sensitive.

Note that to print out the information on the calibration tree from "myobs" (the first command in the
script above) it is necessary that the calibration treeistherein "myobs". Thiswill be the case for SPG
reduced data if you have only just gotten it from the HSA and loaded it into HIPE. But if you used
saveObservation to save it first to disk, or if you are looking at an ObservationContext someone gave
you, then to get hold of the calibration tree of that ObservationContext it must be that the cal Tree was
attached to and saved with the ObservationContext when running saveObservation. This is done by
using the saveCal Tr ee=True option, as explained in the next section. For this reason it may also
be worth saving the calibration tree you will use when you reduce your data.

11

Setting up the pipeline Build 15.0.3262

Y ou can also check the calibration version your HSA-data were reduced with by looking at the Meta
data"cal TreeVersion" in the ObservationContext. This givesyou the "v"ersion number of the calibra-
tion tree used to reduce those data,

print obs.neta["cal TreeVersion"].|ong

To find out what version of HIPE your data were reduced with, check the Meta data called "creator”,
it will tell you something like SPG V7.3.0, which means Standard Product Generator in HIPE v 7.3.0.

2.6. Saving your ObservationContext and its
calibration tree to pool

As stated previously, and repeated here, if you wish to save the calibration tree with your Observa
tionContext, then you should follow these instructions for the command-line methods:

obsid = 134...... # enter your obsid here

exanple |: save with saveCbservation to $HOWE . hcss/ | st ore/ MyFirst
myobs=get Cbser vati on(obsi d, useHsa=Tr ue)

saveObser vati on(nyobs, pool Nane="MFirst", saveCal Tr ee=Tr ue)

followed | ater by

nmyobs=get Cbser vati on(obsi d, pool Name="M/First")

cal Tree=obs. cal i brati on

exanple |l: save when you get fromthe HSA

myobs=get Cbser vat i on(obsi d, useHsa=Tr ue, save=Tr ue, pool Nane="M/First")
then later:

myobs=get Cbser vat i on(obsi d, pool Name="M/Fi rst")

cal Tree=nyobs. cal i brati on

via tarfile

file = "/ Users/me/ nmel0445555"
nmyobs = get Cbservation(obsid, file)
cal Tree=nyobs. cal i brati on

Why youwould want to save the calibration tree? Whether you are saving datayou got directly from the
HSA, or datayou have pipeline reduced yourself with the latest calibration tree, it is worth saving the
fully-reduced ObservationContext with the caltree so that if you later wish to compare the reductions
to later ones you do, you can at least check that the calibration trees are the same; and so that when
you write up your results, you can find out which calibration tree you used. But otherwise you do not
need to: the calibration files themselves are held on disc, al you need to know is the calibration tree
version that was used to reduce the data.

12

Build 15.0.3262

Chapter 3. In the Beginning is the
Pipeline. Photometry

3.1. Introduction

The purpose of thisand the next few chaptersisto tutor usersin running the PACS photometry pipeline.
In Chap. 1 we showed you how to extract and ook at Level 2 automatically pipeline-processed data;
if you are now reading this chapter we assume you wish to reprocess the data and check the interme-
diate stages. To this end we explain the interactive pipeline scripts that have been provided for you,
accessible from the Pipeline menu of HIPE. These are the scripts that you will be following as you
process your data. The details of the pipeline tasks—their parameters, algorithms and the explanation
of how they work—are given in the PACS URM (with software details). In Chap. 4 we explain issues
that are dightly more advanced but are still necessary for pipeline-processing your data.

In the Pipeline menu the scripts are separated by the AOT type (e.g. mini scan map or chopped point
source; athough the chop-nod mode was not a recommended observing mode and only few observa-
tion was taken using chop-nod technique at the beginning of the mission, we provide an ipipe script;
see Sec. 3.3) and then by astronomical case (point source vs. extended source). You will aso see
"Standard pipeline" scripts, which are those that the automatic processing (SPG) use, and these differ
fromtheinteractivein being lessfriendly to use, and based on the so-called slicing pipeline (slicing=s-
plitting your observation up into sections based on their scan leg, or sequence in arepetition, or other
similar criteria). We do not recommend that you try to run these.

When you load a pipeline script (it goesinto the Editor panel of HIPE), copy it ("saveto"), otherwise
any edits you make to it will overwrite your reference version of that script! Y ou can run the pipeline
via these scripts, rather thcan entirely on the Console command line, in this way you will have an
instant record of what you have done. Y ou can then run it either in one go (double green arrow in the
Editor tool bar) or line by line (single green arrow). Thislatter is recommended if you want to inspect
the intermediate products and because you will need to make choices as you proceed.

Note
@ Spacing/tabbing isvery important in Jython scripts, both present and missing spaces. They
are not exchangeable, so use either tabs or spaces, not both. Indentation is necessary in
loops, and avoid having any spaces at the end of linesin loops, especially after the start
of the loop (the if or for statement). You can put comments in the script using # at the
start of theline.

Note
@ Syntax: Framesare how the PDRG indicatesthe "class' of adataproduct. "Frame" iswhat
we use to refer to any particular Frames product. A frame is also an image (a 2D array)
corresponding to 1/40s of integration time.

We remind you here that you should consult the AOT release notes and associated documentation
before reducing your data. These inform you of the current state of theinstrument and the calibration.
Information about the calibration of the instrument will be important for your pipeline reductions—
any corrections you may need to apply to your data after pipeline processing will be written here.
Information about sensitivity, saturation limits, and PSFs can also be found here. These various doc-
uments can be found on the HSC website, on the "AOT Release Status' link (currently here). Any
"temporary" corrections you have to apply to your data are not described in this data reduction guide,
as these corrections vary with time.

Before you run the pipeline you need to load the calibration tree that you want. What the "calibration
tree" is, how you grab it, and how to change, check, and save the calibration tree are explained in

13

http://herschel.esac.esa.int/Documentation.shtml

In the Beginning is the Pipeline. Photometry Build 15.0.3262

3.2. Science case interactive pipeline scripts

3.2.1.
ject

Here we describe the various interactive pipeline scripts that you are offered. We repeat: the actual
pipeline tasks are described the PACS URM (with software details). Within the pipeline scripts we do
explain where you need to set parameters yourself, but you can also read these other documents to
learn more about the pipeline tasks and their parameters.

The handling of data obtained in scan map mode depends strongly on the scientific goal. There are
three distinguishable cases:

» High passfiltering and photProject: suitable for point (and slightly extended) sources.

» Generalized Least Square (GLS) mapmakers: we provided two mapmakers - Unimap and MadMad
- that exploit the GLS method. Starting from SPG13, the maps from Unimap replace those from
MadMap in the Herschel Science Archive.

* Destriper mapmaker: JScanam is the HIPE implementation of the IDL mapmaker called Scanmor-
phos.

Unimap (MadMap) and JScanam are well suited for point and extended sources. they give similar
results so it is up to the user to decide which one to use. They exploit the redundancy provided by
the observations (mainly scan and cross-scan) and they generate Level2.5 products. The high pass
filter method is different, it is applied to a single observation (Level2) and then the individual maps
(scan, cross-scan) are combined with the mosaic task to create Level 2.5 products. All the scripts can
be found under the HIPE Pipeline menu (PACS#Photometer#Scan map and minimap). In the sections
that follow we explain these pipelines.

Point sources: high pass filtering and photPro-

This script processes scan map and mini-scan map observations containing mostly point-like or rela-
tively small extended sources. It starts from Level 1 (calibrated data cubes in Jy/detector pixel). The
final map isin units of Jy/map pixel. This script uses the high-pass filter (HPF) method (see also Sec.
4.6 for adetailed description of the high-pass filtering method) to remove the L/f noise. This process-
ing is not adequate for extended sources asit removes |large-scal e structures, which cannot be properly
protected (masked) from the filtering.

Note
@ Asof HIPE 11.0 thereisno need to start the reprocessing your data starting from the Level
0 (raw frames)

The script is able to combine several obsids but it is also useful for processing a single obsid. It per-
formsiterative masked highpassfiltering of the timelines and projectsthefinal map using photProject:
afirst passisdone using a S/N filtering of the timeline, then a second passis done using afull circular
patch masking of the source(s). The placement of the circular patch is very important to ensure the
correct positioning, we propose three options:

» Sourcefitting: if the source isthe brightest object in the field source fitting will find the source and
set the center of the patch to its fitted coordinates.

» Target coordinate list: the script reads the coordinates given in atext file and sets the coordinates
to the center of the patch.

» Target sourcelist and sourcefitting: if the coordinates are only approximate a source fitting is done
on a sub-image centered on the given coordinates. The sub-image small size ensuresthat the fitting
does not diverge seeking the brightest object in the image.

14

In the Beginning is the Pipeline. Photometry Build 15.0.3262

Beside the appropriate placement of the mask the correct filtering of the data also relies on the correct
setup of the filter width. An optimum value is given as default but it can be modified as desired and/
or necessary for specific science cases.

Note

@ if the HPF width (the half-width of the highpassfilter) istoo tight some extended features
of the compact sources will be filtered out, on the other hand a wider HPF width will
increase the |eft over 1/f noise.

An important parameter for the combination HPF and PhotProject is the ratio between the original
pixel size, the re-gridding onto an output pixel (ouputpix) and the active pixel fraction (pixfrac). (see
also Sec. 4.7 for adetailed description of the photProject task)

One last parameter is: a boolean to identify the source as being a solar system object or not. Several
OBSIDS can be combined and as SSOs are moving across the sky between observations, areference
position and time should be set to be able to re-align the frames to the object.

In the following, we walk you through the process step by step.

3.2.1.1. Setting up for your Object

Fist we need to import some tasks to make our life easier:

i mport os

fromjava.util inport ArraylList

from herschel . i a. tool box. i nage i nport Msai cTask

from herschel . pacs. spg. phot inport MaskFrontCat al ogueTask

from herschel . pacs. spg. pi pel i ne. SavePr oduct ToCbser vati onCont ext inport *

then we set up some important variables:

obj ect = "your (bj ect”
obsids = [1342204327, 1342204328]
canera = "bl ue"

sso = Fal se

#direc = "/theDirectoryPath/ here/"
direc = os.getcwd() + "/"

fileRoot = direc + object + "_" + canera
savel nt er nedi at eSt eps = Fal se

cal cul at eRaDec = Fal se

dol I ndLevel Deg = Fal se

doPhot ometry = True

doSourceFit = Fal se

fromAFi |l e = Fal se

tfile = direc + "nyTargets.txt"

1. object: Object name
2. obsids: list of obsidsto combine (for reference: (scan + xscan))

3. camera: controls whether we want to process the data of the blue (70 and 100 micron) or the red
(160 micron) side of the camera

4. sso: is True if the object is a "moving" target and the projection should be done onto the object
and not according to sky position.camera: you may combine both both 70mic and 100mic "red"
bolometers.

5. direc: it defines the directory where all the products are going to be saved. you can set is using the
full path (recommended for the current User release) or just by using the os.getcwd which obtains
the current working directory from which HIPE was started.

6. fileRoot: the root filename for the products to be saved

15

In the Beginning is the Pipeline. Photometry Build 15.0.3262

7. savelntermediateSteps: allows to save intermediate maps and mask. This can be useful to check if
the source(s) has’have been correctly masked.

8. calculateRaDec: this step allowsto assign a RaDec to each frames. This allows the map projection
to be run faster, however, this increase the memory load in HIPE by afactor of three.

Note

@ itisworth using it if one wantsto make sevaral mapswith slightly different parameters
(e.g different pixel sizes or pixfrac values) to explore what is the optimal parameter
settings for his’her dataset.

9. dolIndLevelDeg: if an additional second order deglitching isto be applied of not, (default = False)
(see Sec. 4.3 for the detail ed description of the second level deglitching task)

10.doPhotometry: if the photometry isto be performed on the given source
11.doSourceFit: if fitting of the sourceisrequired (usualy if the sourceisnot at the centre of the map.
12 fromAFile: if the sourceis not at the center of the map and/or too faint to be detected.

13.tfile: the name of the files containing the approximate position of the targets. It is only needed to
be provided if fromAfileis set to True

3.2.1.2. Setting up your map output parameters

In this short section, you have to define parameters which influence on the image quality at the end
of the processing:

#l owScanSpeed = 15
#hi ghScanSpeed = 22
limts = 10

if canmera == "bl ue":

outpixsz = 1.2 # map pixel size (arcsec)

pixfrac = 0.1 # bol oneter pixel drop size
el se

outpixsz = 2.4 # map pixel size (arcsec)

pixfrac = 0.1 # bol oneter pixel drop size

» « |imits: either set as hard limits of as percentage of the scanning speed. A percentage is recom-
mended for the Parallel mode.

* outpixsz: the size of the output map pixelsin arcsec
« pixfrac: bolometer pixel drop size

Both the output pixel size and the drop pixel size influence strongly the noise in the resulting map. A
smaller drop size or output pixel size will allow abetter PSF sampling (see also Sec. 4.7 for adetailed
description of the photProject task including the output pixel size and the drop size).

3.2.1.3. Building the list of observations and preparing for pro-
cessing

First we need to build alist of the observations and the corresponding calibration trees (see also Sec.
2.5) and load them into an array.

obs =[]
for i in range(len(obsids))

#obs. append(get Cbservati on(obsids[i]))

obs. append(get bservati on(obsids[i], useHsa=True, instrunent="PACS"))
cal Tree =[]

16

In the Beginning is the Pipeline. Photometry Build 15.0.3262

3.2.1.4.

for i in range(len(obsids)):
cal Tr ee. append(get Cal Tr ee(obs=obs[i]))

The calTree contains all the calibration files needed for the data processing. The setting "obs=obg[i]"
ensures that the correct calibration files are attached to each of your observation. In particular, the so-
called SIAM calibration file, which is necessary for the pointing calibration, changes with time. The
SIAM product contains a matrix which provides the position of the PACS bolometer virtual aperture
with respect to the spacecraft pointing. The "date" of the observation is needed to attach the correct
SIAM to the data.

If you observe a Solar System object you need some special corrections in the astrometry due to the
movement of the objects during the observation. If you want ot combine more that one obsid the
reference position is needed to be set to the first observation: the successive observations will be
combined using the reference position and time. See also Sec. 4.12.1

if sso:
for i in range(len(obsids)):
if canera == "bl ue":
frames = obs[i].level 1. refs["HPPAVGEB"] . product
el se:
frames = obs[i].level 1. refs["HPPAVGR'] . product
pp = obs[i].auxiliary.pointing
or bi t Ephem = obs[i].auxiliary.orbitEpheneris
hori zonsProduct = obs[i].auxiliary.horizons
Add again the pointing information to the status
frames = phot Addl nst ant Poi nti ng(franmes, pp, cal Tree=cal Tree[i],
or bi t Ephen¥or bi t Ephem hori zonsPr oduct =hori zonsPr oduct, copy=1)
The followi ng task noves the SSO target to a fixed position in the map
if i ==0:
timeOffset = frames.refs[0].product. get Status("FI NETI VE")[O]
frames = correct RaDec4Sso(franes , tineCffset=tineCfset, orbitEphenrorbitEphem
hori zonsPr oduct =hori zonsProduct, |i near=0)
Save the franes to the Cbservati onCont ext
obs[i] = savePhot Product ToCbsCont ext L1(obs[i], "HPPT' , canera, franes)
Renove vari abl es that are not needed anynore
del frames, pp, orbitEphem horizonsProduct, i, timeOfset

Processing
Now we can really start processing our data. The processing consists of three major steps.
« afirst passisdone per observation masking the source(s) by signal-to-noise

 asecond passisdone by building a better mask from the combined map of the first pass, again with
asignal-to-noise thresholding

 athird passis performed by masking the central source or alist of sources with circular patching

First processing pass: S/N mask

First we create a primary map for each individual obsids without highpass filtering then using this
map we construct a signal-to-noise ratio mask. This mask is then used to create a first set of maps
using the HPF with the new mask. As a start we define some arrays that we will need later for storing
some parameters:

i sBright = Bool 1d(I en(obsi ds), Fal se)
i indDeg = Bool 1d(| en(obsi ds), doll ndLevel Deg)
hpfradi us = I nt1d(l en(obsids), 0)

* isBright: if the source is too bright one might need a different filter width than for fainter sources,
hence we need a variable to control this for each individual obsids.

« iindDeg: controls whether IInd level deglitching should be performed on the obsid

17

In the Beginning is the Pipeline. Photometry Build 15.0.3262

« hpfradius: it contains the values of the high pass filter widths for each individual obsid

then we cycling through the obsids and create the first map and the first mask based on the S/N of
the map

First we extract the frames from the observation context, then remove the noise dataset because we
won't need it anymore. We can recalculate the noise later (see Sec. 4.10 for a detailed description of
the noise in PACS maps).

for i in range(len(obsids)):
print "Start processing: ", obsids[i]
if camera == "blue":

frames = obs[i].level 1.refs["HPPAVGB"] . product.refs[0].product
el se:

frames = obs[i].level 1.refs["HPPAVGR'] . product.refs[0]. product
Renpve the noi se dataset
franes. renove(" Noi se")

Then we check whether one or more of our obsids contain sources that are brighter than 10 Jy.

try:
if(obs[i].nmeta["fluxPntBlu"].value > 0.0) or (obs[i].nmeta["fluxPntRed"].value >
0.0):
if(obs[i].meta["fluxPntBlu"].value > 10000.0) or
(obs[i].nmeta["fluxPntRed"].val ue > 10000. 0):
print "+++ l1nd Level Deglitching will be set to true: for very bright
sources MMIdeglitching tends"
print "+++ to flag as glitches the signal in the center of the sources."
isBright[i] = True
iindDeg[i] = True
except:
print " Parallel node "
isBright[i] = Fal se

and finally set the width of the highpass filter which depends on the brightness of the source, calculate
the coordinates of each frames (if calcualteRADec was set to True) and save the frames variable as
its current state so we can use it later.

if canera == "bl ue":

hpfradi us[i] = 15

if(isBright[i]): hpfradius[i] = 25
el se:

hpfradi us[i] = 25
if(isBright[i]): hpfradius[i] = 40
i f cal cul at eRaDec:
frames = phot Assi gnRaDec(franes)
save(fileRoot + " " + str(obsids[i]) + "_framesWthout HPF. ser", "franes")

Then we can do our first passwith the highpass filter and construct our first source mask based on S/N.

frames = hi ghpassFilter(frames, hpfradius[i], interpolateMaskedVal ues=True)

#frames = filterOnScanSpeed(franmes, | owScanSpeed=| owScanSpeed,
hi ghScanSpeed=hi ghScanSpeed)

frames = filterOnScanSpeed(frames, limt=limts)

map, m = phot Project(frames, pixfrac=pixfrac, outputPixel size=out pi xsz,
cal Tree=cal Tree[i], __list__=True)

d = Display(map, title="Hi ghpassFilter task result on " + str(obsids[i]) +

(w t hout source nmask)")
if savel nternmedi ateSteps :
sinpleFitsWiter(map, fileRoot + "_" + str(obsids[i]) +

_map_wi t hout Mask_firstStep.fits")

Obtain an source mask fromthis initial map

med = MEDI AN(map. cover age[map. cover age. wher e(map. coverage > 0.)])

i ndex = map.i mage. wher e((map. coverage > ned) & (ABS(map.inmage) < le-2))

si gnal _stdev = STDDEV(nap.i mage[i ndex])

threshold = 3. 0*si gnal _stdev

print "Threshold for the source mask = ", threshold

18

In the Beginning is the Pipeline. Photometry Build 15.0.3262

mask = map. copy()
mask. i mage[mask. i nage. wher e(map. i mage > threshol d)] 1.0
mask. i mage[mask. i nage. wher e(map. i mage < threshol d)] 0.0
mask. i mage[mask. i mage. wher e(map. coverage < 0.5*med)] = 0.0
d = Display(mask, title="Source mask for " + str(obsids[i]))
if savel nternedi ateSt eps :

sinpl eFitsWiter(mask, fileRoot + " _" + str(obsids[i]) + "“_mask firstStep.fits")

and perform a second pass using our mask to provide abetter highpass filtering on the original frames
saved before the first pass. At the end of this steps we can remove some variables that are not needed
anymore to free some memory.

restore(fileRoot + "_" + str(obsids[i]) + "_framesWthout HPF. ser")

Introduce the nmask in the franes and apply the highpass filtering

frames, out Mask = phot ReadMaskFrom nage(franes, si=nask, nasknane="Hi ghpassMask",
ext endedMaski ng=True, cal Tree=cal Tree[i], _ list__=True)

frames = highpassFilter(franmes, hpfradius[i], nmasknane="H ghpassMask",
i nt er pol at eMaskedVal ues=Tr ue)

#frames = filterOnScanSpeed(franes, | owScanSpeed=l owScanSpeed,
hi ghScanSpeed=hi ghScanSpeed)

frames = filterOnScanSpeed(franes, limt=limts)
map, m = phot Proj ect (frames, pixfrac=pi xfrac, outputPixel si ze=out pi xsz,
cal Tree=cal Tree[i], _ list__=True)

d = Display(map, title="Hi ghpassFilter task result on " + str(obsids[i]) + " (wth
a source mask)")
simpleFitsWiter(map, fileRoot + "_" + str(obsids[i]) + " _map_firstStep.fits")

Renove variables that are not needed anynore
del i, frames, map, m, d, ned, index, signal_stdev, threshold, mask, outMask

Second processing pass: tight S/IN masking based on combined maps

After creating our initial mask, and highpass filtered data we now combine all of our maps to get a
better S/N for the sources to be masked out:

if(len(obsids) > 1):
i mges = Arrayli st ()

for i in range(len(obsids)):

#i ma = Si npl el nage()

#i mport | mage(i mage=i ma, filename=fileRoot + "_" + str(obsids[i]) +
" _map_firstStep.fits")

ima = sinpleFitsReader(file=fileRoot + "_" + str(obsids[i]) +

" _map_firstStep.fits")
i mages. add(i na)
nosai ¢ = Mosai cTask() (i mages=i nages, over sanpl e=0)

del images, i, im
el se:
nmosai ¢ = sinpl eFitsReader(file=fileRoot + "_" + str(obsids[0]) +

" _map_firstStep.fits")
d = Display(nosaic, title="Msaic map")
if savel nternedi ateSt eps :
sinpl eFitsWiter(nosaic, fileRoot + " _npsaic_firstStep.fits")

Then we create a new sourcemask using the combined map:

med = MEDI AN(nposai c. cover age[npsai c. cover age. wher e(nosai c. coverage > 0.)])
i ndex = nosai c. i mage. wher e((nosai c. coverage > nmed) & (ABS(npsaic.imge) < le-2))
si gnal _stdev = STDDEV(nopsai c.i mage[i ndex])
threshold = 2. 0*si gnal _stdev
print "Threshold for the source mask = ", threshold
nosai cMask = nosai c. copy()
nosai cMask. i mage[nosai cMask. i mage. wher e(nosai c. i mage > threshol d)] 1.0
nosai cMask. i mage[nosai cMvask. i mage. wher e(nosai c. i mage < threshol d)] 0.0
nosai cMask. i mage[nosai cMask. i mage. wher e(nosai c. coverage < 0.5*ned)] = 0.0
d = Display(nosai cMask, title="Source mask obtai ned using the nobsaic map")
if savel nternedi at eSt eps

si npl eFi t sWiter(nosai cMask, fileRoot + "_npsai cMask_firstStep.fits")

Renove vari abl es that are not needed anynore

19

In the Beginning is the Pipeline. Photometry Build 15.0.3262

del mosaic, d, ned, index, signal_stdev, threshold

The mask is then applied during the HPF process of the original restored frames. and the new frames
are deglitched according to the chosen method.

for i in range(len(obsids))
print "Start processing: ", obsids[i]
restore(fileRoot + "_" + str(obsids[i]) + "_framesWthout HPF. ser")
frames, outMask = phot ReadMaskFrom mage(frames, si=npbsai cMask
maskname="Hi ghpassMask", extendedMaski ng=True, cal Tree=cal Tree[i], __list__=True)
frames = hi ghpassFilter(franmes, hpfradius[i], nmasknane="H ghpassMask"
i nt er pol at eMaskedVal ues=Tr ue)
Apply 2nd | evel deglitching after highpass filtering
if(iindDeg[i]):

s = Sigclip(10, 30)

s. behavi or = Sigclip.CLIP

s.outliers = Sigclip. BOTH OUTLI ERS

s.node = Sigclip. MEDI AN

mdt = MapDeglitchTask() # hipe 10

mdt (frames, al go=s, deglitchvector="tineordered", cal Tree=cal Tree[i]) # hipe
10

mapDegl it ch(frames, al go=s, deglitchvector="tinmeordered", cal Tree=cal Tree[i])

del s
el se

frames = phot MMIDegl i t chi ng(franmes, incr_fact=2, mm _node="nultiply", scal es=3
nsi gma=5)

#frames = filterOnScanSpeed(franmes, | owScanSpeed=l owScanSpeed

hi ghScanSpeed=hi ghScanSpeed)

frames = filterOnScanSpeed(frames, limt=limts)

map, m = phot Project(frames, pixfrac=pixfrac, outputPixel size=out pi xsz

cal Tree=cal Tree[i], __list__=True)

d = Display(map, title="H ghpassFilter task result on " + str(obsids[i]) + " (with
t he nosai ¢ source mask)")

sinpleFitsWiter(map, fileRoot + "_" + str(obsids[i]) + "_map_secondStep.fits")
Save the glitch mask into the non highpass filtered franes and save them again
for the next step

glitchmaskMeta = frames. meta["ditchmask"]

glitchmask = franes. get Mask(glitchmaskMet a. val ue)

restore(fileRoot + "_" + str(obsids[i]) + "_framesWthout HPF. ser")
frames. set Mask(glitchmaskMet a. val ue, glitchmask)
save(fileRoot + "_" + str(obsids[i]) + "_framesWthout HPF. ser", "franes")

Renove vari abl es that are not needed anynore
del i, frames, outMask, map, m, d, glitchmaskMeta, glitchmask

Finally the frames are projected onto a map for each obsid. Each individual maps are then combined
together into a mosaic.

if(len(obsids) > 1)
i mges = Arrayli st ()

for i in range(len(obsids))

#i ma = Si npl el mage()

#i mpor t | mage(i mage=i ma, filename=fileRoot + "_" + str(obsids[i]) +
" _map_secondStep.fits")

ima = sinpleFitsReader(file=fileRoot + "_" + str(obsids[i]) +

" _map_secondStep.fits")
i mages. add(i ma)
nosai ¢ = Mosai cTask() (i mages=i nages, over sanpl e=0)

del images, i, im
el se
nmosai ¢ = sinpl eFitsReader (file=fileRoot + "_" + str(obsids[0]) +

" _map_secondStep.fits")
d = Display(nosaic, title="Msaic nap")
i f savel nternedi at eSt eps
sinpl eFitsWiter(nmosaic, fileRoot + "_npsai c_secondStep.fits")

Themosaic map isused to create anew multiple source mask based on S/N. This multiple source mask
will be combined during the third and ultimate pass to a circular patch centered on the main source.

med = MEDI AN(nposai c. cover age[npsai c. cover age. wher e(nosai c. coverage > 0.)])

20

In the Beginning is the Pipeline. Photometry

Build 15.0.3262

i ndex = nosai c. i mage. wher e((nosai c. coverage > nmed) & (ABS(npsaic.inmge) < le-2))

si gnal _stdev = STDDEV(nopsai c.i mage[i ndex])
threshold = 2. 0*si gnal _stdev

print "Threshold for the source mask = ", threshold
nosai cMask = nosai c. copy()

nosai cMask. i mage[nosai cMask. i mage. wher e(nosai c. i mage > threshol d)]
nosai cMask. i mage[nosai cMask. i mage. wher e(nosai c. i mage < threshol d)]
nosai cMask. i mage[nosai cMask. i mage. wher e(nosai c. coverage < 0. 5*ned)]
d = Display(nosai cMask, title="Source mask obtai ned using the npsaic map")

i f savel nternedi at eSt eps

1.0
0.0
= 0.0

si npl eFi t sWiter(npsai cMask, fileRoot + "_npsai cMask_secondStep.fits")

Renove vari abl es that are not needed anynore
del d, med, index, signal_stdev, threshold

Combining multiple source mask and source circular patch: final map

If afile with the coordinate of the expected source(s) on the maps are provided then we can create
mask using this list and a radius of 20 arcsec. But first we need to be sure that our coordinates are
accurate so we fit a gaussian on each source and calculate the exact Ra and Dec. If the source is too
faint for the fitter we just used the supplied coordinate. Of course if we are sure that our supplied
coordinates are perfect we can skip the fitting part by setting the doSourceFit variable to False at the
beginning of the script. If there is no target list given the script will use the source coordinates given

in HSPOT as a center for the circular patch.

i f(doSourceFit)
if(fromAFile)
tlist, ralist, declist = readTargetList(tfile)

Loop over the targets, fit a gaussian to them and save the fit coordi nates

rasource = Doubl eld(len(tlist))
decsource = Doubl eld(len(tlist))
for i in range(len(tlist))

pi xcoor = nosai c. wcs. get Pi xel Coordi nates(ralist[i],

cropsi ze = 20

rl = int(pixcoor[0]-cropsizel/2.)

r2 = int(pixcoor[O0]+cropsizel/2.)

cl = int(pixcoor[1]-cropsize/2.)

c2 = int(pixcoor[1] +cropsizel/2.)

cmap = crop(image=nosai c, rowl=int(pixcoor[0]-cropsizel2.)
row2=i nt (pi xcoor [0] +cr opsi ze/ 2.)
col um1=i nt (pi xcoor [1] - cropsi ze/ 2.)
col um2=i nt (pi xcoor [1] +cr opsi ze/ 2.))

try:

sfit = mapSourceFitter(cmap)
rasource[i] = Doubl e(sfit["Paraneters"].data[1]

)

decsource[i] = Doubl e(sfit["Parameters"].datal2])

del sfit
except:
print "mapSourceFitter couldn't fit the source"
print "The coordinates in the target file wll
rasource[i] = ralist[i]
decsource[i] = declist[i]
#
del ralist, declist, i, pixcoor, cropsize, rl, r2
el se
sfit = mapSourceFitter(nosaic)
tlist = Stringld(1, object)
rasource = Doubl eld(1, sfit["Parameters"].data[1])
decsource = Doubl eld(1, sfit["Paraneters"].data[2])
del sfit
el se
if(fromAFile)
tlist, ralist, declist = readTargetList(tfile)
rasource = Doubl eld(rali st)
decsource = Doubl eld(decli st)
del ralist, declist
el se
Cet source Ra and Dec from the netadata
tlist = Stringld(1, obs[O0].neta["object"].value)
rasource = Doubl eld(1, obs[O].neta["ra"].val ue)

be used"

cl

c2

cmap

declist[i])

\
\
\

21

In the Beginning is the Pipeline. Photometry Build 15.0.3262

decsource = Doubl eld(1, obs[O0].neta["dec"].val ue)

for i in range(len(rasource)):
print "Source =" + tlist[i] + ", coordinates =", rasource[i], decsource[i]

Then both the multiple sources mask and a circular patch mask centered on the main source(s) are
combined and used during afinal HP filtering on restored original frames.

radi us = 20.
for i in range(len(obsids)):
if(isBright[i]): radius = 30.
conbi nedvask = npsai cMask. copy()
#conmbi nedMask. i mage = conbi nedMask. i mage*0. # uncoment if source |ist nmask only
nfc = MaskFronCat al ogueTask()
conbi nedvask = nf c(conbi nedMask, rasource, decsource, Doubl eld(len(rasource),
radi us), copy=1)
d = Displ ay(conbi nedMask, title="Conbi ned nask")
if savel nternmedi ateSt eps :
si npl eFi t sWiter(conbi nedMask, fileRoot + "_final Mbsai cMask. fits")

Renove vari abl es that are not needed anynore
del mosaic, i, radius, nfc, nosaicMask, d

Thefina step isthe actual map making from Level 1: the frames are:
» « Highpassfiltered using the final combined mask

print "Start processing: ", obsids[i]

restore(fileRoot + " " + str(obsids[i]) + "_framesWthout HPF. ser")

frames, out Mask = phot ReadMaskFr om mage(franes, si =conbi nedMask,
masknane="Hi ghpassMask", extendedMaski ng=True, cal Tree=cal Tree[i],
__list__=True)

frames = hi ghpassFilter(franes, hpfradius[i], nmasknane="H ghpassMask",
i nt er pol at eMaskedVal ues=Tr ue)

* Theturnovers are removed from the frames
frames = filterOnScanSpeed(frames, limt=limts)

« The frames are finally projected onto the final individual maps taking into account the chosen
pixfrac and output pixel size. An extra set of map is created for comparison with a pixfrac =1

map, m = phot Project (franes, pixfrac=1, outputPixel si ze=out pi xsz,

cal Tree=cal Tree[i], __list__=True)
d = Display(map, title="Final map of " + str(obsids[i]) + " (pixfrac = 1)")
sinpleFitsWiter(map, fileRoot + "_" + str(obsids[i]) +

" _final Map_defaul t Pi xfrac.fits")
Make a map with the user defined pixfrac
map, m = phot Proj ect (franes, pixfrac=pixfrac, outputPixel size=out pi xsz,

cal Tree=cal Tree[i], __list__=True)

d = Display(map, title="Final map of " + str(obsids[i]) + " (pixfrac =" +
str(pixfrac) + ")")

sinpl eFitsWiter(map, fileRoot + "_" + str(obsids[i]) + "_final Map.fits")

« Thefinal mosaics are combined for each given pixfrac.

if(len(obsids) > 1):
images = Arraylist()

for i in range(len(obsids)):

#i ma = Si npl el mage()

#i mport | mage(i mage=i ma, filename=fileRoot + "_" + str(obsids[i]) +
" _final Map_defaul t Pi xfrac.fits")

ima = sinpleFitsReader(file=fileRoot + "_" + str(obsids[i]) +

" _final Map_defaul t Pi xfrac.fits")
i mages. add(i ma)
nosai cDef Pi xfrac = Msai cTask() (i mages=i mages, oversanpl e=0)
nosai cDef Pi xfrac. meta = i nages[0] . neta
nosai cDef Pi xfrac. history = i mages[0]. history

22

In the Beginning is the Pipeline. Photometry Build 15.0.3262

del images, i, im
el se:
nosai cDef Pi xfrac = sinpl eFi tsReader (file=fileRoot + "_" + str(obsids[0]) +

" _final Map_defaul t Pi xfrac.fits")
d = Displ ay(nosai cDef Pi xfrac, title="Final nosaic map (pixfrac = 1)")
sinpl eFi t sWiter(nosai cDef Pi xfrac, fileRoot +

" _final Mosai c_defaul t Pixfrac.fits")

if(len(obsids) > 1):
images = Arraylist()

for i in range(len(obsids)):

#i ma = Si npl el mage()

#i mport | mage(i mage=i ma, filename=fileRoot + "_" + str(obsids[i]) +
" _final Map.fits")

ima = sinpleFitsReader(file=fileRoot + "_" + str(obsids[i]) +

" _final Map.fits")
i mages. add(i ma)
nosai ¢ = Mosai cTask() (i mages=i nages, over sanpl e=0)

nosai c. mreta = i mages[0] . neta
nosai c. hi story = images[0]. history
del images, i, im
el se:
nosai ¢ = sinpl eFitsReader(file=fileRoot + "_" + str(obsids[0]) +
" _final Map.fits")
d = Display(nmosaic, title="Final nobsaic map (pixfrac =" + str(pixfrac) + ")")

sinpl eFitsWiter(msaic, fileRoot + "_final Mosaic.fits")

Each intermediate steps are saved on disk

3.2.1.5. Photometry

3.2.2.

If chosen, aperture photometry is performed on the source and several aperture on the sky around the
source to determine the uncertainties and S/N of the source.

Results are given for the given pixfrac and each the apertures: centered on source and on the sky are
displayed. The aperture on sky are chosen such that they overlap aslittle as possible with the source.
The sky aperture are displayed: blue all, red selected for aperture photometry of the sky background.

The photometry is given: un-corrected and corrected for the used aperture. The on-source apertures
can be modified according to the source size. The parameters controlling the apertures and the sky
annulus are

ap_blue = [12,15, 20]
ap_green = [12, 15, 20]
ap_red = [8, 15, 20]

Her the first number in each array is the aperture radius the second and third numbers are the inner
and outer radii of the sky annulus respectively.

By definition, HPF removesthe sky contribution, i.e. the skybackground values of the mosaics should
be distributed around a zero value. However, thisisin theory, and the sky aperture photometry gives
agood indication of the residual noise. The sky photometry is also corrected for the apertures used.

Each intermediate mosaics, masks and the original frames are saved to disk during the processing. If
the user chose to not save the intermediate steps, then all but the final mosaic are removed from disk.

Extended sources: MADMAP

The Microwave Anisotropy Dataset mapper (MADmap) is an optimal map-making algorithm, which
is designed to remove the uncorrelated one-over-frequency (1/f) noise from bolometer Time Ordered
Data (TOD) while preserving the sky signal on large spatial scales. The removal of 1/f noise creates
final mosaics without any so-called “banding” or “striping” effects. MADmMap uses a maximum-like-
lihood technique to build amap from a TOD set by solving a system of linear equations.

23

In the Beginning is the Pipeline. Photometry Build 15.0.3262

Figure 3.1. The function of MADmap is to remove the effect of 1/f noise. Left: image created without
MADmap processing. Right: The same image after MADmap processing. The central object has been
masked out.

For Herschel data processing, the original C#anguage version of the algorithm has been translated to
java. Additional interfacesarein placeto allow PACS (and SPIRE) datato be processed by MADmap.
This implementation requires that the noise properties of the detectors are determined a-priori. These
are passed to MADmap as PACS calibration files and referred to as the "INVNTT files" or “noise
filters'.

The time streams must be free of any instrument artifacts and must be calibrated before MADmap
can be used to create the final mosaic. This is a two#part process. The first part is the PACS Level
0 (raw data) to Level 1 (cleaned and calibrated images) pipeline processing. Thisis discussed in this
section. The second part is MADmap pre-processing and how to run MADmap, which are discussed
in the next section.

For most users standard Level 0 to Level 1 processing is normally sufficient. However, the method
used for deglitching the data may have a significant and adverse impact on MADmap processing.
For MADmap, we recommend and prefer the IInd level deglitching option. This option is not part of
the automated (“ standard”) pipelines; the alternative, the“ standard” wavel et based “MMTdeglitcher”,
does not perform optimally when it is allowed to interpolate the masked values. If the MM Tdeglitcher
is used, we recommend selecting the ‘maskOnly’ option to prevent replacing masked values with
interpolated ones.

The HIPE tasks'L05_phot' and 'L1_scanMapMadMap' are the recommended tasks for processing raw
PACS datafrom LO to L1 for the MADmap pipeline, and you can access them via the HIPE Pipeline
menu: Pipeline->PA CS-Photometer->Scan map and minimap->Extended source Madmap.

The HIPE task 'L25 scanMapMadMap' is the recommended task for processing PACS datafrom L1
to L2.5 for the MADmap map making, and you can access this viathe HIPE Pipeline menu: Pipeline-
>PA CS-Photometer->Scan map and minimap->Extended source Madmap. For optimal map-making
with bolometer arrays, ascan and cross-scan observation isrequired (exceptions are when no extended
emissionis present or significant and one can rely on high-passfiltering techniquesto remove bolome-
ter noise). There is no L2 MADmap products for the very reason that the standard data processing
works on asingle OBSID. The Level 2.5 products are designed to combine scan and cross-scan ob-
servations belonging to multiple OBSIDs into asingle final map, using L25_scanMapMadMap task.

In this chapter we do not explain all the details of MADmap itself, rather we explain what you need to
doto your PACSdata to prepareit for MADmap. We then take you through the HIPE tasks that imple-
ment MADmap; but to learn more about MADmap itself, you should read that documentation. Some of
the terminol ogy we empl oy here comes from MADmap, and so we encourage you to read the MADmap
documentation to understand this terminology, as well as to appreciate why the pre-processing steps
we take you through here are necessary. You can look at http://crd.lbl.gov/~cmc/MADmap/doc/man/
MADmap.html and http://arxiv.org/pdf/0906.1775 or http://adsabs.harvard.edu/cgi-bin/bib_query?
arXiv:0906.1775.

24

In the Beginning is the Pipeline. Photometry Build 15.0.3262

3.2.2.1. MADmap pre-processing

The point of using MADmap isto account for signal drift dueto 1/f noisewhile preserving emission at
all spatial scalesinthefinal mosaic. Thisisfundamentally different from the high#passfilter reduction,
which subtracts the signal at scales larger than the size of the high#pass filter window. However, the
MADmap agorithm, indeed most optimal map makers, assume and expect that the noise in the time
streams is entirely due to the so#called 1/f variation of the detectors. The PACS bolometers show
correlated driftsin the signal and these must be mitigated before MADmap can be used. The MADmap
algorithm assumes that the noise is not correlated and so will (incorrectly) interpret any systematic
non-1/f-like drifts as real signal. Additionally, the PACS bolometers have pixel-to-pixel electronic
offsetsin signal values. These offsets must also be homogenised to asingle base level for all pixels.

The mitigation of all of the above effects is referred to as MADmap preprocessing. In all, there are
three main types of corrections. We discuss each step below.

Warning

o The MADmap preprocessing critically determinesthe quality of thefinal maps. Care must
betaken to ensure that each step isoptimally applied to achieve the best possiblereduction.
This may require repeating step(s) after interactively examining the results. Further, not
all steps may be necessary. Thisis also discussed below.

Pixel-to-pixel offset correction

This is the most dominant effect seen in all PACS (photometry) signal readouts. For most single
channel bolometers the offset is electronically set to approximately 0. The PACS bolometers are,
however, multiplexed, and only the mean signal level for individual modules or array can be set to 0,
leading to variations in the pixel-to-pixel signal level. Thisis purely an electronic and design effect.
Mitigation of this effect entails subtracting an estimate of what the zero level should be per pixel from
all of thereadouts of the pixel. In order to estimate the zero level, MADMap uses the median of signals
in each pixel. This method works in any units (digital readout units or volts). The ideais to compute
the median of the entire history of signal values per pixel and subtract this median from each signal.
The task "photOffsetCorr" applies this correction in HIPE. For example:

franes. set Status("OnTarget", Bool 1d(din{2], 1))
franmes = phot O f set Corr (franes)

Figure 3.2 shows the image that is the median of the signalsin each pixel, which iswhat is done when
you use photOffsetCorr.

Figure 3.2. The map of the median of the signalsin each pixel showing the pixel to pixel electronic offset.

25

In the Beginning is the Pipeline. Photometry Build 15.0.3262

Figure 3.3 shows a single readout slice (one single time point) of an input frame after the pixel-to-
pixel offset correction using photOffsetCorr.

Figure 3.3. A singledlice (onesingletime-paint) of araw signal Frame after the offset (pixel to pixel) image
removal step (i.e. after subtracting Figure 3.2 from the original Frames). While the pixel to pixel variation
ismitigated, the result showstwo modules are systematically at a different signal level than therest.

Tip
@ The photOffsetCorr task usesthe on#target Statusflag (OTF) to determine which readouts
areto be used to estimate the offset values. Thisflag can be manipulated to specify, anong
other possihilities, which part of the sky (bound by right ascension and declination values)
is suitable for estimating the offset values. Simply set the OTF flag to false. Then, set
the OTF flag as true for al readouts that are within the boundaries of the sky region. An
example for doing thisis:

Swath of sky within a certain ra boundary.
The min and max acceptable ra values are specified by ra_1 and

ra_2
#

ra_1l = 326.36
ra_2 = 326.42
#

ra = franmes. get Status("RaArray")

dec = franes. get Status("DecArray")
sel = (ra>ra_1)&(ra<ra_2)
ind = sel.where(sel ==True)

ot f=franes. get St at us("OnTarget")

n = len(otf)

otf = Bool 1d(n, Fal se)

otf[ind]=True

frames. set Status("OnTarget"”, otf)

Do phot O f set Corr

#

| MPORTANT: Reset the OIF flag after the phot O fsetCorr
frames. set St at us(" OnTarget ", Bool 1d(n, True))

Exponential signal drift removal
The procedure to remove this fast transient consistsin the following steps: * * * * |
* guessdrift

¢ remove drift and make an approximate map

26

In the Beginning is the Pipeline. Photometry Build 15.0.3262

* backproject and subtract this map from the timelines. What remainsis drift and 1/f noise
« fitindividual pixelswith an exponential model
For the first-guess of the drift, the user has two options:

1. divide the median array in bins of N readouts (N typically of the order of 1000 readouts), take the
minimum value in each N readout bins, and fit the resulting curve with a polynomial . Thisisthe
best optionin the presence of bright sources and correspondsto setting the "useMinM edFirstGuess'

keyword at the beginning of the script to "True". In this case, guess the drift from the minimum
value of the median array of the binned timelines:

X, driftQGuess = photd obal Drift(franes, binsize=binSize, doPl ot=doPlot,\
saveToFi | e=savel magesToDi sk, cl osePl ot =cl osePl ot)

To this, fit an exponential + polynomial function:

driftFit = photdobal Drift_fitExpPoly(x, driftQuess, showrit=doPlot,\
saveToFi | e=savel nagesToDi sk, verboe=verbose,\
title=obsid + " " + canera)

2. dternatively, fit the median values directly with a polynomia (set "useMinMedFirstGuess' to
"False" (default). This solution works well for faint and normal sources, which do not produce a
significant signal in asingleimage. In this case, guess the drift from the raw mean of the unbinned
timelines:

driftGuess = MadMapHel per. cal cul at eMeanTi nel i ne(frames)
To this, fit an exponential + polynomial function:

driftMdel = photdobal Drift_fitExpPoly(x, driftQGuess, showFit=doPlot,\
saveToFi | e=savel nagesToDi sk, title=obsid + " _" + canera,\
r et ur nModel =Tr ue)

Now remove the sources from the drift by removing the positive outliers. Thisis an iterative pro-
cedure, in which the sources are identified with respect to the previous estimate of the drift (i.e.
driftModel):

maxDi ff = 10000

unmasked! ndi ces = Sel ection(Int1d.range(din{2]))

for iter in range(gl obal ExpFitlterations):
#
diff = driftGuess[unmaskedl| ndices] - driftMdel (x[unmaskedl ndi ces])
orderedDi ffl ndex = SORT. BY_I NDEX(di ff)
fivePerCent = int(0.05* en(diff))
maxDi ff = min(maxDi ff, diff[orderedD fflndex[-fivePerCent]])
diff = driftCGuess - driftMbddel (x)
unmaskedl ndi ces = diff.where(diff < nmaxDiff)

At this stage, the processing is the same, independently from how the drift wasinitially estimated.
The next step consistsin removing the estimated average drift from the frames signal:

frames = MadMapHel per.subtractDrift(franes, driftFit)
Make a map of drift-subtracted frames:

tod = nakeTodArray(frames, cal Tree=cal Tree, scal e=1)
nai vemap = runMadMvap(tod, cal Tree, maxRel Error, maxlterations, 1)

Then backproject this map and subtract it from the original frames. This operation allows the sub-
traction of the sky signal from the frames. What is |eft is the remaining drift and uncorrelated 1/
f noise (i.e. "clean timelines'):

sm = tod.get Mapl ndex()

27

In the Beginning is the Pipeline. Photometry Build 15.0.3262

frames. set Si gnal (si gnal Copy)
frames. si gnal Ref . subtract (i mrage2SkyCube(nai vemap, smi)["skycube"]. data)

At this stage, perform a pixel-to-pixel fit to the " clean timelines" with an exponential + polynomial
function:

result = fitScansExpPol y(franes)
Remove the exponential + Polynomial pixel-to-pixel drift from the original frames:

frames. set Si gnal (si gnal Copy)
frames. si gnal Ref. subtract (resul t["perPixel Fi ttedCube"]. data)

All the steps described above are applied to each scan (i.e. obsid). So, before moving forward, the
drift-corrected scan/X-scan frames are merged:

if firstQos:
mer gedFranes = franes
firstCbs = Fal se
el se:
mer gedFr anes. j oi n(franes)

Iterative drift correction

The remaining drift is mitigated by iteratively fitting a baseline (i.e. a polynomial of order 1) to each
scan. This part of the processing starts by making a map with the fast-transient corrected merged
frames:

tod makeTodAr r ay(mer gedFr anes, cal Tree=cal Tree, scal e=pi xScal e)
sm t od. get Mapl ndex()
sourceMap = runMadMap(tod, cal Tree, maxRel Error, maxlterations, 1)

Then, the iterative loop begins. At the start of each iteration, the current estimate of the map is sub-
tracted from the timeline:

nmer gedFr anes. si gnal Ref . subt ract (i mage2SkyCube(sour ceMap, sni)["skycube"]. dat a)
The remaining drift is fit per-scan and per-pixel:

result = phot Fi t ScanLi nes(nmer gedFranmes, node="perPi xel ")

And then it is subtracted from the original merged frames:

nmer gedFr anes. si gnal Ref . subtract (result["fittedCube"]. data)

A new map is created:

makeTodArray. rewiteTod(tod, mergedFranes. signal Ref)
sourceMap = runMadMap(tod, cal Tree, maxRel Error, maxlterations, 1)

The procedure above is repeated for N iterations, where N is by default set to 5.

3.2.2.2. Optimising MADmap pre-processing
Inthisnew version of the MADmap script, the processing requiresvery little user interaction. Theonly
parameter that can/should be tuned - as discussed above - is"useMinMedFirstGuess'. This should be
set to "True" only for very bright sources. Otherwise it should be left to the default value ("False").
 perPixelExpPolyFit: fit an exponential model to the initial fit. Recommended value: True

 resetScanMedL evels: legacy from prototype code. It should be removed in the next release of the
code. Recommended value: False.

28

In the Beginning is the Pipeline. Photometry Build 15.0.3262

« deglitch: deglitch again the timelines. If set to "True", it will ignopre the deglitching applied up to
Level 1 processing and perform the deglitching again using the JScanam al gorithm. Recommended
value: True

e nSigmaDeglitch: definition of a glitch. Recommended value: 5

« globa ExpFitlteraQons: number of iterations used to decouple signal from exponential drift. Rec-
ommended value: 5

 nlterations; number of iterations to use for the iterative drift removal. Recommended value: 5

e minDuration: thisisthe minimum size of thetimeline on which MADmap can work. Recommended
value: 150

» binSize: binSize to use with useMinMedFirstGuess. Recommended value: 1003

3.2.2.3. Running MADmap

After al that pre-processing, you can how create your map with MADmap.

Preparation

After preffprocessing, in theory the only drift left in the signal should be dueto the 1/f noise. Figure 3.4
shows the power spectrum of the data cube (averaged for all pixels) after the drifts have been account-
ed for. The a-priori selected noise correlation matrix for PACS is estimated from the Fourier power
spectrum of the noise. The current MADmap implementation requires the following datato be present
in the Frames object: Camera, (RA, Dec) datasets, BAND, onTarget flag. These data are generated
during the Level 0 to Level 1 processing, or in the Level 0 product generation. MADmap will not
work if any of the above dataset or status keywords are missing.

Camera. Y ou should start with ‘Blue’ or ‘Red'. To check, use the following command in HIPE:

print franes.getMeta()["canmNane"]
{description="Nane of the Canera", string="Blue Photoneter"}

The (RA, Dec) datasets are the 3#dimensional double precision cubes of Right Ascension and Decli-
nation values generated during level 0#1 processing. In HIPE:

print frames[“Ra”].data.class

If an error occurs (provided no typos are present) then the Ra and/or Dec cubes simply has not been
generated.

The BAND status keyword must have one of ‘BS', ‘BL’, or ‘R’ values. If BAND does not have one
of these values, MADmap will not work.

print frames[“Status”][“BAND’]. data[0: 10]

OnTarget status keyword. This in a Boolean flag under status and must have the value ‘true’ or ‘1’
for al valid sky pixels for MADmap to work. E.g.:

print frames[“Status”][“OnTarget”]. data[0: 10]

The data are now ready for MADmap.

29

In the Beginning is the Pipeline. Photometry Build 15.0.3262

MEDIAN(image)
|

| | | | | | |
0 5000 10000 15000 20000 25000 30000

Index

| + scanobsBlock2 |

Figure 3.4. The power spectrum of the full data stream after the drift removals (averaged for all pixels).
Some structureisexpected dueto the astrophysical sourcesand from the unremoved glitches (not thefinal
figure, just a placeholder until | get thereal one).

makeTodArray

Usage

This task builds time-ordered data (TOD) stream for input into MADmap (basicaly it is just a reor-
ganisation of the signal dataset of your Frames), and it creates meta header information for the output
skymap. Input data is assumed to be calibrated and flat-fielded, i.e. it is assumed you have run the
pipeline on the data, as specified in this chapter. The task also takes the "to's" and "from's' header
information from the InvNtt calibration file, which isin our calibration tree. Finally, the task assumes
that the BAND and OnTarget flags have been set in the Status, which will be the case if you have
run the pipeline.

Terminology: "to's' and "from's" are terminology from MADmap (the details of which are not ex-
plained here, see the reference at the beginning of this chapter), and they are the starting and ending
index identifiersin the TOD. "InvNtt" stands for the inverse time-time noise covariance matrix (it is
written as N_tt*~-1). It is part of the maximum likelihood solution.

Creates a PacsTodProduct

todProd = nmakeTodArray(franes=franes, scal e=<a Doubl e>, crota2=<a Doubl e>,
optim zedOri ent ati on=<Bool ean>, mi nRot ati on=<a Doubl e>, chunkScanLegs=<Bool ean>,
cal Tree=<PacsCal >, wcs=<Ws>)

With parameters:

« frames — A Framestype, Data frames with units of Jy/pixel (which will be the case if you have
pipelined the data as explained in this chapter). Required inputs are: (1) RA,Dec datasets associated
with the Frames including the effects of distortion; this would have been done by the pipeline task
PhotAssignRaDec, (2) Mask which identifies bad data (in fact, a combination of all the masks that
areintheFrames), (3) BAND Statusinformation (BS,BL,R), AOT (observing) mode (scan/chopped
raster). If you pipelined your data then these will al be in the Frames and there is nothing more
for you to do

30

In the Beginning is the Pipeline. Photometry Build 15.0.3262

e scal e — A Doubletype, Default = 1.0. Multiplication pixel scale factor for the output sky pixels
compared to the nominal PACS pixel sizes (3.2" for the blue/green and 6.4" for the red). For scale
= 1.0, the skymap has square pixels equal to nominal PACS detector size; for scale = 0.5, the sizes
are 1.6" for the blue and 3.2" for the red

* crot a2 — A Double type, Default = 0.0 degree. CROTAZ2 of output skymap (position angle; see
bel ow)

* optim zeOrientati on — A Boolean type, Default = false. If true, the projection will auto-
matically rotate the map to optimiseits orientationswith respect to the array, and if falsethe rotation
angleis O (north is up and east is to the | eft)

* m nRot at i on minRotation — A Double type, Default = 15.0 degrees. Minimum angle for auto
rotation if optimizeOrientation=true

e chunkScanlLegs — A Boolean type, Default = true, on-target flags are used to chunk scan legs,
i.e. to ensure that off-target data are not used

» cal Tr ee — A PacsCadl type, Default = none, PACS calibration tree
* wcs — A Westype, Default = none, when users need to use a predefined Wcs

» t odPr od — A PacsTodProduct type, Output product, containing the TOD file name, the final
output map's WCS, the so-called to and from indices for each good data segment and the correspon-
dence between TOD indices and sky map pixels (i.e. so it is know what time-ordered indices came
from which part of the sky)

The intermediate output TOD file is saved in a directory specified by the property var.hcss.workdir.
Asyou do not need to interact personally with thisfile, it is not expected you will change this property
from the default (the fileis removed after MADmap has been run and you exit HIPE), but if you wish
to do so you can edit the Properties of HIPE yourself (viathe HIPE menu).

The body of the TOD file is a byte stream binary data file consisting of header information and TOD
data (see the MADmap references at the top of this chapter).

The output TOD product includes the astrometry of output map using the WCS, in particular meta
data keywords such as:

CRVAL1 RA Reference position of skymap

CRVAL2 Dec Reference position of skynmap

RADESYS | CRS EQUI NOX 2000.

CTYPE1 RA---TAN

CTYPE2 DEC- - TAN

CRPI X1 Pi xel x value corresponding to CRVAL1

CRPI X2 Pi xel y value corresponding to CRVAL2

CDELT1 pi xel scale of sky map (=i nput as default, user paraneter)
CDELT2 pi xel scale of sky map (=i nput as default, user paraneter)
CROTA2 PA of image N-axis (=0 as default, user paraneter)

Functionality
Thisiswhat happens as the task runs (i.e. thisis what the task does, not what you do):
1. Build aTOD bhinary datafile with format given above.

2. Define the astrometry of output map and save this as the keywords give above. Default CRO-
TA2=0.0, but if optimizedOrientation=True, then call Maptools to compute the optimal rotation
(i.e. for elongated maps). If rotation less than mi nRot at i on, then leave map un-rotated with
crot a2=0.

3. Badpixels— Dead/bad detector pixels are not included the detector in TOD calculations; they will
not have good InvNtt data and hence are discarded for MADmap.

31

In the Beginning is the Pipeline. Photometry Build 15.0.3262

4. SKypix indices — Compute the skypix indices from the projection of each input pixel onto the
output sky grid. The skypix indices are increasing integers representing the location in the sky map
of good data. The skypixel indices of the output map must have some data with non-zero weights,
must be continuous, must start with 0, and must be sorted with O first and the largest index last.

5. Glitches — Set weights to a BADwtval (bad weight value) for bad data as indicated in the masks
(BADPIXEL, SATURATION, GLITCH, UNCLEANCHOP) of the Frames. For the BLINDPI X-
EL s the default BADwtval is 0.0, but one may need to use a small non-zero value (e.g., 0.001) in
practise (to avoid MADmap precondition that requires non-zero weights and datafor each observed
skypixel). Good data should have weights set to 1.0 for initial versions with nnOBS=1.

6. Chunk per scan leg — Use the OnTarget status flag to define the boundaries for data chunking
per scan leg (i.e. separate data that is on- and off-source). The start and end boundaries of the
TOD indices of each data chunk per detector pixel are needed for the InvNtt headers (the "tos'
and "froms"). TOD rules: (1) Chunk for large gaps (>maxGap) defined by OnTarget (it is assumed
that the telescope turn-around time will be larger than maxGap, but thisis not a requirement). (2)
for small gaps (<=maxGap) defined by OnTarget, use the data values for the TOD, but set the
TOD weights=BADwtval (i.e. these data are effectively not used for the map, but are needed for a
continuous noise estimate for MADmap). This condition is not expected for properly handled data
products upstream, but could exists if there are issues with the pointing products. (3) Include an
option to turn-off chunking by scan leg.

7. Chunk as function of time per detector pixel, based on the mask information — Check the TOD
stream per detector pixel. For "gaps' of bad data in samples larger than maxGap, then chunk the
data. |gnore data streamsthat have anumber of sampleslessthan minGOQD, i.e., each TOD chuck
should be larger or equal to minGOOD samples. For gaps smaller or equal to maxGap, linearly
interpolate the TOD values across the gap and set TOD weights=BADwtval (i.e. these data are
not used for the map, but are needed for a continuous noise estimate for MADmap). TOD rules
(in this order):

a. throw out initial and end samples that are bad.

b. fill in the small bad GAPS (<=maxGap), weights=BA Dwtval

c¢. chuck for large bad GAPS (>maxGap)

d. throw out small chucks (<minGOOD)
Theinitial default maxGap valueis5 and m nGO0D=correlation length of the InvNtt calibration data.
The locations defining the boundaries of the good chunks are stored on a per detector pixel basis (the
"tos' and "froms"). Note that (6) and (7) have a similar logic [(6) is based on OnTarget and (7) is
based on the mask information]. In both cases, chuck for gaps>maxGap. For gaps<=maxGap, linearly

interpolate datavalues across the gapsfor (7) [i.e. glitches], but use the datavaluesfor (6) [i.e. nothing
iswrong with the data values].

runMadMap

Thisis awrapper script that runs the MADmap module (ajava code). Input TOD data is assumed to
be calibrated and flat-fielded and input InvNtt isfrom calibration tree.

Usage

Creates a Sinplel nage
map = runMadMap(todproduct =t od, cal Tree=cal Tree, maxerror=<a Doubl e>,
maxi terati ons=<an | nteger>, runNai veMapper=<Bool ean>, useAvgl nvntt=<Bool ean>)

With parameters:

» t od — (class PacsTodProduct) the result of makeTodArray, MANDATORY

32

In the Beginning is the Pipeline. Photometry Build 15.0.3262

e cal Tree — Pacs calibration tree. For your information: the particular calibration file used has
the InvNtt information stored as an array of size max(n_correlation+1) x n_all_detectors. Each row
represents the InvNtt information for each detector pixel. MANDATORY .

» maxerror — Default = 1e-5, maximum relative error allowed in PCG routine (the conjugate
gradient routine, which is part of MADmap)

e nmaxiterati ons — Default = 200, maximum number of iterations in PCG routine

e runNai veMapper — Default = false, run MadMapper; when true, run NaiveMapper (i.e. some-
thing that is similar to what you would get with the pipeline task photProject, but less accurate.

» useAvgl nvntt — Default = false, use InvNtt data for each pixel; when true, use InvNtt data
averaged for al pixelsin adetector

Two calls are needed if you want to produce both the MadMap and the NaiveMap simple image
products (runNaiveM apper=true yields Naivemap product and runNaivM apper=Ffalse yields MadM ap
product). The NaiveMap imagewill be similar, but less accurate, than what is produced by the pipeline
task photProject. The output from a single run on runMadMap is:

» map — Output product consisting of following:
1. image — Sky map image (either a Naive map or MADmap) with WCS information

2. coverage — Coverage map corresponding to sky map, with WCS (units are seconds, values are
exposure time)

3. error — Uncertainty image associated with the map, with WCS

The error map is currently only made properly for NaiveMapper, athough note also that error maps
do not reflect all the uncertainties in the data: thisis an issue we are still working on. Asthistask runs
there is an intermediate output TOD file created, thisis saved in a directory specified by the property
var.hcss.workdir (as mentioned before, there is not need for the user to interact with this file, it is
removed after MADmap finishes and at the exit of HIPE, but if you wish to have it saved somewhere
else, you will need to change properties viathe HIPE preferences panel).

Functionality
1. Build InvNtt from input calibration tree.

Format of InvNtt chunk:

Header - LONG

m n_sanpl e starting sanpl e i ndex
max_sanpl e | ast sanpl e i ndex
n_correlation correlation width of matrix
Dat a- DOUBLE:

invntt(n_correl ati on+1)

The min/max samples are the "tos" and "froms" calculated from a method within makeTodArray.
The sample indices need to be consistent between the TOD chunked files and the InvNit file.

2. Run MADmap module.
3. If runNaiveMapper = true run NaiveMapper module.

4. Put astrometric header information into output products.
3.2.2.4. MADmap post-processing

Introduction

When Genearlised Least Square (GLS) approaches, like MADmap or ROMA, are employed to pro-
duce sky maps from PACS data, the resulting maps are affected by artifacts in the form of crosses

33

In the Beginning is the Pipeline. Photometry Build 15.0.3262

centered on bright point sources. These artifacts are annoying and make the GL S images difficult to
use for astrophysical analysis. Thisis a pity since GLS methods are otehrwise excelent map makers.
This problem is tackled by the Post processing for GLS (PGLS) algorithm, that will be briefly de-
scribed in the following sections. The algorithm effectively removes the artifacts by estimating them
and by subtracting the estimate from the GLS image, thereby producing a clean image. PGLS was
devised within the Herschel Open Time Key Program HIGAL project and exploited in the HIGAL
processing pipeline. The development was funded by the Italian Space Agency (ASI). A moredetailed
description of PGLS can be found in [R1, R2].

Map making basics

The output of a PACS scan is a set of bolometers' readouts with attached pointing information. Each
readout gives the power measured at the corresponding pointing plus a noise term. The readouts can
be organised into amatrix d = { d(n,k) } where the the element d(n,k) is the k-th readout of the n-th
bolometer. The matrix d is termed the Time Ordered Data (TOD).

The map making problem is that of constructing an image (map) of the observed sky from the TOD.
Thetypical approach isthat of defining apixelization of the observed sky, i.e. partitioning the sky into
agrid of non overlapping squares (pixels). The map maker has to produce a map which is a matrix
m ={ m(i,j) } where m(i,j) is a measure of the power received by the pixel in the i-th row and j-th
column of the sky grid.

A simple and important map making technique is the rebinning. I n the rebinned map the value of each
pixel is set equal to the mean value of all the readouts falling in the pixel. Rebinning is a computa-
tionally cheap technique and is capable of removing well white, uncorrelated noise. Unfortunately
the PACS datais normally affected by 1/f, correlated noise too. As aresult, rebinning is a poor map
maker for PACS data. An example of rebinned map is shown in Figure 3.5, where the impact of the
correlated noise can be seen in the form of stripes following the scan lines.

Figure 3.5. Impact of the correlated noisein the form of stripesfollowing the scan lines.

The GL S approach is an effective map making technique, exploited by map makerslike MADmap and
ROMA.. The GL S approach is effectivein removing both white and correl ated noise and has afeasible
computational complexity, albeit higher than simple rebinning. Unfortunately, when used to process
PACS data, the technique introduces artifacts, normally in the form of crosses placed on bright point
sources. An example of GLS map where such an artifact is clearly visibleis shown in Figure 3.6. The
artifacts are due to the mismatches between the GL S assumptions and the actual physical process, e.g.
the error affecting the pointing information of each readout, which are better analysed in [R2]. The
artifacts are annoying and make the GL S image less usable in astrophysical analysis.

In the Beginning is the Pipeline. Photometry Build 15.0.3262

Figure 3.6. Point source artifact in aform of crosses places on bright point sour ces.

Notation: inthefollowing wewritem = R(d) when themap misobtained from the TOD d by rebinning.
And m = G(d) when the map m is abtained from the TOD d by the GL S approach.

Unrolling and Median filtering

Let usintroduce two additional operations that are needed to describe the PGL S algorithm. The first
operation istermed the unrolling and producesaTOD d from amap m. In particular, given the pointing
information and amap m, the unrolling of the map amounts at producing a TOD where each readout is
set equal to the value of the corresponding pixel in the map, as specified by the pointing information.
In other words, the resulting TOD is the data that would be obtained if the sky was equal to the map.

The second operationistermed theresidual filtering and is based on the median filtering of asequence.
Given asequencex[n] and aninteger h, the median filtering of x[n] isthe sequencey[n] = median(x[n-
h], x[n-h+1], ..., X[n], ..., X[n+h-1], Xx[n+h]). In words y[n] is the median value of a window of 2h
+1 samples from the x sequence, centered on the n-th sample. Now the the residual filtering can be
defined asr[n] =x[n] - y[n], that isr[n] is obtained by subtracting from x[n] the corresponding median.
Residual filteringisanon-linear form of high-passfiltering andisvery effectiveinremoving correlated
noise. Specificaly, all the harmonics of x[n] below the normalised frequncy of 1/(2h+1), that iswith
aperiod longer that 2h+1 samples, will be greatly attenuated. Finally note that residual fitering can be
applied to awhole TOD d, by applying it separately to the data sequence of each bolometer.

Notation: in the following we write d = U(m) when the TOD d is obtained by unrolling the map m.
And t = F(d) when the TOD t is obtained by residua filtering the TOD d.

PGLS algorithm

The Post-processed GL S (PGLS) map making algorithm starts from the TOD d and the GLS map
m_g = G(d). It is based on the following basic steps, that aim to produce an estimate of the artifacts
affecting the GLS map:

1. Unroll the GLS map: d_g=U(m_g).

2. Removesigna:d n=d g-d.

3. Remove correlated noise: d w=F(d_n).

4. Compute artifacts estimate: m_a=R(t_w).

Thefunctioning of the basi ¢ steps can be explained asfollows. Theoriginal TOD containsthesignal S,
the correl ated noise Nc and the white noise Nw, so that, using the symbol # to indicate the components,

35

In the Beginning is the Pipeline. Photometry Build 15.0.3262

we write d # S + Nc + Nw. Assuming that the GLS map maker perfectly removes the noise but
introduces artifacts, m_g containsthe signal S and the artifacts A, m_g # S+A. The same components
aretherein the unrolled TOD computed in step 1, d_g # S+A$. By subtracting the original TOD from
d_gin step 2 we are left with a TOD d_n where the signal is removed and the noise (with changed
polarity) and the artifacts are introduced, d_n# A - Nc - Nw. By performing the residua filtering of
d_n with a proper window length (to be discussed soon), we eliminate the correlated noise while the
artifacts and the white noise are preserved, d_w # A - Nw. By rebinning d_w in step 4, we eliminate
thewhite noise so that m_a# A$isan estimate of the artifacts. In practice, since the GLS map maker,
the residua filtering and the rebinning do not perfectly remove the noise, m_a# A + Nawhere Na
is the noise affecting the artifact estimate.

The basic steps just described can beiterated in order to improve the artifact estimate. In thisway we
obtain the PGL S algorithm, producing a PGLS map m_p from the TOD d:

1. Initialize PGLS map and artifacts estimate: m_p = G(d), m_c=0.
2. Repeat following 1-5 steps until convergence:

a Unroll: d_g=U(m_p).

b. Removesigna:d n=d g-d.

¢. Remove correlated noise: d w=F(d_n).

d. Estimate artifacts: m_a=R(d _w).

e. ImprovePGLSmap: m p=m_p-m_ a
In the procedure, at each iteration more artifacts are removed from the map and eventually the PGLS
map isobtained. Examples of the PGLS map m_p and of the artifacts estimate are shown in fFigure 3.7
and Figure 3.8. One sees that the artifacts are removed and that the only drawback is a dlight increase

in the background noise, barely visible in the figures. This is due to the artifact noise, Na, which is
injected into the PGLS map in step 2.5.

Figure 3.7. Post-processed image with the artifacts removed.

36

In the Beginning is the Pipeline. Photometry Build 15.0.3262

Results

Figure 3.8. The point source artifactsthat wereremoved.

The PGL Swas analysed by means of simulations, using aknown, synthetic sky and the corresponding
target map. It was verified that PGL S effectively removes the artifacts without introducing too much
noise, because the PGLS map is closer to the target map than the GL S map in the mean square sense.

It was verified that the convergence criterion is not critical, because the artifact estimate rapidly ap-
proaches zero meaning that both the corrections and the noise injection decrease. Usually some four
or fiveiterations are enough to get most of theimprovment and the convergence criterion can be when
the mean square value of the estimate is|low enough.

It was verified that the only parameter of the algorithm, namely the median filter window length, is
not critical. While shorter/longer windows cause lessymore noise to beinjected and less/more artifacts
to be removed, good results are obtained in a wide range of values for the window length. A rule of
thumb for this parameter is to set it equal to the width of the arms of the artifacts' crosses, which is
easily estimated by visual inspection of the GLS image.

References

Usage

[R1] L. Piazzo: "Artifacts removal for GLS map makers', University of Rome "La Sapienza', DIET
Dept., Internal Report no. 001-04-11, January 2011.

[R2] Lorenzo Piazzo, David Ikhenaode, P. Natoli, M. Pestalozzi , F. Piacentini and A. Traficante:
"Artifact removal for GLS map makers', Submitted to the IEEE Trans. on Image Proc., June 2011.

A Javatask PhotCorrM ADmapArtifactsTask is used for this purpose. Its Jython syntax is shown be-
low.

Create a MapContext that contains both the corrected inage and the artifacsts nap
result = phot Corr MadmapArtifacts(frames=franmes, tod=tod, inage=i mage, niter=<a
| nt eger >, copy=<an | nt eger >)

With parameters:

» result — aSimplelmage type, the result of photCorrMadmapArtifacts, contains both the point
source artifacts correted image and the artifacts map, MANDATORY

e frames — aFramestype, the input PACS frames, MANDATORY

37

In the Beginning is the Pipeline. Photometry Build 15.0.3262

e t od — aPacsTodProduct type, the input time ordered data (tod), MANDATORY
* i mage — a Simplelmage type, the input MADmap image, MANDATORY
e ni ter — alnteger type, the number of iteration, default value 1, OPTIONAL

e copy — alnteger type, copy=1 isto preserve input arguments, otherwise input arguments will be
modified, default value 0, OPTIONAL

3.2.2.5. Open issues and known limitations

The following items are known limitations of MADmap processing:

Computing requirements

Asagenera rule of thumb, MADmap requires acomputer of M * 1GB * Duration of observation in
hours. M is dependent upon many factors, including the preprocessing and deglitching steps and the
output pixel size of the final maps. For nominal pixel scales (3.2"/pix and 6.4"/pix in the blue and
red channel, respectively), the value of M is typically 8 for the blue channel, and significantly less
for the red channel.

3.2.2.6. Troubleshooting

The accuracy of this map compared to high-pass filtered maps is discussed in a companion report
RD2. In summary, MADmap-produced maps have absol ute flux level s consistent with those produced

with photProject.

Glitches in the readout electronics

If acosmic ray (or acharged particle) impacts the readout electronics, the result may be a significant
changeinthedrift correction for the array (or the module) as awhole (the detector responseis affected
not just at the time of the strike, but for atime thereafter also). Figure 3.9 illustrates this.

=

J

-25

i
=]
T

F:
in
T

MIN over 1000 images window

1 1 | | | 1 | 1
0 2000 4000 6000 ©000 10000 12000 14000

Index

(5, Y

+ Scan Hacan scand Mt scanB Mt
——— XKzanAfil Xscank it

Figure 3.9. The minimum median ???) plotted versusreadout index. There appearsto be a changein the
magnitude of thedrift, likely caused by a cosmicray or charged particleimpact on thereadout electronics.
You can seethisby the break in thelinesthat fit the data: the scan direction data are described by a green
and palebrown line (" scanA fit" and " scanB fit"), which do not have the same slope; and similarly for the
cross-scan reddish and purplelines (" XscanA fit and " XscanB fit").

Figure 3.10 shows the smoking gun that indicates a glitch caused the global drift to change.

38

In the Beginning is the Pipeline. Photometry Build 15.0.3262

£
=}

1
1

1
'

g it 294
=F i B H 7
& sl i - P -
%) + . " +
B o5 L b -
R - . .
= T 5 of
@ 20— il -
= j o 3

el ;2 $taH pae -
T'g L3 N 'tv\'_f f L
Eﬂ 10 i -ﬁ"v Q
@ E
_ S f . —
= £y 4 L

=" -+ |
,f} 0 w
a .
w5 —
2 | | | | | | |

9200 9400 9500 9800 10000 10200 10400 10600

Readout

Figure 3.10. An expanded region of time-ordered data, near where the drift shows an abrupt changein
magnitudein Figure 3.9. Thereisaclear break in the signal near readout value 9900

The only possible remedy isto segment the data before and after the glitch even and fit the global drift
separately. Segmenting of the data was explained in Sec. 7.3.2.

Improper module-to-module drift correction

If the inter-module drift is not corrected, the results will look similar to what is shown in Figure 3.11.

Figure 3.11. The final mosaic with a clearly visible " checkered" noise pattern super imposed on the sky.
Thisartifact isduetoimproper correction for the module-to-module drift

Point source artifact

Figure 3.12 showsan example of what istypically referred to asthe “ point source artifact.” Theartifact
appears around bright point sources only and manifestsitself as dark bandsin the scan and cross-scan
directions. The origin of the artifact is not well understood except as possibly due to misalignment of
the PSF with respect to the final projected sky grid. This misalignment resultsin incorrectly assigning
the peak and the wings of the PSF to the same sky pixel, resulting in alarge deviation in the sky signal.
When MADmap attempts to solve for the maximum likelihood solution to such a distribution of the
signal values, it fails to achieve the optimal solution at the PSF +/- the correlation length.

The point source artifact has been successfully corrected using the method described in section 5.

39

In the Beginning is the Pipeline. Photometry Build 15.0.3262

3.2.3.

Figure 3.12. An example of the point sourceartifact around a very bright source. The M ADmap reduction
creates regions of negative (dark) stripesin the scan and cross-scan direction centred on the point source.

Extended sources: JScanam

This script (scanmap_Extended emission _JScanam.py) isthe HIPE implementation of the IDL map-
maker called Scanmorphos. Please ook at the following link for more information and a detailed de-
scription of this map making tool.

The script startsfrom level 1 frames and creates amap from the data. It always combinestwo (and only
two) obsids. If you have more than one pair use the scanmap Extended_emission_JScanam_multi-
plePairs.py script which is basically the same script embedded into afor cycle and can combine any
number of scan and cross-scan obsid pairs. The script is designed in away that you can run it line by
lineorinonego. Itisalso possibleto check all theintermediate products created during the processing.

First you need set some variables to control the behaviour of the script.

canera = "red" (or "blue")
obsi ds = [obsi d-scanl, obsi d cross-scanl] or [obsid-scanl, obsid cross-scanl, obsi d-
scan2, obsid cross-scan2,...] in case of multiple pairs

sol ar Syst entbj ect = True/ Fal se

gal actic = True/ Fal se

cal cul at eRaDec = True/ Fal se

showapsAft er Tasks = True/ Fal se

debug = Fal se/ True

deglitch = True/ Fal se

nSi gmabDeglitch = 3

makeFi nal Map = True/ Fal se

out put Pi xel Si ze = the size of your pixel in arcseconds
pi xfrac =

e camera: sets which side of the PACS photometer you want to process. Be careful with memory
alocation, blue requires about 4 times the memory used in red.

* obsids: setsthe obsids for scan and cross-scan pairs

» solarSystemObject: set it to Trueif the sourceis a Solar System object (i.e. is amoving target).

40

http://www2.iap.fr/users/roussel/herschel/

In the Beginning is the Pipeline. Photometry Build 15.0.3262

Note
@ if there is extended emission in the map, the main JScanam assumptions will fail, be-
cause the scan and cross scan will be shifted to the object reference system.

« galactic: the galactic option should be set to True if the maps extended emission is not confined
inasmall area

« calculateRaDec: Calculate the coordinates of every pixel withtime. Itisusually safeto setitto True.
» showMapAfterTasks: if True, produces a map after each step in the pipeline.
 deglitch: setit to Trueif you want to run the JScanam deglitch task

» nSigmaDeglitch: the new deglitch threshold to use in case the deglitch parameter isset to True. The
default is 3 times over the stDev value of the signal in a given map pixel.

* debug: Debug mode. Usewisely, if setto Trueit will clutter your desktop with graphs and displays.
It is not recommended unless you are really an expert user of Scanamorphos.

» makeFinalMap: generate afinal map.

» outputPixelSize: Pixel size for the final map in arcseconds. If its value is -1 value, the pixel size
will be the default one (3.4" in blue and 6.2 in red).

 pixfrac: this parameter is used for the final map. It fixes the ratio between the input detector pixel
size and the map pixel size.

After setting your initial parameters you can start downloading the data. The best way to do it to
directly download it from the Herschel Science Archive (HSA). For alternative methods see Chapter
1 of DAG.

scansObs = get Cbservation(obsi ds[0], useHsa=True, instrunment="PACS")
I evel 1 = PacsCont ext (scansbs. | evel 1)

scans = | evel 1. aver aged. get Caner a(canera) . product.sel ect Al ()
blueFilterl = scansObs. neta["bl ue"]. val ue

cscansQbs = get Cbservation(obsi ds[1], useHsa=True, instrunent="PACS")
I evel 1 = PacsCont ext (cscansbs. | evel 1)

cscans = | evel 1. aver aged. get Caner a(caner a) . product. sel ect Al l ()

bl ueFilter2 = cscansObs. neta["blue"]. val ue

this part of the scripts downloads your data from the HSA and extracts the level1 frames for the two
given obsids. If you set the solarSystemODbject parameter to True then it shifts the coordinates to the
object reference system

i f(sol ar Syst enbj ect) :

print " Setting the scans and crossScans coordi nates to the object reference
system "

pp = scansObs. auxiliary. pointing

or bi t Ephem = scansQbs. auxi | i ary. or bi t Epheneri s

hori zons = scansCbs. auxiliary. horizonslf you set

cal = getCal Tree(obs=scansCbs)

scans = phot Addl nst ant Poi nti ng(scans, pp, cal Tree=cal, orbitEphemrorbitEphem
hori zonsPr oduct =hori zons)

timeOf fset = scans. get Status("FI NETI ME") [0]

scans = correct RaDec4Sso(scans, tineOfset=ti meCffset, orbitEphemrorbitEphem
hori zonsPr oduct =hori zons, |i near=0)

#

pp = cscansObs. auxiliary. pointing

or bi t Ephem = cscansCbs. auxi | i ary. or bi t Epheneri s

hori zons = cscansObs. auxiliary. hori zons

cal = get Cal Tree(obs=cscansCbs)

cscans = phot Addl nst ant Poi nti ng(cscans, pp, cal Tree=cal, orbitEphenrorbitEphem
hori zonsPr oduct =hori zons)

41

../../howtos/html/Dag.DataIO.html
../../howtos/html/Dag.DataIO.html

In the Beginning is the Pipeline. Photometry Build 15.0.3262

cscans = correct RaDec4Sso(cscans, tinmeOfset=ti neOfset, orbitEphenrorbitEphem
hori zonsPr oduct =hori zons, |i near=0)
del pp, orbitEphem horizons, cal, timedfset

Then, if calculateRaDec was set to True, it calculates the Ra and Dec for each pixels at each frame

scans = phot Assi gnRaDec(scans)
cscans = phot Assi gnRaDec(cscans)

and removes the unnecessary frames that are taken during the turnaround of the spacecraft

scans = scananor phosRenoveTur narounds(scans, |inmt=5.0, debug=debug)
cscans = scananor phosRenoveTur narounds(cscans, |inmt=5.0, debug=debug)

Here you can control the amount of removed datathrough the limit parameter. It isexpected in percent
and gives a zone around the nominal scanspeed (in our case +- 5%) Task removes every frames that
have a scan speed higher or lower than these limits.

After removing the turnaround frames we mask long the term glitches using scanamorphosM ask-
LongTermGilitches. This task produces a mask caled Scanam_L ongTermGlitchMask. Y ou should
check this mask and if the results are not optimal (some glitches are not detected or some sources are
flagged as glitches), you can try to modify the parameter stepAfter in order to get better results.

scans = scananor phosMaskLongTer nd i t ches(scans, stepAfter=20, gal actic=gal actic)
cscans = scananor phosMaskLongTer md it ches(cscans, stepAfter=20, gal actic=gal actic)

Thistask produces amask called Scanam_L ongTermGlitchMask. Y ou should check this mask and if
the results are not optimal (some glitches are not detected or some sources are flagged as glitches),
you can try to modify the parameter stepAfter in order to get better results. This parameters controls
the length of the event tat is considered as glitch.

At this point we save the scan and cross-scan for later use in atemporal pool

from herschel . pacs. share. util inport PacsProductSi nkW apper
scansRef = PacsProduct Si nkW apper. get | nst ance(). saveAl ways(scans)
cscansRef = PacsProduct Si nkW apper . get | nst ance() . saveAl ways(cscans)

Then we subtract the baseline of every scanleg in every pixel

scans = scananor phosScanl egBasel i neFi t Per Pi xel (scans, nSi gma=2, debug=debug)
cscans = scananor phosScanl egBasel i neFi t Per Pi xel (cscans, nSi gma=2, debug=debug)

scanamorphosScanlegBaselineFitPerPixel isatask that subtractsalinear baselineto thesignal of every
pixel and every scanleg in the frames. The objective of this task isto remove signa drifts with time
scales|arger than ascanleg, preserving real sources as much as possible, with the intention of creating
afirst order map that can be used for the source mask calculation. Extended emission is generally not
preserved by thistask, so useit carefully.

These are the main algorithm steps:

 Select the unmasked timeline data for each instrument pixel and every scanleg. If a source mask is
provided viathe sourceMask optional parameter, the pointsin this mask will not be used.

« If thereisenough points, fit them with alinear baseline. If thisisnot the case, cal culate their median
value.

e Thelinear basdlinefit is performed on aiterative way. The unmasked dataisfitted first. Fit positive
outliers are then removed, and the fit is performed again with the clean data. The same steps are
repeated until the iteration converges. This happens when either there is no new outliers found, the
number of iterations is larger than 50, or there is too few data points to continue with the fitting
process. In this last case, the median of the unmasked datais calculated.

42

In the Beginning is the Pipeline. Photometry Build 15.0.3262

 Subtract the fit (or the median) to the whole scanleg signal, including the masked values.

The most important parameter of the task is nSigma that controls the threshold limit for the source
removal. Points above nSigmatimes the standard deviation of the linear fit residualswill be classified
asreal sources, and will not be considered in the next fit iteration.

The next step is then to create the source mask. But before we do that we need to join the scan and
Ccross-scan to increase the signal to noise for detecting the sources.

scans. j oi n(cscans)
sour cel mage, scans = scananor phosCr eat eSour ceMask(scans, nSi gma=4.0
creat eMask=Fal se, gal actic=gal actic, cal Tree=cal Tree, debug=debug)

Here nSigma controls also the threshold above which the emission should be masked out. Modi-
fy nSigma until you get an optimal mask. The mask should cover only a small fraction of the map
(<~30%). It's not necessary that all the faint emission is masked, only the brightest regions.

Then we replace the scan and cross-scan with the saved ones, and to save some memory we delete
the saved data.

del (scans)

scans = scansRef . product
cscans = cscansRef. product
del (scansRef, cscansRef)
System gc()

Then we add the mask to the scans:

maskl mage, scans = scananor phosCr eat eSour ceMask(scans, i nputl mage=sourcel mage
creat eMask=True, cal Tree=cal Tree, debug=debug)

maskl mage, cscans = scananor phosCr eat eSour ceMask(cscans, i nputl nage=sour cel mage
creat eMask=True, cal Tree=cal Tree, debug=debug)

After adding the source mask to the data we can start the real processing by removing the general
offset using a simple baseline removal.

scans = scananor phosBasel i neSubtracti on(scans, gal acti c=True, debug=debug)
cscans = scananor phosBasel i neSubtracti on(cscans, gal acti c=True, debug=debug)

Here we set the gal actic option to through because e just want to remove and offset. Thetask calculates
the signal median value in every pixel array and every scan (for galactic = True) or scanleg (galactic
= False), and subtracts it from the frames. Only the unmasked data is considered in the median offset
calculation.

Before we move further with the processing we need to identify and mask the signal drifts produced
by the calibration block observation. The PACS photometer signal is sometimes affected after the
calibration block observation by a strong signal drift with atypical time length of 1000 time indices.
The task scanamorphosBaselinePreprocessing identifies those drifts and masks them. The derived
mask is saved in the frames with the name Scanamorphos_CalibrationBlockDrift. This mask will be
active after the execution of the task. If a mask with the same name is aready present in the frames,
it will be overwritten with the new mask values.

scans = scananor phosBasel i nePreprocessi ng(scans, gal actic=gal actic, debug=debug)
cscans = scananor phosBasel i nePr eprocessi ng(cscans, gal acti c=gal actic, debug=debug)

After we got rid of the effect of the calibration blocks we can remove the real baseline from the scans
(not only a simple offset as we did before) by running the basline subtraction again:

scans = scananor phosBasel i neSubtracti on(scans, gal acti c=gal actic, debug=debug)
cscans = scananor phosBasel i neSubtracti on(cscans, gal actic=gal actic, debug=debug)

Here, of course, we use the galactic option that is suitable to our data.

43

In the Beginning is the Pipeline. Photometry Build 15.0.3262

After the final baseline removal we can remove signal drifts with time scales longer than a scan-leg.
Thisis called de-striping. We use the task scanamorphosDestriping.

scans, cscans = scananor phosDestri pi ng(scans, cscans, iterations=6, cal Tree=cal Tree
debug=debug)

Thistask removessignal driftsin the scans and the cross scanswith time scaleslonger than a scan-leg.
It assumes that the scans and the cross scans have perpendicular scan directions, and as a result the
projected maps have different drift gradients. The drift removal technique is based on the following
points:

» The drift power increases with the length of the considered time scale (1/f noise). For that reason
the task starts removing the strongest drift component on a time scale equal to the scans length,
decreasing this scalein the next step to 4 scalegs, and finally to 1 scanleg. In each step the remaining
drifts are weaker.

» Back projecting amap obtained in a given scan direction, to the perpendicular direction, will trans-
form the generally increasing or decreasing signal drifts into oscillatory drifts that cancel out on
large time scales.

These are the main algorithm steps:

 Create a map of the cross scans and back project it to the scan direction of the scans. By defaullt,
the brightest sources will be removed using the mask created by scanamorphosCreateSourceM ask
(Scanamorphos_SourceMask). This can be changed with the task optional parameter sourceMask.

* Subtract the back projected timelinefrom the scanstimeline. Thiswill remove the remaining sources
(common in the two timelines) awill leave the combination of the two drifts.

» Fitalinetothetimeline difference. Thefit will contain mostly the effect of the scans drift, because
the contribution from the cross scans drift cancels due to its oscillatory nature.

* Subtract thefit (i.e. drift) to the scans timeline.

» Repeat the previous steps on the cross scans, using the back projection of the scans. Repeat all steps,
decreasing the considered time scale from the scans length, to 4 scanlegs, and finally 1 scanleg.

* Iterate until convergence for timescales equal to one scanleg. Convergence is reached when the fit
of the differencesis considerably smaller than the fit residuals. The maximum number of iterations
can be controled with the task optional parameter iterations.

At this point we can finish working with the scans and cross-scans separately and can join all the data
together

mer gedScans = scans

mer gedScans. j oi n(cscans)
del (scans, cscans)
System gc()

and remove signal driftswith time scal es shorter than a scan-leg using scanamorphosl ndividual Drifts.
mer gedScans = scananor phosl ndi vi dual Dri fts(nergedScans, debug=debug)
Thisiswhat the task do:

» Measure the scanspeed and cal culate the size of a mappixel, that can hold 6 subsequent samples of
one crossing of a detector pixel.

» Make amapindex with the specified gridsize. Collect only pixfrac = 0.001 (only pixelcenters)

» Count the crossings of all pixelsinto every map pixel

44

In the Beginning is the Pipeline. Photometry Build 15.0.3262

 Calculate the average flux value for each crossing and its standard deviation: bi and s

» Now use the threshold noise. Thisisthe blue linein Figure 3.1 called HF noise. Check, how many
percent of the stddev of every mappixel are smaller than this threshold noise. -> < 80%; do not use
that mappixel for the drift correction -> >= 80%: use the mappixel but don't use the values with
stddev > HF noise

 Calculate the average flux fi in every mappixels. Use the white noise of the detectors as aweight.

« for each crossing calculate: average time ta, drift of the time ti as a difference of the average flux
of the crossing and overall average di = bi - fi.

 build the drift timeline from the di at the timesti.

* interpolate the missing values of the real timeline (linear interpolation) and subtract the drift from
the real timeline.

» new map for pointing corrections

« calc the rms (stddev) of the drift timeline sdi. If sdi < HFnoise, thisiteration is converged if sdi >
HFnoise, build the mapindex from the new corrected timelines and iterate.

* empirical improvement: average the drifts to time-bins of 27, 9, 3 and 1 (in subsequent iterations)
and build the drift timeline by interpolating these much larger bins.

Then we deglitch the merged scans
scananor phosDegl i t ch(ner gedScans, nSi gnma=5, cal Tree=cal Tree, debug=debug)
and remove theindividual drifts

mer gedScans = scananor phosl ndi vi dual Dri fts(nergedScans, cal Tree=cal Tree,
debug=debug)

If the deglitch parameter is set to True here comes a new deglitching with the user defined nSigma.
Finally we can create the final map using photProject using the desired pixel size and pixfrac:

final Map = phot Proj ect (mer gedScans, out put Pi xel si ze=out put Pi xel Si ze,
pi xf rac=pi xfrac)

of course we can save our map as afitsfile:

out put MapFi l e = /your/Home/ Dir/final Map_"+canera+".fits"
sinpl eFitsWiter(final Map, outputMapFile)

If we process multiple obsid pairsthe end of the processing isalittle bit different. First we need to save
all of our pairsafter thefinal deglitching using aproduct sink (we also examine hereif the observation
aredone in parallel mode):

if(camera == "blue"):
if(blueFilterl == "bluel"):

bl ueScansRef er ences. append(PacsPr oduct Si nkW apper . get | nst ance() . saveAl ways(ner gedScans))
i f Phot Hel per.isParall el Cbs(nmergedScans):
bl ueParal l el = True
el se:

gr eenScansRef er ences. append(PacsPr oduct Si nkW apper . get | nst ance() . saveAl ways(nmer gedScans))
i f Phot Hel per.isParall el Cbs(nmergedScans):
greenParal l el = True
el se:

45

In the Beginning is the Pipeline. Photometry Build 15.0.3262

redScansRef er ences. append(PacsPr oduct Si nkW apper . get | nst ance() . saveAl ways(ner gedScans))
i f Phot Hel per.isParall el Cos(mergedScans):
redParal l el = True

del (mer gedScans)
System gc()

then we merge all the observations by filter:

print " Merging all the pairs of scans and cross scans "
mer gedScansBl ue = None

mer gedScansG een = None

mer gedScansRed = None

if(canera == "blue"):
if len(blueScansReferences) > O:
mer gedScansBl ue = bl ueScansRef er ences|[0] . pr oduct
for i in range(l, |en(blueScansReferences)):
mer gedScansBl ue. j oi n(bl ueScansRef erences[i]. product)
if len(greenScansRef erences) > O:
mer gedScansG een = greenScansRef erences[0] . product
for i in range(l, |en(greenScansReferences)):
mer gedScansG een. j oi n(greenScansRef erences[i]. product)

el se:
mer gedScansRed = redScansRef erences[0] . pr oduct
for i in range(l, |en(redScansReferences)):

mer gedScansRed. j oi n(redScansRef erences[i]. product)

del (bl ueScansRef er ences, greenScansRef erences, redScansReferences)
System gc()

first we define three empty variables (one for each filter) for holding the merged scans then fill them
up with the saved products. Finally we project the map using all of our obsid pairs:

i f (out put Pi xel Si ze < 0):
if(canera == "blue"):
i f (mergedScansBl ue ! = None):
if blueParallel:
out put Pi xel Si zeBlue = 3.2
el se:
out put Pi xel Si zeBlue = 1.6
i f (mergedScansGreen ! = None):
if greenParallel:
out put Pi xel Si zeG een = 3.2
el se:
out put Pi xel Si zeG een = 1.6
el se:
out put Pi xel Si zeRed = 3.2
el se:
out put Pi xel Si zeBl ue = out put Pi xel Si ze
out put Pi xel Si zeG een = out put Pi xel Si ze
out put Pi xel Si zeRed = out put Pi xel Si ze

i f (makeFi nal Map) :
print " Projecting the nerged scans onto the final map "
print " Projection with drizzle using: " + str(outputPixelSize) + " arcsec”
i f (mergedScansBl ue ! = None):
final MapBl ue, m = phot Proj ect (mer gedScansBl ue,
out put Pi xel si ze=out put Pi xel Si zeBl ue, pi xfrac=pi xfrac, cal Tree=cal Tree,
useMast er MaskFor Ws=Fal se)
d = Display(final MapBlue, title="Final map (blue)")
out put MapFile = "/your/Hone/Dir/final Map_" +canera+" _bl ue. j pg"
d. saveAsJPQ out put MapFi | e)
i f (mergedScansGreen ! = None):
final MapG een, m = phot Proj ect (ner gedScansG een,
out put Pi xel si ze=out put Pi xel Si zeG een, pi xfrac=pi xfrac, cal Tree=cal Tree,
useMast er MaskFor Ws=Fal se)
d = Display(final MapGeen, title="Final map (green)")
out put MapFile = "/your/Hone/Dir/final Map_" +caner a+"_green. j pg"
d. saveAsJPQ out put MapFi | e)

46

In the Beginning is the Pipeline. Photometry Build 15.0.3262

i f (mergedScansRed ! = None):
final MapRed, m = phot Proj ect (mer gedScansRed,
out put Pi xel si ze=out put Pi xel Si zeRed, pi xfrac=pi xfrac, cal Tree=cal Tree,
useMast er MaskFor Ws=Fal se)
d = Display(final MapRed, title="Final map (red)")
out put MapFile = "/your/Hone/Dir/final Map_"+camera+"_red.j pg"
d. saveAsJPQ out put MapFi | e)

3.2.4. Extended sources: Unimap

Unimap[1, 3] isa Generalized Least Squares (GLS) mapmaker developed in MATLAB and released
by the DIET department of the University of Rome 'La Sapienza’ (link). See the the _Unimap Doc-
umetation web page for moreinformation, and in particular for a detailed description of this mapmak-
er, read the Unimap User's Manual.

Unimap performs an accurate pre-processing to clean the dataset of systematic effects (offset, drift,
glitches), and it uses the GLS algorithm to remove the correlated 1/f noise while preserving the sky
signal over large spatial scales.

The GL S estimator provided by Unimap can introduce distortions at the positions of bright sky emis-
sion, especialy if point-like. The distortions, which generally appear as cross-like artifacts, are due
to the approximations of the signal model and to an imperfect compensation of disturbances at the
pre-processing stage.

In the first Unimap releases (up to version 6.3) the distortions were estimated and removed by means
of a post-processing (PGLS, WGLYS). However, starting from the version 6.3 a new method was de-
veloped: this takes into account an additional disturbance within the GLS algorithm, that is the pixel
noise.

In the post-processing, a high-pass filtering approach isimplemented within Unimap to remove these
distortions within a specified spatia scale, by generating the Post-GL S map (PGLS). The application
of the high-pass filter method has the drawback that it injects back correlated noise over the same
spatial scale used for the removal of the distortions. To minimise this noise injection, the filtering
can be applied only over the bright emission regions - these are selected using a threshold approach,
having at the latest stage the Weighted-GL S map (WGLYS).

The distortions that the post-processing removes by means of an empirical approach are mainly due
to the pixel noise, that isthe noise that is introduced by digitally sampling (with pixels) a continuum
signal (sky emission). The variation in the readouts, due to the random displacement of the sampling
points with respect to the centre of the pixel (where readouts are assumed in the *hard-pointing’ ap-
proximation [5]), introduces an extra source of noise, especially on the sky regions where the signal
variation are steep, i.e. where the displacements are statistically larger.

Compensating for the pixel noise within the GL S algorithm is the most convincing way of preventing
distortions, rather than removing them by means of the post-processing. However, accounting for the
pixel noise makes the GL S heavier from a computational point of view, since in each iteration of the
GLS an internal iterative algorithm is run, and this can increase the processing time up to a factor
40. For this reason, for large datasets it may be necessary to run the GLS without the pixel noise
compensation and apply the post-processing to remove the distortions instead.

Thevalues of parametersthat contribute to the generation of the GL S, PGL S and WGL S maps depend
on the characteristics of the sky emission and on the level of accuracy to be achieved by the different
estimators. The best choice for the parameters valuesis automatically set by Unimap (from the track 6
and beyond) by performing a statistical analysis of the sky emission. These parameters are described
below and they can always be fine-tuned by the users according their purposes.

Finally, Unimap versions 6.3 or later can combine the pixel noise and the electronic noise to produce
an estimate of the noise affecting the final map and to generate an error map associated directly with
the final map.

47

http://infocom.uniroma1.it/unimap/
http://infocom.uniroma1.it/unimap/docs.html
http://infocom.uniroma1.it/unimap/docs.html

In the Beginning is the Pipeline. Photometry Build 15.0.3262

3.2.4.1. Unimap installation and configuration

Before running theinteractive script, install UNIMAP by downloading the TAR filefrom theweb page
(link). Unimap isdeveloped in MATLAB and it is spawned from the interactive HIPE script by using
the runUnimap task. If you do not have MATLAB on your computer, install the MATLAB Compiler
Runtime (MCR) by following the instructions provided on the UNIMAP download web page.

Y ou need to set the following path variables within the script:

uni mapDir = '/your/ Uni map/ directory’
mcrDir = ' /your/ MATLAB/ Conpi | er/ Runti ne/ directory’
dataDir = '/your/data/directory’

e uni mapDir: sets the path where the UNIMAP files (run_unimap.sh, unimap/unimap.app,
unimap_par.tx) are, as provided by the TAR file.

e ntr Di r: setsthe path where the MCR bin folder is located.

« dat aDi r: setstheroot path for storage on your computer. The Unimap output filesare savedin a
subdirectory (dataDir/firstObsid_|astObsid/camera) if the cleanDataDir parameter is set equal False
(see below).

3.2.4.2. The Unimap interactive script
The script starts from Level 1 frames and invokes the runUnimap task to generate the final maps.
First you set some variablesto control the behaviour of the script (the path variables described above).

Unimap makes use of a large number of parameters that are defined and managed within the
unimap_par.txt file. In theinteractive script alimited number of parameters (9) areincluded and prop-
agated. The default values adopted in the script allow to the pipeline to cal culate their optimal values,
but these parameters can be alwaysfine-tuned by the user. The other Unimap parametersaretaken from
the unimap_par.txt file. In Section 3.2.4.4 we explain how to modify all of the Unimap parameters.

In the following, the parameters that the user can edit within the ipipe script are described. These are
grouped into 3 sections. "Unimap parameters' includesthe parametersthat contributeto the generation
of the GLS map, while the parameters for the post-processing and for an advanced usage of the script
are gathered together into "Unimap post-processing” and "Advanced-use parameters' (the latter also

in Section 3.2.4.4).
canera = "red" (or "blue")
obsids = [firstObsid, secondObsid, .., |astObsid]

sol ar Syst enbj ect = True (or Fal se)

#Uni map paraneters

nunmProc = nunber of |ogical processor to use (default 1)

sync = conpensate the time shifting along the scan leg (default -1)

pi xel Noi se = apply the correction for the Pixel Noise (default -1)

out put Pi xel Si ze = the size of your pixel in arcseconds (default 0)

m ni munChange = the mni mum change (in dB) to keep iterating (default 1)
startlmage = starting image for the G.S (default 3)

Uni map post-processi ng

filterSizel nArcsec = PGS high pass filter size in arcsec (default 0)
wgl sDThreshold = WELS threshold to detect an artifact (default 0)

wgl sGThreshold = WGLS threshold to grow an artifact (default 0)

Advanced- use paraneters

maskToUse = the mask in the franes that are adopted by Uni map
rewiteFranesFitsFiles = True (or Fal se)
rewiteParanetersFile = True (or Fal se)

cleanDataDir = True (or Fal se)

48

http://infocom.uniroma1.it/unimap/down.html

In the Beginning is the Pipeline. Photometry Build 15.0.3262

camer a: sets which channel of the PACS photometer you want to process. Note that the blue
requires about 4 times the memory than the red.

obsi ds: setsthe obsids to combine. The script is designed for combining any number of obsids,
being limited only by the computer memory and computational time. Remember that standard L evel
2.5 products are the combination of 2 concatenated obsids - scan and cross-scan. If alarge number
of obsids are to be combined, it is recommended to use the memory_optimized script available in
the Pipelines menu.

sol ar Syst enObj ect : isyour source asolar system object? In such a case the reduction will be
performed in the coordinate system of the moving object.

nunPr oc: how many logical processors do you want to use? Unimap 6.3 or later is designed to
parallelise the GL S computation (the most time-consuming module) over a number of processors.
If anegative number is given, Unimap detects the number of available processors. Remember that
for managing a parallelised run, an overhead in term of RAM is required with respect to the usage
of asingle processor.

sync: in Unimap 6.3 or later, the component of the Relative Pointing Error due to the time shift
aong the scan leg can be compensated. If sync=2, the synchronisation is applied, whileit is skipped
if sync=0. Sincethe synchronisation is estimated by comparing the source positions observed along
different scan directions, Unimap evaluates whether the image is signal-rich enought to apply a
reliable sync compensation, if a negative number is given.

pi xel Noi se:thegainto apply to the estimated pixel noiseinto the GL S pixel noise compensation
(available in Unimap 6.3 or later). 0 means no pixel noise compensation, 0.5 means half of the
estimated pixel noise is compensated, 1 all of it, and so on. If anegative number is given, Unimap
decides if the field is suited for pixel-noise compensation, according the dimension of the dataset
and the amount of signal.

out put Pi xel Si ze: pixel sizefor the final map in arcsec. If 0, the pixel sizeis 3.2", except for
non-parallel blue observations, whereit is 1.6"

m ni mumChange: expressed in dB, it is the minimum change in the GLS map to keep iterating.
If it is set to a positive number, the stop level is automatically selected by taking into account the
morphology of the map. The rational is that a higher precision is requested for images which are
background dominated and for intermediate cases with bright and extended emission over a flat
background (e.g. nearby galaxies, nebulag).

start | mage: istheinitia guess adopted by the GLS for starting the iterations. It can be: O for
a zero (flat) image, 1 for a nailve map, 2 for a mixture map and 4 for a Alternating Least Squares
(ALS) map (for Unimap 6.4.2 or later). The mixture map is composed of portions of aflat map at
the positions recognised as background regions, while for the signal regions, the mixture map is
formed by portions of the naive map. Background and signal regions are identified by adopting a
threshold approach over the computation of the noise level of the observation. If the ALS map is
selected, the same method used for the drift removal is used to obtain a destriper starting image,
by fitting the timelines with a piecewise function. The number of iterations required by the GLS
to converge depends strongly on the adopted starting image, thus the selection of proper initial
guess can affect the quality of the final maps and it can significantly reduce the process running
time. Unimap performs a statistical analysis on the Naive map for identifying the optimal starting
image according the signal properties of the field. This starting guess is applied if the startimage
parameter is 3.

filterSizel nArcsec: setsthedimension (in arcseconds) of the high-passfilter adopted by the
PGL S method for removing possibledistortionsintroduced by the GLS. If itis0, Unimap calculates
the best dimension of the PGLS filter by using an iterative approach, where the convergence is
controlled inthe similar way asitisfor the GLS algorithm. If the automatic setting doesn’t provide
a satisfactory result, a fine-tuning of this parameter can enhance the quality of PGLS map (see
Section 3.2.4.5).

49

In the Beginning is the Pipeline. Photometry Build 15.0.3262

e wgl sDThr eshol d: threshold for the detection of distortions introduced by the GL S algorithm,
for the building of the WGL S mask (mask of artifacts). The greater the value, the smaller the number
of detected artifacts. The optimal value (wglsDThreshold = 0) is computed by varying the value of
the threshold and by performing a statistical analysis on the distortion map.

* wgl sGThr eshol d: threshold for the building of the WGLS mask (mask of artifacts), starting
from the anchor points provided by the wglsDThreshold parameter. The greater the value, smaller
the extent of the masked artifacts. The optimal value (wglsDThreshold = 0) is computed by varying
the value of the threshold and by performing a statistical analysis on the distortion map.

* maskToUse: the masks that should be considered by Unimap. The Scanamorphos_Calibra-
tionBlockDrift mask is added to the default masks because the JScanam module scanamorphos-
BaselinePreprocessing is used within the Unimap preprocessing to remove the drift due to calibra-
tion blocks.

* rewiteFramesFitsFil es:settoTrueif youwant to generate the FITSfilesused by Unimap
asthe input dataset and to save them in the data directory (see Section 3.2.4.4).

e rewiteParanetersFil e: setto True if you want to rewrite the parameter file in the data
directory (see Section 3.2.4.4).

» cl eanDat aDi r : set to True if you want to remove input and output files from the data directory
(see Section 3.2.4.4).

After setting the initial parameters, the first part of the script creates a list with the Level1 frames
(frameList) of the observations that you want to reduce. This list is filled using a ‘for’ statement,
within which:

» data are downloaded and Level 1 frames extracted. The best way is to download the data from the
Herschel Science Archive (HSA). For alternative methods see Sec 1.4 of the DAG.

obs = get Cbservation(obsi d, useHsa=True, instrunent="PACS")

| evel 1 = PacsCont ext (obs. | evel 1)

frames = | evel 1. aver aged. get Caner a(caner a) . product . sel ect Al l ()

« if aSolar System Object, the coordinates in the frames are set to the object reference system;

 pixel coordinates are assigned at the dataset and the optical distortion correction is applied

franes
franmes

phot Assi gnRaDec(frames, cal Tree=cal Tree)
convert ToFi xedPi xel Si ze(franes, cal Tree=cal Tree)[0]

Once the frameList is complete, it can be passed to the runUnimap task, together with the parameter
previously defined.

uni mapMap = runUni map(framesLi st = framesList, filterSize =
filterSizel nArcsec,
startlmage = startlmage, outputPixel Si ze = out put Pi xel Si ze,
wgl sDThreshol d = wgl sDThreshol d, wgl sGThreshol d = wgl sGThr eshol d,
m ni nunChange = mi ni mnumChange, masksToUse = masksToUse, uni mapDir =
uni mapDir,
nmcrDir = nerDir, dataDir = dataDir, dataDirNanme = databDir Nane,
rewiteFranesFitsFiles = rewiteFranesFitsFiles,
rewiteParanetersFile rewiteParanetersFile, cleanDataDir = cleanDataDir,
sync = sync, pixNoise pi xel Noi se, nunProc = nunProc)

3.2.4.3. Run Unimap

RunUnimap works in two steps: the first converts the Levell frames into FITS files suitable for
Unimap and writes the Unimap parameter file, the second spawns Unimap from HIPE and creates

50

../../dag/html/Dag.DataIO.Hsa.html

In the Beginning is the Pipeline. Photometry Build 15.0.3262

the final maps, together with intermediate evaluation products. All files generated by the task are
saved in the directory dataDir/firstObsid_lastObsid/camera, and this directory is removed if clean-
DataDir=True.

RunUnimap creates a Frames FITS file for every obsids by adopting the naming convention
unimap_obsid camera_obsid.fits, and writes the Unimap parameter file unimap_par.txt. Then it
launches the Unimap pipeline. While the pipeline is running, the log is displayed into the HIPE Log
and aunimap_log.txt file is generated at the end of the process. The Unimap log is also saved within
the output context (unimapMap) into the unimapl og TableDataset (see below).

For a detailed description of the pipeline, read the Unimap User's Manual, while here the main steps
of the pipeline are summarised:

Obs 1

wo —»TOP —»Pre | —»Clich —»Drift —»Sync —»Noise —»GLS ﬂPGLS —»WGLS —»
ObsN

Figure 3.13. The Unimap pipeline.

bolo 454, mean 179.944397

6000 k- - | SO 0 _

4000
2000

2000k ,.

4
x 10

Figure 3.15. The Crab field before and after onset correction.

51

In the Beginning is the Pipeline. Photometry Build 15.0.3262

Min 0.00 - Max 4000.00 Min -400.00 - Max 400.00

Figure 3.16. Effect of the synchronisation on a Galactic field (Ieft image). On the right image is the dif-
ference image between a map with and another without the time-shift compensation. The impact of the
compensation isappreciated in particular on mapsacquired at fast scan speed (60 ar csec/sec).

Figure 3.17. A Galactic Planefield before and after drift correction.

52

In the Beginning is the Pipeline. Photometry Build 15.0.3262

Figure 3.18. 70 micron mapsof thebright Ceres: Clockwise: Naive, GL Swithout pixel-noise compensation,
GL Swith pixel-noise compensation, WGL S. The strong distortionsintroduced by the GL S (without pixel
noise) are not efficiently recovered by the WGL S, while they are completely compensated by taking into
account the pixel noise within the GL S algorithm

53

In the Beginning is the Pipeline. Photometry Build 15.0.3262

Figure 3.19. Clockwise: GL S, GL S-minus-Rebin, PGL S, GL S-minus-PGL S maps. The distortions intro-
duced by the GL Salgorithm ar e highlighted on the difference maps and they are no longer present in the
PGL S map.

Figure 3.20. Thedistortions present in the PGL S-minus-GL S map (left image) are properly masked (right
image) by the WGL S algorithm.

e TOP: Time Ordered Pixels. In the first step the sky grid is built and every readout is assigned to a
sky pixel according the specified coordinate system (equatorial or galactic). The pointing matrix is
built with assumption that each readout is simply associated to the centre of the sky pixel wherethe
readout falls (hard-pointing [5]). With this assumption, the pointing matrix is diagonal and simple
to handle (at least with respect to afull matrix), but it also introduces an additional source of noise,
that is the pixel noise. In addition, the module removes the offsets by subtracting the median value
from each timeline, and it generates a coverage map (cove_full fits).

In the Beginning is the Pipeline. Photometry Build 15.0.3262

Pr e: This module works on the detector timelines. Signal jumps are identified and flagged, and
onsets are corrected by subtracting an exponential fit.

d i t ch: thismodule detects and flags glitches by adopting a sigma-clipping approach that exploits
the spatia redundancy. To simplify the glitch detection, a high pass filter is first applied over the
timelines, to remove long-scale drift and 1/f noise. A glitch mask (flag_glitch.fits) is created by
this module.

Sync: this module corrects the shift along the timelines that may be due to errors in the timing
system or to delay in the processing chain. The applied method is described in [4].

Dri f t : this module removes the drift affecting the timelines by performing a polynomial fitting.
Thefit procedure is based on an iterative approach that uses the Subspace L east Square (SLS) drift
estimation [2, 5]

Noi se: this module performs four important steps in the reduction chain.

* It estimates the noise spectrum and constructs the noise filters to be used by the GL S algorithm.
The GL S implementation used by Unimap exploits time-domain filtering.

« It usesthe flag-removed TOP for making a simple projection and generate anaive map (img_re-
bin.fits).

* It estimates the pixel noise, that is a source of noise due to the random displacement of the sam-
pling point with respect to the centre of the sky pixel. The pixel noise is estimated by adopting
a destriper map, obtained by fitting the timelines with a piecewise function within an ALS ap-
proach [5]. The length of the constant part of the piecewise function can be explicitly controlled
by the user through the noise_pix_win parameter (from Unimap 6.5.1).

« It generates an error map (img_noisefits, stored in the ‘error’ product within the map context,
see below) by combining the contributions of the pixel noise and the electronic noise, as it is
described in [5]. The error map is the estimated standard deviation of the noise affecting the final
map and is created using an approach similar to the Sanepic mapper [6]. At the time of Unimap
release 6.4.3, the reliability of the error estimate has only just been checked by the PACS team
and it is certain only to afactor of +/-2.

GLS: thisisthe main module and the most time-consuming part of the whole pipeline. It computes
the GLS estimator via an iterative approach. GLS is used for removing 1/f noise. For an accurate
result, all other sources of noise (glitch, drift, offset) must be removed within the previoustasks. The
main parameters used by the GLS module are theinitial guessfor starting the iteration and the level
of precision to achieve between iterations. An additional iterative algorithm can be nested inside
the GL S method to control the pixel noise removal. This compensation avoids the distortionsin the
GL S map at the positions of bright sky emission and strong signal gradients, with the drawback of
increasing the computational time. If the increase of running timeis not acceptable, the pixel noise
compensation can be disable and the distortions introduced by the GL S algorithm can be estimated
and removed by means of the post-processing modules.

PGLS: thismodul e estimates the GL S distortions using anon-linear, median high-passfiltering, and
subtracts them from the GL S image to produce a clean Post-GL S map [1]. The critical parameter is
the dimension of the high-passfilter, which should be enough large to include the distortions but not
so large as to amplify the background noise of the image. Generally, the increase of the noise level
introduced by the PGL S is negligible for images with high signal-to-noise ratio, which are also the
images for which distortions are generally present. Nevertheless, it is not always obvious that the
PGLS image is better than the GL S one, and that is why the WGL'S module was introduced. The
PGL S module also saves the difference map between GLS and PGLS (delta_gls pgls.fits), which
isauseful image to evaluate the distortion estimate.

WGELS: this module applies the PGLS method only in the map sky regions where the distortions
arerelevant (Weighted-GL S). Distortions are detected and masked using the wglsDThreshold and

55

In the Beginning is the Pipeline. Photometry Build 15.0.3262

wglsGThreshold parameters. In the WGL S map, the PGLS method is applied only where it is nec-
essary, by minimising the injection of background noise generated by the PGLS. The mask of dis-
tortion is saved by the WGL S module for evaluation purposes (flag_wgls/fits).

The output of r unUni map task isasingle Simplelmage, called unimapMap, which contains multiple
Tabledatasets. The products that are in the unimapMap Simplelmage (HPF) are listed below. For
every product the name of the file generated by Unimap is specified, and these are also saved into the
working directory if clearDataDir = False:

* i mage isthe WGLS map (img_wagls.fits) or the GLS map (img_gls.fits);

* pgl s/ al s isthe Post-GL S map or the ALS map (img_pgls.fits);

e gl s isthe GLS map (img_gls/fits);

* nai ve isthe Naive map (img_rebin.fits);

* error istheerror map (img_noisefits).

» cover age isthe coverage map obtained with no flagged data (cove_full fits).
e uni mapLog isthe unimap log file (unimap_log.txt).

Theimage layer is assumed as the optimal map to provide; if the pixel noise compensation is applied,
the image layer is the GLS map, since the post-processing was excluded, and the pggs product is
replaced by the ALS map. Differently, if the pixel noiseis skipped (e.g. because it was not necessary
according to the signal characteristic of the field or because the dataset is too large) the image layer
isthe WGLS map. The error map is always the same for both cases.

3.2.4.4. Advanced use of the unimap script

The output of r unUni nap task (unimapMap) contains al the relevant maps generated by Unimap
and the other files are not saved into the working directory if the clearDataDir is set equal True
(default value).

However, if auser wants to inspect the Unimap files for evaluation purposes, clearDataDir must be
set to False. The expert user can then exploit the rewriteFramesFitsFiles and rewriteParameterskile
variables for modifying al the unimap parameters.

The Unimap parameter file (unimap_par.txt) isintheinstallation directory and it is copied to the work-
ing directory for every Unimap run. It contains several parameters, for the 9 modules of the Unimap
pipeline previously described, and only 9 parameters are set in and propagated by theinteractive script.

You can run the script severa times, modifying the default values of Unimap parameters by editing
the unimap_par.txt in dataDir/firstObsid_lastObsid (NOT the one in the installation directory) and
by launching the interactive script with rewriteFramesrFitsFiles = False and rewriteParametersFile
= Fase (for this, a first run must have already been done). In this way, the formatting part of the
pipeline will be skipped and it just invokes unimap (so it will not create Frames FITS files and the
unimap_par.txt will not be overwritten). This all saved a significant amount of running time. In a
similar way, if the you want to modify the Unimap parameters only via the ipipe script, set rewrite-
FramesFitsFiles= Falseand rewriteParameter siile= True and you will save on the running neceesary
for generating again the Frames FITS file, while the parameters file will be updated with your new
configuration.

Finally, an additional ipipe script (memory_optimized) is provided within the Pipelinesmenu in HIPE,
to allow one to run Unimap while using the minimum amount of memory. In this script, the complete
r unUni map task (it takes level 1 frames and provides Unimap maps), is split in 2 subtasks in away
designed to minimise the amount of data loaded in the RAM. It is particularly useful for processing
large observations or/and if several obslDs are processed all together in asingle run.

56

In the Beginning is the Pipeline. Photometry Build 15.0.3262

3.2.4.5. Quality inspection of final maps
With pixel noise compensation

In very few cases the estimated pixel noiseis not applied in the optimal way and adifferent gain value
with respect the default value (1) must be applied so you can avoid residual distortions or to reduce
the noise level of the final map.

In general, if the gain is high, the electronic noise becomes negligible and the GLS map tends to the
Naive one; on the contrary, if the gain is the very low, the pixel noise becomes negligible, and you
have a GL'S map without pixel noise compensation (and the the post-processing is necessary because
of possible distortions on the GLS map).

The goal is to have a gain enough high to match al the bright emission, for which the Naive map
is the best approximation, while the GLS can introduce distortions. To do that you can inspect the
morphology of the pixel noise map (noise pix.fits), checking that the pixel noise emission is concen-
trated around bright sources and sky emission and, if necessary, modify the gain value to obtain a
better result.

With post-processing

The WGLS map is the main and most reliable product if the pixel noise compensation is not applied.
It removes artifacts by injecting a small amount of noise in delimited regions of the map.

The automatic setting of the post-processing parameters guarantees, in most cases, that the PGLS and
WGLS method are applied when and where they are necessary, but in some cases a fine-tuning of the
PGL S/'WGLS parameters can generate better results.

To evaluat the quality of the post-processed Unimap maps one can inspect the Deltal mages, which are
the differences between Unimap maps. Deltalmages are generated and stored in the working directory
if clearDataDir = False.

e delta_gls pgls.fits:detamapbetween GLSand PGLS maps. It highlights the distortions
introduced by the GLS method. The artifacts shown in the delta_gls pgls.fits image depend on the
dimensions of the high-pass filter used by the PGL S method (see Figure 3.17 and Figure 3.18).

e« delta_gls rebin.fits: deltamap between GLS and Naive maps. It provides an unbiased
representation of the artifacts because it is not influenced by the distortion evaluation performed
by the PGL S method. Nevertheless, it can be very noisy, due to the presence 1/f noise of the naive
map, and it may not be reliable for the evaluation of artifacts of low flux levels (Figure 3.17).

e delta pgls rebin.fits (delta_wgls rebin.fits): detamap between PGLS (or
WGLS) and Naive maps. It provides a representation of the goodness of the artifact removal per-
formed by the PGL S and WGL S methods. Only the pattern of the correlated noise (i.e. stripes fol-
lowing the scan-line directions) should be visible in the delta pgls rebin.fits and delta wgls re-
bin.fitsimages if the algorithms have correctly removed the artifacts.

57

In the Beginning is the Pipeline. Photometry Build 15.0.3262

Figure3.21. . Isthe WGL S map (left image) reliable? Artifacts visible in the PGL S-minus-GLS map are
not present into the WGL S-minus-Rebin map (right image), where only the pattern of the correlated noise
can be seen.

By inspecting the Deltaimages, you can learn the following:

* Post-processing is not necessary (even if the pixel noise compensation is not applied) if residuals
are not present in the delta_gls pgls.fits or delta_gls rebin.fits maps. In this case, the PGLS and
WGLS modules don’t increase the quality with respect to the GLS map.

* If thedelta_pgls _rebin.fits map shows residuals, the length of the PGL S high-passfilter (filterSize)
was too short to remove all the artifacts.

* If the delta_wgls_rebin.fits map shows residuals, then in addition to tuning the length of the high-
passfilter, the WGL Sthresholds used for building the mask (wglsD Threshold and wglsGThreshol d)
should be fine-tuned.

3.2.4.6. Unimap Referencess

[1] L. Piazzo et a., "Artifact Removal for GLS Map Makers by means of Post-Processing”, |IEEE
Trans. on Image Processing, Vol. 21, Issue 8, pp. 3687-3696, 2012.

[2] L. Piazzo et al., "Drift removal by means of alternating least squares with application to Herschel
data", Signal Processing, vol. 108, pp. 430-439, 2015.

[3] L. Piazzo et al.: 'Unimap: a Generalised Least Squares Map Maker for Herschel Data, MNRAS,
447, pp. 1471-1483, 2015.

[4] L. Piazzo et al.: 'Least Squares Time-series Synchronization in Image Acquisition Systems, IEEE
Trans. on Image Processing, 2016 , submitted.

[5] L. Piazzo et al.: 'Generalised Least Squares Image Estimation in the Presence of 1/f and Pixel
Noise', manuscript in preparation, 2016.

[6] Patanchon et al.: 'SANEPIC: A Mapmaking Method for Time Stream Data from Large Arrays,
ApJ, Vol. 681, pp. 708-725, 2008.

58

In the Beginning is the Pipeline. Photometry Build 15.0.3262

3.3. Chopped point source pipeline

3.3.1.

As mentioned above, there is no particular interactive pipeline script for observations executed via
the chopped point source (PS) AOT. The reason for thisis that this observing mode was only rarely
used during the Science Demonstration Phase (SDP), and the PACS I CC had recommended to use the
superior mini scan map mode instead. Nevertheless, there is still alarge amount of data obtained for
calibration purposesthat may al so be exploited scientifically. Therefore, we here describe aprocessing
script that can be used as a template. It contains the same processing steps the SPG performs, but
provides abetter readability. It also allowsthe user to include passages to inspect the intermediate data
products. Note that there are not many alternatives how to process chopped PACS photometer data.

Differences in processing between chopped and

scanned observations

3.3.2.
data

There is anumber of differences in the data structures of chopped and scanned observations that are
also reflected in the various processing steps and the tasks that are applied. In short, chopped data
do not need highpass filtering nor deglitching. The latter is done automatically when coadding the
individual frames of a chopper position by applying a sigma clipping algorithm. In addition, the final
map is created with a shift-and-add procedure that combines the four images of two chopper and the
two nod positions to a single combined signal. A drizzling algorithm as provided for scan map data
is not implemented.

Note

@ Theflux calibration istuned to the scan map observing mode. Point source fluxes derived
from the chopped PS AOT were known to be too low by afew percent. A new task phot-
FluxCalPsToScan was introduced to correct for this scaling difference.

A typical processing script for chopped PS AOT

Let'sfirst set up the session with afew pre-definitions.

fromjava.util inmport Arraylist

define the OBSID of the observation (chopped PS AQT)
obsid = 1342244899

select the blue or red channe
canera = 'blue

choose an putput pixel size of the final map
pi xsize = 1.0

This section sets the options and definitions that are needed to run the script. Set the OBSID of the
corresponding observation to process. Each observation comes with a short and along wave data set.
Select bl ue for the short band (70/100 um) and r ed for long band (160 um). Finally, select a pixel
size in arcseconds of the final map. Good values to start with are 1.0 for the blue and 2.0 for the red
band.

Now, we retrieve the necessary detector and auxiliary data.

retrieve the Observati onContext fromthe archive
obs = get Cbservati on(obsi d=l ong(obsi d), useHsa=Tr ue)

get the calibration applicable to this observation
cal Tr ee=get Cal Tr ee(obs=0bs)

retrieve the auxiliary data
pp=obs. auxi |l i ary. poi nting

59

In the Beginning is the Pipeline. Photometry Build 15.0.3262

oep = obs.auxiliary.orbitEpheneris
timeCorr = obs.auxiliary.tineCorrelation
phot HK=obs. | evel 0. r ef s["HPPHK"] . pr oduct . ref s[0] . pr oduct [" HPPHKS"]

1s it a solar system object?
i sSso = isSol ar Syst enbj ect (obs)

if (isSso):
hori zons = get Hori zonsPr oduct (obs)
el se
hori zons = None
if (horizons == None)
hp = None
el se

hp = obs. auxiliary. horizons

Thetask getObservation downloads the entire ObservationContext from the Herschel Science Archive
(HSA). Be sure to have access to the HSA and you are aready logged in via the HIPE GUI. The
task getCal Tree extracts the applicable calibration files from the database that comes with your HPIE/
HCSSinstallation. Then, anumber of certain auxiliary dataare extracted from the ObservationContext.
Especially, the variable photHK contains valuable information about the instrument status, the so
called Housekeeping Data.

extract level O data and apply the slicing
pacsPropagat eMet aKeywor ds(obs, ' 0", obs. | evel 0)

| evel 0 = PacsCont ext (obs. | evel 0)

frames = SlicedFranes(| evel 0. get Caner a(caner a) . aver aged. pr oduct)
del (1 evel 0)

First we make sure that all the necessary metadata are correctly forwarded from the top layer of the
ObservationContext to the Level 0 datafrom which we start the processing. As already mentioned, the
processing of chopped PS AOT observations are done using the slicing scheme that is also employed
for the spectroscopy data processing, but was discarded for the scan maps. The default dlicing rule
structures the data according to nod cycles. This is done in the background, so the user does not
even notice the difference (except for thefinal step, when combining the individual maps). Each slice
appears as an individual index number in the frames. The tasks internally loop over these items to
perform the processing steps. The processing is done on the so called (sliced) frames.

apply coordinates and convert to instrument boresight
frames =
phot Addl nst ant Poi nti ng(framnes, pp, cal Tree=cal Tr ee, or bi t Ephem~oep, hori zons=hori zons, i sSso=i sSso, copy

del (pp)
frames = findBl ocks(frames, cal Tree=cal Tree)

if (not franes. nmeta.contai nskKey("repFactor")) :
frames. neta["repFactor"] = LongParaneter (1)
frames = pacsSliceContext(frames, |evel="0.5")[0]

In addition, we join the pointing information with the data by applying the instrument boresight in-
formation (photAddl nstantPointing). To save memory, the pointing product is deleted at this stage.
The task findBlocks determines the data structure and prepares atable that contains the corresponding
information. Finally, some old Level 0 data are missing the repFactor keyword in the metadata. In
order to be able to run the pipeline on those data as well, we define a default number of 1 for them.

The actual processing begins here:
mask bad and saturated pixels + those causing electric crosstal k

frames = phot Fl agBadPi xel s(franes, cal Tree=cal Tree, sci cal ="sci ", keepal | =0, copy=1)
frames = phot Fl agSat urati on(franes, cal Tree=cal Tr ee, hkdat a=phot HK, check="'ful | ')
frames = phot MaskCrosst al k(frames)

In the beginning, the script flags the pixel outliers, such as bad and saturated pixels. We aso mask
those pixels that cause electronic crosstalk. Thisis done by masking the first column of each detector
sub-matrix. Now, we apply the flux calibration (see note above). The first task converts the digital
detector readouts into Volts, followed by the flatfielding and the response calibration in Jy.

convert digital detector values into volts

60

In the Beginning is the Pipeline. Photometry Build 15.0.3262

frames = phot ConvDi git2Vol t s(franes, cal Tree=cal Tr ee)

apply flatfield and response calibration (V -> Jy)
frames = phot RespFl atfi el dCorrection(franes, cal Tree=cal Tree)

Now, we add some timing information.

add a colum in the status table that lists UTC tinme
frames = addUtc(franes, tineCorr)
del (timeCorr)

convert digital chopper position readouts into real angels
frames = convert Chopper 2Angl e(franes, cal Tree=cal Tr ee)

discard data with still noving chopper
frames = cl eanPl at eauFr ames(frames)

This paragraph applies the calibration of the chopping mirror. First, the digital position sensor readout
is converted into chopping angles, while cleanPlateauFrames flags data that were taken during the
transition between two chopper plateaus, i.e. the chopper was neither on the off nor the on position.
Then we have to deal with the chop/nod pattern.

identifies a dither pattern, if applicable
frames = phot MakeDi t hPos(franes)

identifies raster positions of the chop/nod pattern
(needs phot Addl nst ant Poi nti ng)
frames = phot MakeRasPosCount (franes)

In HSPOT, the observer can specify, if the chopper should perform a dithering pattern. This displaces
the on and off positions by afew fractions of a pixel for each chopping cycle. The task photMakeDith-
Posidentifies such apattern and corrects the pointing information accordingly. Then, the global chop/
nod pointing pattern isidentified by photMakeRasPosCount as well.

average all data per chopper plateau (first readout is dropped)
frames = phot AvgPl at eau(franes, ski pFi rst =Tr ue)

There are four readouts per chopper on and off position (plateau). The corresponding flux values are
averaged, so that photAvgPlateau produces a single value for each. The option ski pFi r st =Tr ue
discardsthefirst of each of thefour readouts, becauseit wasfound that it isstill affected by the chopper
movement and contaminates the measurement. Therefore, we recommend to always use this option.
Now, we apply the pointing information to each detector pixel.

only applicable to solar system object observations:
recenter individual inages on noving target instead of referencing to
cel estial coordinates
if ((isSso == True) and (horizons != None)):
frames =
correct RaDec4Sso(f ranes, or bi t Ephemroep, | i near =Fal se, hori zons=hori zons, hori zonsPr oduct =hp)

apply coordinates to individual pixels
frames = phot Assi gnRaDec(franes, cal Tree=cal Tr ee)

extract pointing infornmation for chop/nod pattern
frames = phot AddPoi nti ngs4Poi nt Sour ce(franes)

The first part only appliesto solar system objects. They move in time and therefore do not possess a
fixed celestial coordinate. In order to avoid trails of the moving target in the final map, the individual
frames must be re-referenced to the target position. Thisis done by correctRaDec4Sso. Then, photAs-
signRaDec applies the pointing information (astrometry) to each detector pixel, while photAddPoint-
ings4PointSour ce corrects the coordinates for the displacements produced by the chop/nod pointing
pattern. It relies on the information extracted previously by photMakeRasPosCount.

subtract on and of f chooper positions
frames = phot Di ff Chop(franes)

61

In the Beginning is the Pipeline. Photometry Build 15.0.3262

This task produces the differential signal of the chopping cycles per dither position. It subtracts a
constant signal component that is dominated by the tel escope mirror emission. At this stage, we apply
afew flux corrections that are based on a thorough investigation of detector response effects. Note
that the order of applying these corrections matters. The individual corrections are;

1. Detector non-linearity: For very high source fluxes, the bolometers exhibit anon-linear relationship
between the incident signal and the detector response. Applying the task photNonLinearityCorrec-
tion corrects for this effect.

2. Evaporator temperature: The temperature of the evaporator of the *He cooler has a small but mea-
surabl e effect on the detector response. Applying the task photTevCorrection provides a correction
for this effect at alevel of afew percent. For details see: Balog et al. (2013)

3. Scan map based flux calibration scheme: The flux calibration of the PACS photometer is based on
scan map measurements, which introduces atime dependent flux scaling differencefor the chopped
observations. The correction is done by applying the task photFluxCalPsToScan. For details see:
Nielbock et al. (2013)

apply non-linearity correction
frames = phot NonLi nearityCorrection(franes, cal Tree=cal Tree, sci cal ="sci ")

apply the photoneter evaporator tenperature correction
frames = phot TevCorrection(franes, cal Tree=cal Tree, hk=phot HK)

correct the flux calibration for PACS chopped photonetry observations
frames = phot Fl uxCal PsToScan(franes)

The three dithering positions are averaged. At the same time, a sigma clipping agorithm is applied
to account for and mask glitches. Note that we do not perform MMT nor 2nd order deglitching on
the chopped/nodded data.

conbi ne i nages of the three dither positions done by the chopper and
deglitch data via a signa clipping algorithm
frames = phot AvgDi t h(franes, sigclip=3.)

subtract on and of f noddi ng positions
franmes = phot Di f f Nod(franes)

conbine all nod cycl es
frames = phot Conbi neNod(franes)

Now that we have the full set of differential signals of the chopper cycles, we aso subtract the nod
positions from each other. In thisway, small scale differences in the telescope background due to the
varying line of sight caused by the chopper positions cancel out. Finaly, we combine all data to a
coherent signal timeline. If the object is bright enough, one should be able to see the characteristic 2x2
chop/nod pattern on each of the individual frames. In order to improve the S/N, we combine the flux
of the four object images by a shift-and-add a gorithm.

produce a map for each slice
mapcube =
phot Pr oj ect Poi nt Sour ce(franes, al | | nOne=1, cal Tree=cal Tr ee, out put Pi xel si ze=pi xsi ze, cal i brati on=Tr ue)

Thisis done per dice, so it produces one map each. In this way, only the centre of the map contains
the valid co-added image of the source. The eight images around the central one are to be disregard-
ed, as they are just the byproduct of the shift-and-add algorithm, and do not contain any additional
information. In particular, they must not be used to try to improve the S/N of the target. The central
image is aready the final result.

Thisimage cube is finally merged to a single map product by applying the mosaic task.

conbi ne the individual maps of the slices to a single map
i mges = Arrayli st ()
for si in mapcube.refs

62

http://cdsads.u-strasbg.fr/doi/10.1007/s10686-013-9352-3
http://cdsads.u-strasbg.fr/abs/2013ExA....36..631N

In the Beginning is the Pipeline. Photometry Build 15.0.3262

i mages. add(si . product)

pass
map = i mages|[0]

hi sto = map. hi story
neta = map.neta

if (images.size() > 1):
map = Mpsai cTask() (i mages=i mages, oversanpl e=0)
h = map. hi story
hi st 0. addTask(h. get Al | Tasks()[0])
map. hi story = histo
map. met a = neta
del (h)
del (i mages, si, mapcube, hi st o, net a)

Theresult isasingle Level 2 map that contains both the final image and a coverage map. Finaly, we
produce a noise map from the coverage map and add it to the Level 2 product.

Figure 3.22. Final map of a chopped PS AOT observation. Only the central image of the object contains
the correct properties. The surrounding eight images are a byproduct of the shift-and-add algorithm and
must not be used.

add a noi se nap
map = phot Cover age2Noi sePoi nt Sour ce(map)

The task photCoverage2NoisePointSource that uses the photCoverage2Noise task originally defined
for scan mapsto produce a sensible error map from the coverage map. This version adds some scaling
factors that were derived empirically by analysing alarge set of calibration observations. The result-
ing error map should - at this time - only be taken as a reasonable estimate of the noise in the final
map. However, we recommend to check these values during the photometry again. This concludesthe
processing of data obtained with the chopped PS AOT.

63

Build 15.0.3262

Chapter 4. Selected topics of data
reduction. Photometry

4.1. Introduction

The main purpose of this chapter isto give adeeper insight into the fine-tuning of some of the pipeline
tasks to achieve better results, and to provide a detailed description of advanced scripts used for dif-
ferent scientific purposes. It aso contain information about how to branch off after performing the
basic calibration and about how to perform aperture photometry on your PACS images.

It is recommended that you read this chapter after you have familiarised yourself with the basic re-
duction steps of the data processing of the PACS photometer (see ChapChapter 3).

This chapter contains:

e Thesecond level deglitching
 Reducing mini-maps

» Solar System objects
 Branching off after levell

» Aperture correction

4.2. Used Masks

The following Masks are used by default during Pipeline processing, additional masks can be added
by the user when necessary:

BLI NDPI XEL : Pi xel masked out by the DetectorSel ectionTable (already in Level 0)

BADPI XEL . Bad Pi xel nasked during pipeline processing
SATURATI ON : Saturated Readouts
GLI TCH : Gitched Readouts

UNCLEANCHOP : Fl aggi ng unreliable signals at the begin and end of a ChopperPl at eau

All the masks created by the pipeline are 3D masks. This is true even for the cases when it is not
necessary such asin the BLINDPIXEL, BADPIXEL and UNCLEANCHOP masks. Moreover al the
masks are boolean: unmasked pixels are saved as FAL SE and masked pixels are saved as TRUE.

4.3. Second level deglitching

Second level deglitching isaglitch-removal technique that works on the final map of PACS photome-
ter data. Second level deglitching collects the data contributions to each map pixel in one dimension-
al data arrays (we call these "vectors', following mathematical conventions). Unlike the first level
deglitching (such as the MMT technique), which works by clipping on the vectors of each detector
pixel (and hence operating along the temporal dimension), the second level deglitching works on the
map/sky pixels (and hence on the spatial plane). The detector pixels contain all the data taken over the
course of the observation, but, because during an observation PACS (and hence all of its detectors)
is moving around the sky, any single detector pixel will contain data for a range of projected map/
sky pixels. The idea behind the deglitching is that without glitches all the signal contributions to a
map pixel should be roughly the same. Glitches will introduce significantly outstanding values and
can thus be detected by sigma-clipping. See thisfigure for an example:

64

Selected topics of datareduction. Photometry Build 15.0.3262

4.3.1.
ing?

4.3.2.

row 85.0, column 98.0

3.3 T 17T T 177 | T L | T T | T T | L T | L

’'_

signal
LA B B B U|‘ I R ()
+
N O RN N N Sl Pl el PG (ol el ik M I |

_0.5 | I T | | | 1 11 | |- L1 | 1 L1 | 11 1 Il | | I

=50 0 50 100 150 200 250 300
index

Figure 4.1. Vector of roughly 250 signal contributionsto map pixel (85, 98)

Pre-requisites and what is second level deglitch-

To apply second level deglitching you need a Frames object that contains PACS photometer data. The
Frames object should be processed up to the stage where the data can be mapped (i.e. to the end of
Level 1). For a proper deglitching it is especially important that flux calibration has been done using
photRespFlatfieldCorrection.

The actual deglitching process takes place in two steps:

1. Calculate the data contributions to each map pixel and store them in a vector for every map pixel.
Thisdatais collected in an object called Maplndex.

2. Use the Maplndex object to loop over the data vectors and apply sigma clipping to each of the
vectors. Thisis done by the task secondL evel DeglitchingTask.

Command-line syntax

Hereisthe most basic application of second level deglitching. The syntax isthe jython command line
syntax. Lines starting with "#" are comments and usually don't have to be executed. During the startup
of HIPE, most of the import commands are carried out automatically; these imports are:

inmport the software classes

from herschel . pacs. signal inport Mapl ndex

from herschel . pacs. spg. phot i nmport Mapl ndexTask

from herschel . pacs. spg. phot i nmport secondLevel DeglitchTask

Then you continue with constructing the tasks, which can be done with the following syntax:

mapl ndex = Mapl ndexTask()
secondLevel Deglitch = secondLevel DeglitchTask()

Note
@ this is not the only way to call on these tasks—as you use HIPE more and more you
will learn yourself al the variations on a theme. What we have done here is set up a
sort of alias for the task, useful if only so you have less to write (you could write "mit =
MaplndexTask(), for example, for areally short alias). Usually these aliases are already
created so you don't need to redefine them.

65

Selected topics of datareduction. Photometry Build 15.0.3262

4.3.3.

Y ou need the Frames (which will be called "frames" here) coming out of the pipeline to run maplndex
(i.e. the MaplndexTask). The output of the task is a Maplndex object which we will call “mi”:

m = mapl ndex(franes)
The deglitching is the second step of the processing

map = secondLevel Deglitch(m, frames)

Now we will describe these tasks and their parameters.

The most important syntax options

The second step—map = secondLevelDeglitch(mi, frames)—can be fine-tuned to optimise the
deglitching process. The most significant values to specify are these:

1). Do you want to produce a map as output or only flag the glitches and write the flags in form of
amask back into the Frames? The options to do this are map = True or False, and mask = True or
False. By default, both options are True (produce a map and a so produce a mask).

2). Y ou may customise the deglitching parameters by specifying asigmaclipping agorithm and using
it asan input in the deglitching task. To set up the algorithm:

s = Sigclip(nsigm = 3)

defines a new Sigclip algorithm, with a 3-sigmathreshold. Y ou can set other parameters of this algo-
rithm now in the following way:

s.setQutliers("both")

tellsthe algorithm to detect both positive and negative outliers. Alternatives are "positive" (default for
positive glitches only) and "negative". Another parameter is:

s. set Behavi or ("clip")

telling it to apply the clip to the data vector in one go, i.e. don't use a box filter. If you prefer to use
afilter, use

s.setBehavior("filter")
s. set Env(10)

where 10 means that the boxsize will be 2* 10+1 = 21 vector positions long. Another parameter
s. set Mode(Si gcl i p. MEDI AN)

defines the algorithm used for detecting outliers: either median (with median absolute deviation: our
recommendation) or mean (with standard deviation: Sigclip.MEAN). Y ou can find more detailsin the
Sigclip documentation (this particular algorithm is part of the general HIPE software; you can look at
it, and others, in the PACS URM, the HCSS URM and the SaDM).

Now apply the newly configured Sigclip algorithm to the deglitching:

map = secondLevel Deglitch(m, frames, algo = s, map = True, \
mask = Fal se)

An interesting option is also algo=None. This does not apply any deglitching, it simply co-adds the
datain the vector. Thisway, it creates an undeglitched map from the Maplndex (which you could, if
you wanted to, compare to the degliched map). Thisis areatively fast algorithm. So if you already
have a Maplndex and just want to map, using the algo=None option is faster than the alternative
map-making task PhotProject. If you don't specify the Sigclip aorithm, the default for second level
deglitching is used, which is: clip with nsigma = 3, use a median algorithm, and both outliers (more
or less what we have specified above). Y ou may test your Sigclip parameters interactively with the

66

Selected topics of datareduction. Photometry Build 15.0.3262

4.3.4.

MaplndexViewer, so you don't have to guess the best Sigclip parameters. Please read the description
of the MaplndexViewer (Sec. 4.3.7) further down to learn how thisis done.

m = mapl ndex(franes)
The deglitching is again the second step of the processing, and can be called simply as:

map = secondLevel Deglitch(m, franes)

A detailed look at the MaplIndex task

The Maplndex is a 3-dimensional data array that has the same width and height as the resulting map.
The third dimension contains references to the datain the Frames, so that every flux contribution to a
map pixel can be retrieved from the Frames. In other words, the 3rd dimension contains information
about where the data of each map pixel came from.

This third dimension is non-rectangular, because the number of detector pixel contributions differs
from map pixel to map pixel. If you want to retrieve the data from the Maplndey, it is returned as an
array of MapElements. Please have alook at theimageto seewhat kind of dataisstored in aMaplndex:

MapIndex

MapElement

row, column
tirneindex

poids

—

{of the frames
pixel in map units)

SV ——poids
y
Frames pixels with /_(’:_ N\ r} (overlap of the
location (row, column, —— e frames P'X_9| into
timeindex) projected —b/’[the map pixel)
onto the map pixels ll :

Figure4.2. Maplndex and MapElements

The layout of the Maplndex determines the layout of the map itself. Thisis why the MaplndexTask
uses many of the options that are also used by the photProject task (which is the task for a simple
projection and was used in Chap. 5).

The most important parameters of the MaplndexTask and how to use them;
» i nfranes: theinput Frames.

» out put Pi xel si ze: thisisthe desired size of the map pixel in arcseconds (a square geometry is
assumed). By default it isthe same size asthe Frames dataarray (3.2 arcsecsfor the blue photometer
and 6.4 for the red).

» pi xf rac: thisisthefraction of the input pixel size. If you shrink the input pixel, you apply akind
of drizzle. pixfrac should be between 0 (non inclusive) and 1. A value of 0.5 means that the pixel
areaisreduced to 0.5*0.5=0.25 of the original area, ie 1/4th of the unmodified pixelsize.

67

Selected topics of datareduction. Photometry Build 15.0.3262

e optimzeOrientation: setthisvalueto Trueif you want the map rotated for an optimised fit
of the data and thus smallest mapsize. Of course, after rotation North may no longer be pointing
upwards. By default this parameter is set to False.

» wes: for acustomised World Coordinate System. By default the wesis constructed for a complete
fit of the data. If you want a specia wcs, for example if you want to fit the map into another map
afterwards, you may specify your own wcs. A good starting point for this would be the Wcs4M ap-
Task, which creates the default wes for the MaplndexTask (and also PhotProject). Y ou can take the
default wes and modifiy it according to your needs; find the full set of optionsin the documentation
of the wcs (the PACS URM and the HCSS URM). For example:

wes = wesdmap(frames, optim zeOientation = Fal se)

#t he above gives the default world coordinate system (wcs)

#you can reset this:

wes. set Crota2(45) #rotate the map by 45 degees

wes. set Naxi s1(400) #force the map to 400X400 pixels.

wes. set Naxi s2(400)

wes. set Or pi x1(200) #The data may not fit anynore—make sure the centre of
wes. set Or pi x2(200) #your data renmins in the centre of your map

* sl i m ndex: thisisamemory-saving option. Please read detailsin Sec. 4.3.4.1. In anutshell, dli-
mindex storestheleast possible amount of datain the Maplndex (hence, a"dim" Maplndex), saving
onmemory use. Thismeansthat asyou create amap, some values have to be recal culated on-the-fly
during the deglitching task, which costs processing time. Asarule of thumb: use dimindex=Trueif
you want to create only aglitchmask (map=False, mask=Truein the deglitching). For this, the slim-
Maplndex contains al necessary data. If you want to create a map use dimindex=False. This will
enlarge the size of the Maplndex product from a slim-Maplndex to a full-Maplndex containing al
bells and whistles—this can be heavy on memory use, but it will deglitch and map more quickely.
If you don't have much memory, you may safely use slimindex=True and also create a map. The
default value is slimindex=True.

The full call of the MaplindexTask with the described options looks like this:

m = mapl ndex(franmes, optinizeOientation = Fal se, ws = nywcs, \
slim ndex = Fal se)

As soon as you execute the MaplndexTask, you will realize that it needs a lot of memory. There

are reasons for this and it helps to understand the concept of the Maplndex in order to find the most
efficient way to process your data.

4.3.4.1. Memory-saving options

The size of the MapIndex

If we want to store the full amount of data needed to project the flux values from the Frames product
to the map, thisis what we need for every flux contribution to a map pixel:

« therow, column and time index of the datain the Frames product

« therelative overlapping areaof the Frames pixel that falls onto the map pixel (= the poids or weight
value)

* the size of the Frames pixel in units of the map pixel size

Sincethisismorethan one value, the set of information is put into aMapElement, whichisacontainer.
The MapElement is what you get from the Maplndex when you want to extract this information.

This full set of information is contained in a Maplndex product called the FullMapindex. The
FullMaplndex is one of the two flavours a Maplndex can have. You get it when you use the non-
default option slimindex=False in the MaplndexTask.

68

Selected topics of datareduction. Photometry Build 15.0.3262

Now, what isthe size? Assume a Frames product with 30000 time indices and a blue array with 2048
detector pixels. Assume further that every Frames pixel overlaps 9 map pixels when the flux is pro-
jected. We get a Maplndex size of nearly 12 gigabyte storing this information. Tweaks are obviously
necessary!

Besides compressing the data while it is stored, the most significant tweak is the slim Maplndex (the
second flavour of the Maplndex. The java class is called SimMaplndex). This contains a reduced
set of information, namely only the row, column (encoded in one value: the detector number) and
time information of the data. While the FullMaplndex uses 12 gigabyte per hour of observation, the
SimMaplndex needs only 2 gigabytes.

What can you do with the slim MapIndex: working with little memory

It ispossible to perform the second level deglitching without creating a map. For the default deglitch-
ing, without the timeor dered option, no information about pixel sizes or overlaps are necessary be-
cause only the values from the Frames product without weighting are used. In this way a glitch mask
can be created.

Although the second level deglitching task can also create amap out of the slim Maplndex, the neces-
sary information about pixel sizes and overlaps have to be recalculated on-the-fly. Thisisinefficient.
So, with the slimlndex the best mapping strategy is

« deglitch and create only the glitch mask and no map

» usethe regular projection with PhotProject to create a map. PhotProject will take into account the
glitch mask

Iteratively deglitch large observations

Another way to handlelarge, memory-hogging, observationsisto divide the map into tiles and process
one tile one after the other. The MaplndexTask supports this loop-based processing. To define the
tiles, you overlay achessboard like pattern over your final map and tell the MaplndexTask how many
rows and how many columns this pattern should have. Then, according to a numbering scheme, you
may also tell the MaplndexTask which of those tiles should be processed—the default isall tiles. Have
alook at the following image to understand the numbering scheme:

t
Ei

Figure 4.3. The numbering scheme of thetilesfor iterative deglitching. Thismap issliced into 4 rowsand
4 columns. Thisresultsin 16 tiles.

If you want to initiate atile-based processing, you have to know about four additional parameters. The
first three are MaplndexTask parameters:

e no_sl i cer ows: the number of rows for the chessboard pattern (default:1)

69

Selected topics of datareduction. Photometry Build 15.0.3262

e no_sl i cecol s: the number of columns for the chesshoard pattern (default: 1)

» sl i ces: the numbers of the dlices that you want to be processed. By default, all slices (=no_s
licerows*no_sdlicecols) will be processed. But you can command to process only a subset.

e parti al map:thisisaparameter that hasto be passed to the secondL evel DeglitchTask. Thevalue
for this parameter isalwaysNone (at first). Inthefirst loop, Nonetellsthe secondL evel DeglitchTask
that it has to construct a new image with the correct size for your final map. In the following loops,
the partiamap indicates that the new data of the loop are added to the existing map, instead of
creating a new one. Seein the example below for how to achieve this:

= None

mg will contain your final map. This is inportant: The first
mage MJUST be None!

= Display()

counter = 0 #only if you want to save the Mapl ndices

gy
i
i

i

#
#
d

for mi in maplndex(inframes=franes, slim ndex=Fal se,\
no_slicerows=4, no_slicecol s=4, slices=Int1d({5, 6, 10})):
you can save the napindex here if you want (this is optional,
which is why it is comented out)
#name = "".join(["mapi ndex_slice_", String.val ue (counter),".fits"])
#f a. save(name, m)
#counter = counter+1
ot herw se continue from here
(note the paranmeter "partialmap = inmg" in the deglitch task)
i mg = secondLevel Deglitch(m, frames, algo = None, map = True, nask = Fal se,

partial mp = ing)
after the deg-step, the new data has been added to ing
del (m) # free your nmenory before the next loop is carried out
d.setlmage(ing) # this allows to nonitor the progress

(note the line-wrap in the for-loop: you will write this on one line, the bresk is here only to fit the
text on the page.) At the end of thisloop, the variable "img" contains your deglitched map.

Figure 4.4. Deglitching slices 5,6 and 10

If you don't want amap but only amask and also don't require aprogress display, the code simplifies
even more. In this example, we also show how to apply a customised Sigclip algorithm:

s = Sigclip(10, 4)
s.mode = Sigclip. MEDI AN
s. behavior = Sigclip.CLIP

for mi in maplndex(infranes = franes,
slimndex = Fal se, no_slicerows = 4, no_slicecols = 4):
for the mask only version, partialmap can be omtted

70

Selected topics of datareduction. Photometry Build 15.0.3262

secondLevel Deglitch(m, frames, algo = s, map = Fal se, nmask = True)

(note theline-wrap: you will write this on oneline, the break ishere only to fit the text on the page.)

4.3.5. A detailed look at the secondLevelDeglitch task

The deglitching applies sigma clipping to the data that is stored in the Maplndex. The options for
secondL evel Deglitch are:

i ndex: the Maplndex product that stores the map data

i nf rames: the Frames product. Since the MapIndex only contains the references to the science
data (and not the actual datathemselves), the Frames product, which contains the data, is necessary
(the Mapl ndex can then point to these data). If you ask to flag glitchesin the task call, a correspond-
ing glitch mask is written back into the Frames product.

map: if you want a map as output of the deglitching task, use the default value "True". Otherwise
set thisoption to False.

mask: if you want a glitch mask as output of the deglitching task, use the default value "True".
Otherwise use False.

masknarre: you may customise the name of the glitch mask that iswritten into the Frames product.
The default is"2nd level glitchmask”. Y ou could perhaps change the name if you wished to create
more than one version of the mask to compare.

submap: specifies arectangular subsection of the map and deglitching will only be done for that
subsection. This implies that you know already what your map looks like. The values of submap
are specified in units of map pixels. For example:

First retrieve the size of the map from the Maplndex

wi dt h = mapi ndex. get Wdt h()
hei ght = mapi ndex. get Hei ght ()

specify the first quarter of the map as [bottom left row index, bottom left column index, height (=
number of rows), width (= number of columns)]

submap = Int1d([height/4, w dth/4, height/2, w dth/2])

Focusing the deglitching on a submap will accelerate the deglitching process. It can be useful to
optimise the deglitching parameters on a submap first, before a long observation is completely
processed.

Figure 4.5. Deglitching performed with the submap option

71

Selected topics of datareduction. Photometry Build 15.0.3262

 t hr eshol d: athreshold valuethat is used in combination with the parameter sourcemask. Default
valueis0.5.

» sour cemask: defines a submap that can have any shape. The sourcemask is a Smplelmage with
the same dimensions as the final map. The values of the sourcemask are compared to the threshold
parameter and are treated as.

« value > threshold: thislocation is masked and will not be processed by the deglitching algorithm
« value < threshold: the deglitching algorithm will treat this map location
The sourcemask can be used to exclude bright sources from the deglitching process. A check on
how the deglitching task has used the sourcemask is to use the output parameter "outmask". It
returns the tranglation of the sourcemask as a 2d boolean array. Y ou can extract this array with

bool ean_sour cemask = secondLevel Deglitch. get Val ue(" out mask")

You can take alook at it with the Display tool if you convert the boolean valuesto 0 and 1 by
putting them into a Int2d

d = Display(lnt2d(bool ean_sour cenmask))

» deglitchvect or: alowsoneto treat strong flux gradients. Please read detailsin Sec. 4.3.5.1.
* al go: acustomized Sigclip algorithm. See Sec. 4.3.2 for more details.

e wei ght edsi gnal : asfor PhotProject, this value weights the signal contributions with the signal
error (stored in the Frames product) when it co-adds the valuesto get aflux. Default valueis False.

4.3.5.1. Avoid deglitching strong gradients

If a small part of a source falls into one pixel, the default deglitching scheme may lead to wrong
results. Look at the situation drawn in the following image: The grid in thisimage is the map you are
projecting the Frames (detector) pixels, indicated with filled squares, on to. The yellow Frames pixel
contains a small but bright source. Only a very small part of it maps onto the red-framed map pixel
(the fractional overlap that we call "poids’ = weight issmall). All other Frames pixelsin the vicinity
have a small signal value (indicated as gray).

Figure 4.6. Mapping a small but strong source

For the deglitching of the red-framed map pixel, the signal coming from the strong source will very
likely befound asaglitch, and hence be sigmaclipped. Thisis because by default thefull signal values
of the contributing Frames pixels are used for deglitching, not the weighted values.

72

Selected topics of datareduction. Photometry Build 15.0.3262

4.3.6.

4.3.7.

If we want to improve the situation, the signal vector for deglitching has to be filled with weighted
values. Asweightswe usetherel ative overlap described by the poidsvalue and normaliseit to the pixel
area: weighted signal=signal* poids/pixelarea. Because a glitch most likely appears only in one time-
frame (i.e. within the Frames pixels, the glitches have sharp time profiles), the secondL evel Deglitch-
ingTask provides the option to co-add all weighted contributions of every timeframe that map in to
amap pixel (the red-framed pixel). A source that should appear in all timeframes will very likely be
protected by this scheme. A glitch that appears only in one or two timeframes should be found.

Thedownside of thisprocessisthat along with thefound glitch you throw away all signal contributions
to that map pixel coming from atime frame. Because of the co-addition of the weighted signal, the
real location of the glitch cannot be confined with more precision.

Use the weighted glitch with the option degl i t chvect or ="timeordered".

Deglitching without Mapindex (mapDeglitch)

One of our latest achievements is the MapDeglitchTask (mapDeglitch). It virtually does the same as
the secondLevel DeglitchTask, but it does not need a Maplndex as input. Thisway, it runs with much
less memory usage. On the other hand, the time it needs to finish is as long as creating a Mapl ndex
and then secondL evel Deglitch (plus a bit).

Internally, it implements a search algorithm, that collects the necessary data for deglitching Mappix-
el by Mappixel. Use it, if you don't have the memory to store the Maplndex. If you can store the
Mapindex and need to deglitch and map more than once, it is more useful and efficient to still use the
secondL evel DeglitchTask with the Mapindex.

s = Sigclip(10, 4)
s. node = Sigclip. MEDI AN
s. behavi or = Sigclip.CLIP

mapDegl itch(frames, algo = s, deglitchvector = "tineordered", pixfrac = 1.0,
out put Pi xel si ze = 3. 2)

The glitches are put into the frames products mask (that is still called "2nd level glitchmask” by de-
fault).

The MapDeglitchTask also has two parameters that we know already from the Maplndex. They are:
* pixfrac: helpsyou to drizzle. Values should be > 0.0.
* outputPixelsize: the size of the map pixels. Although amap is not created by the task, internally we

have to know the size of the pixels of the map, so the task can cal cul ate the overlap between frames
pixels and map pixel. The valueisin arcseconds, just like for the Maplndex.

MaplindexViewer: a useful tool for diagnostic and

fine tuning

A Maplndex contains a lot of interesting data that is very useful to be analysed. The tool for doing
thisisthe MaplndexViewer. It iscalled like this:

Mapl ndexVi ewer (m , franes)
feeds in the Maplndex mi and the Frames product. Or
Mapl ndexVi ewer (m , franes, ing)

provide also the map. If not, it can be calculated on-the-fly.

73

Selected topics of datareduction. Photometry Build 15.0.3262

Pacs Mapindex Viewer

: TableDataset
L§ -
-}" & - Index | row column | time signal | fraction |
- - E : Lo 0 [0 27 960 0.02187... 0.00630... |~
10 27 961 0.02187... |0.02734
5 2 o 28 960 -0.0211... 0.01152
- 3 o 28 961 0.0 036937
A) 4 o 28 962 0.0 0.51161
' Y 5 0 28 963 -0.0211... |0.06073
LY O 6 [0 29 962 0.0 0.21160
7 o 29 963 0.02090... |0.34635
. " 8 0 29 964 0.0 0.04588
5, 9 |1 28 962 -0.0213... |0.00921
L]] 10 1 28 963 0.02134... 0.03917
- 1L 1 29 963 0.0 0.25004
* 12 1 29 964 -0.0211... 061528
i 4 13 1 29 965 0.0 0.16478
- 14 1 30 964 0.02257... |0.09859
1 !‘ 15 |1 30 965 -0.0451... |0.29398..
: N5 1 16 1 30 966 -0.0225... |0.08236..
L 17 |2 30 965 2.04792... |0.14970..
= ¥ s . 18 |2 30 966 1.06848... (0.63551..
= 19 2 30 967 0.08904... |0.30547..
i " 20 |2 31 966 -0.0230... |0.02824..
21 2 31 967 0.0 0.24406..
22 2 31 968 -0.0230... |0.13324..
B & 5 e R Er
24 |3 30 968 0.02081... |0.06326..
172.3, 258.3 ~6.5784e-05 Jy/pixel [13:20.23.645, +47:14.09.51 [Image v 5% 3 31 967 -0.0230.. (0.06137..
L e 26 |3 31 968 0.02307... [0.56373..
[a]]@, [400
AR 7] 27 3 31 969 0.0 0.47688..
1500, cohumn 1560 o Eome IE— e
oW 0, column 1 = 0. - [0. -
2 g O 30 |4 31 970 0.0 0.12526..
5 —60 2 [T surfac 31 [a 32 972 |-0.0234. [5.66391
) = 33 5 32 972 |=0.0242_. 0.01811
ol + 152 0O 33 |5 32 973 |=0.0242.. 0.33513
] o 345 32 574 |=0.0242_.. 0.31253
z o 3B 5 32 575 ~0.0242.0.01463. =
15— —50 2 Deolumn . : —a
1 o ® framessignal
= 10 ot 45 & e
= i -2) time ordered Sigelip
2 03 40 o
r _ = Q
=] 2 L max iterations - apply
. =
00 iy i Ay it — 35 = 10 environment nsigma
r 7 1 7]
gl Jw % Outliers
L 2 Median @ Mean @ both
poleolc bl bvdin b s b ben b Lo b Lo 558
20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 3 ® clip O fiter e rroate (o e gative
index =
hide table

Figure4.7. The MaplndexViewer GUI

In the top part of the GUI you see the map displayed by the Display tool. If you click on the map, a
plot of the all values that a Maplndex contains for the selected map pixel plusthe signal values from
the Frames product is shown at the bottom. A click on the button "show table" displays the numerical
values as atable on the right side of the GUI.

4.3.7.1. Optimising the Sigclip algorithm with the MapIndexViewer
for best deglitching results

The bottom of the table contains apanel where you can test Sigclip parameters. Change the parameters
and select the "apply" checkbox. Then the Sigclip will be applied to the plotted signal. You may
even choose the timeordered option for the signal. That provides an easy way to find the best Sigclip
parameters without running the deglitching repeatedly. Just find glitches in your map and optimise
Sigclip before you deglitch the full map.

Maybe it is al'so worth noting at this point that you can use the sourcemask and/or the submap param-
eters to deglitch different sections of the map with different Sigclip parameters. Just use the source-
mask/submap to divide the map into multiple regions and create multiple glitchmasks with different
sets of parameters instead of only one.

Thereisalso apermanent preview of the"Mean +/- nsigma* Stddev" and the "Median +/- nsigma* Me-
dian Absolute Deviation" inthe MaplndexViewer plot section. These are displayed at the x-axisindex
-5asavaue (Mean or Median) and an error bar (+/- nsigma* Stddev or +/- nsigma* Median Absolute
Deviation).

The values nsigma and whether mean or median should be used are taken directly from the Sigclip
panel.

74

Selected topics of datareduction. Photometry Build 15.0.3262

¥l signal 28 3 31 570 ~0.0230... [0.01247...
row 159.0, column 156.0 = 29 |4 31 969 0.02144... [0.08846
’ g b 30 |4 31 970 0.0 0.12526
25— —60 5 (S 31 14 32 972 ~0.0234... [5.66391...
L 1 3 32 5 32 972 ~0.0242... [0.01811
20—) s 2 = 33 5 32 973 -0.0242... [0.33513
L Mean +/- nsigima * Stddev resp. 1 2 DOrow 34 |5 EF3 974 -0.0242... [0.31253...
F i ! : o B 35 |5 32 975 Z0.0242... [0.01463...
La= Median +/- ngigma * Median Abs Dev -3¢ & Dcolumn e = S— “
— [(@ framessignal
= 10 G T
= [i = [ed Sigel
2y 0 g ~—
“ L i g 1 iterations [apply
00 b b st e il | 35 g m - S T
L 172 ;
05— —{30 Outliers
L i =) Median ® Mean ® both
gqobeobev b b b b b b b b b Lo b i 19578
200 0 20 40 60 30 100 I20 140 160 180 200 220 240 260 2 ® dip B st @ e
index =
hide table

Figure 4.8. Preview of the signal arrays Mean, Median and nsigma values:

4.3.7.2. How to write your own Sigclip algorithm in jython

You may write your own Sigclip algorithm that can be passed to and be used by the sec-
ondLevel DeglitchingTask. Two things are important:

« your algorithm hasto be ajython class that extends the numerics Sigclip

* the jython class must implement a method called "of". This way it overwrites the "of' method in
the numerics Sigclip.

Look at the necessary code:

from herschel . i a. nuneric.tool box. basic inport Sigclip
class My_Oan_Sigclip(herschel .ia.nuneric.tool box. basic. Sigclip):

def of (self, vector):
#
System out. println("using MY OMN al gorithm')
#
#here you may wite any code that does your job
#only nmake sure it returns a Bool 1d with the sane
#l ength as vector
bvect or = Bool 1d(vector. si ze)
return bvector

Y ou have to do your implementation of Sigclip in the of-function. The interesting input parameter of
that function is vector. It will contain the array of signal values (framessignal or timeordered) of a
Mapl ndex row/column pair. The second level deglitch task will loop over the Maplndex and call your
Sigclip for every row/column pair.

Y our implementation MUST return a Bool 1d that has the same length as the input vector. The con-
vention is: the signal values will be treated as glitches at the indices where the returned Boolld is
true. That isall.

After you have finished your implementation, you have to make the class available for your hipe
session. Here are two possibilitiesto do it:

1. load the code by opening the file with hipe, place the green hipe arrow at the first import (from
herschel .ia.numeric.toolbox.basic import Sigclip) and then click run (repeatedly, until the arrow
jumps below the last line of your code).

2. Save this jython class as a file. Use a directory that is already in the sys.path (like ./, your local
working directory from which you start hipe). From there import it into your hipe session.

Useit with the deglitch task asfollows:

mySclip = My_Om_Sigclip()

75

Selected topics of datareduction. Photometry Build 15.0.3262

img = secondLevel Deglitch(m, frames, algo = nmySclip)

Actually, you could use the above code for My_Own_Sigclip. It will do no deglitching, because all
returned boolean values are false (Bool1d(vector.size) contains only false by default), but it should
run out of the box.

4.3.7.3. Command line options for the MapIndex

On the command line, you may get the same information by using the Maplndex interface. For map
location (map_row, map_col) of the map, the array of all MapElementsisretrieved like this:

mapel enent _array = mi . get(map_row, map_col)
print mapel enent _array[0]
#> MapEl ement: detector 32, tineindex 1579, poids 0.0, pixelsurface 0.0

or

print mapel ement _array[0] . detector # >32
print mapel enment_array[0].ti nmei ndex # >1579

The mapelements are sorted in timeindex. This means mapelement_array[0] contains data with the
smallest timeindex, the last mapelement in the mapelement_array contains values with the highest
timeindex. To save memory, the detector_row and detector_column information of the dataoriginin
the Frames product is encoded in the value detector. For the blue Photometer array the detector has
values between 0 and 2047, for the red array the values are between 0 and 511. This is because the
detector_row, detector_column values are compressed into single values.

pixel 0 ! pixel 63

Figure 4.9. Detector numbering schemefor the blue photometer array:

The detector value can be translated to the actual detector_row and detector_column of the Frames
data array using the method det2rowCol of the Maplndex product (FullMaplndex or SlimMaplndex):

det ector _rowcol = Mapl ndex. det 2r owCol (det ector, franes. di nensions[1])
detector_row = detector_rowcol [0]

det ect or _col utm = det ector_rowcol [1]

print detector_row, detector_colum

Note: thisisvery complicated. A simplification, where detector_row and detector_column are directly
stored in the Mapelements is on the way.

Please keep in mind that frames.dimensiong] 1] returns the size of the full detector array (32 or 64).
This may not be the case if you work with a sliced Frames product. If you use the FullMaplndex, the

76

Selected topics of datareduction. Photometry Build 15.0.3262

surface and poids information is different from 0 (Remember? The SlimMaplndex stores only time
and detector, the FullMaplndex also poids and pixelsurfaces).

print full_mapel enent_array[0]

>MapEl ement: detector 32, tineindex 1579, poids 3.1238432786076314E- 4,
pi xel surface 0.7317940044760934

print full_nmapel enent _array[0] . poi ds

print full _napel enent_array[0] . pi xel surface

The corresponding signal valueis still stored in the frames product. To get access to the full set of the
projection parameters, including the signal, please use this code:

det ector _rowcol _n = Mapl ndex. det 2r owCol (ful | _mapel ement _array[n] . det ect or,
frames. di mensi ons[1])

signal _n = franes. get Si gnal (det ector_rowcol _n[0], detector_rowcol _n[1],
ful |l _mapel ement _array[n] . ti nei ndex)

What do you do, if you have created a SlimMaplndex and have to know the poids and surface values
for some pixels? There is a way to get to these values without recalculating a FullMaplndex. The
values can be calculated on-the-fly with atask named GetMaplndexDataTask. You useit like this:

from herschel . pacs. spg. phot inport GCet Mapl ndexDat aTask

data_acccess = Get Mapl ndexDat aTask()

full _mapel enent _array = data_access(mapi hdex, map_row, map_colum, frames, comrand =
"mapel ement s")

Note: the use of the GetMaplndexDataTask is also very ugly and complicated. A way to access the
MapElement array directly from the Maplndex product is on the way. If it is done, you will find it
documented here.

4.4. MMT Deglitching

This task detects, masks and removes the effects of cosmic rays on the bolometer. The photMMT-
Deglitching task is based on the multiresolution median transforms (MMT) proposed by Stark et al
(1996). This task is applied when the astrometric calibration has still to be performed. Thus, it does
not rely on data redundancy, as the Second L evel Deglitching method, but only on the time line noise
properties.

The method relies on the fact that the signal due to a real source and to a glich, respectively, when
measured by apixel, shows different signaturesin itstemporal evolution and can beidentified using a
multiscal e transform which separatesthe various frequenciesin thesignal . Oncethe "bad" components
due to the glitches are identified, they can be corrected in the temporal signal. Basically, the method
is based on the multiresolution support. We say that a multiresolution support (Starck et al. 1995) of
an image describes in alogical or boolean way if an image f contains information at a given scale j
and at agiven position (x,y). If the multiresolution support of f isM(j,x,y)=1 (or true), then f contains
information at scale j and position (x,y). The way to create a multiresolution support is trough the
wavelet transform. The wavelet transform is obtained by using the multiresol ution median transform.
The median transform is nonlinear and offers advantages for robust smoothing. Define the median
transform of an image f, whit the square kernel of dimension n x n, as med(f,n). Let n=2s+1; initially
s=1. Theiteration counter will be denoted by j, and Sisthe user-specified number of resolution scales.
The multiresolution median transform is obtained in the following way:

1. Let ¢ = f with 7 =1,
2. Determine ¢j43 = med(f,25+1).
3. "lhe multiresclution coethdents wjy1 are defined as! wjp1 = 5 — gj41.

d, Letj— 3415+

25, Returntostep 2187 < 5.

77

Selected topics of datareduction. Photometry Build 15.0.3262

A straightforward expansion formulafor the original image (per pixel) is given by:
colX, ¥) = ¢, {x, y) + 2 W, V).
j=1

where, cp is the residual image. The multiresolution support is obtained by detecting at each scale
the significant coefficient wj. The multiresolution support is defined by:

1; if wix, v) is significant;

Mij,x,vIi= i ; no o
Wi %) 0, if w (x,v) is not significant.

Given stationary Gaussian hoise, the significance of thew_j coefficientsis set by the following con-
ditions:

if |w| = ko,, then w, is significant;

if |n'_. < ko, then w, is not significant.

wheresigma_j isthestandard deviation at thescalej and k isafactor, often chosen as3. Theappropriate
value of sigma_j in the succession of the wavelet planesis assessed from the standard deviation of the
noise, sigma f, inthe original f image. The study of the properties of the wavel et transform in case of
Gaussian noise, reveals that sigma_j=sigma_f*sigma _jG, where sigma_jG is the standard deviation
at each scale of the wavelet transform of an image containing only Gaussian noise. The standard
deviation of the noise at scalej of theimage isequal to the standard deviation of the noise of theimage
multiplied by the standard deviation of the noise of the scale j of the wavelet transform. In order to
properly calculate the standard deviation of the noise and, thus, the significant wj coefficients, the
tasks applies an iterative method, as donein starck et al. 1998:

« calculate the Multiresolution Median Transform of the signal for every pixel

 calculate afirst guess of the image noise. The noise is estimated using a MeanFilter with boxsize
3 (Olsenset a. 1993)

« calculate the standard deviation of the noise estimate
« calculate afirst estimate of the noise in the wavelet space

« thestandard deviation of the noisein the wavel et space of theimageisthen sigma(j) = sigma(f)*sig-
ma(jG) (Starck 1998).

* the multiresolution support is calculated

 theimage noise isrecalculated over the pixels with M(j,x,y)=0 (containing only noise)

* the standard deviation of the noise in the wavelet space, the multiresolution support and the image
noise arerecalculated iteratively till (noise(n) - noise(n-1))/noise(n) < noiseDetectionL imit, where
noiseDetectionLimit is a user specified parameter
(Note: if your image does not contain pixels with only noise, this algorithm may not converge. The
same is true, if the value noiseDetectionLimit is not well chosen. In this case the pixel with the

smallest signal istaken and treated asif it were noise)

At the end of the iteration, the final multiresolution support is obtained. This is used to identify the
significant coefficientsand , thus, the pixels and scales of the significant signal. Of course, thisidenti-

78

Selected topics of datareduction. Photometry Build 15.0.3262

4.4.1.

fiesboth glitches and real sources. According to Starck et al. (1998), at this stage a pattern recognition
should be applied in order to separate the glitch from the real source components. This is done on
the basis of the knowledge of the detector behavior when hit by a glitch and of the different effects
caused in the wavelet space by the different glitches (short features, faders and dippers, see Starck
at al. 1998 for more details). This knowledge is still not available for the PACS detectors. At the mo-
ment, areal pattern recognition is not applied and the only way to isolate glitches from real sourcesis
to properly set the user-defined parameter scales (S in the description of the multiresolution median
transform above).

The task creates a mask, MMT_glitch mask, which flag all the readouts identified as glitches. By
default the task mask only the glitches, but it can also replace the signal of the readouts affected by
glitches by interpolating the signal before and after the glitch event.

Literaturereferencefor thisalgorithm:

ISOCAM DataProcessing, Stark, Abergel, Aussel, Sauvage, Gastaud et. al., Astron. Astrophys. Suppl.
Ser. 134, 135-148 (1999)

Automatic Noise Estimation from the Multiresol ution Support, Starck, Murtagh, PASP, 110, 193-199
(1998)

Estimation of Noise in Images: An Evaluation, Olsen, Graphical Models and Image Processing, 55,
319-323 (1993)

Details and Results of the implementation

Thisisthe signature of the task:

out frames = phot MMTDegl i t chi ng(i nFrames [, copy=copy] [, scal es=scal es]
[,mt_startenv=mmt _startenv] [,incr/fact=incr/fact] \

[, mt_node=mmt _node] [, mt _scal es=mmt _scal es] [, nsi gma=nsi gma])

Task Parameters

e outFrames: the returned Frames object
 inFrames: the Frames object with the data that should be deglitched
 copy (boolean): Possible values:

« false (jython: 0) - inFrames will be modified and returned

* true (jython: 1) - acopy of inFrames will be returned

« scales (int): Number of wavelet scales. This should reflect the maximum expected readout number
of the glitches. Default is 5 readouts

e« mmt_startenv (int): The startsize of the environment box for the median transform. Default is 1
readout (plus/minus)

* incr_fact (float): Increment resp. factor to enhance the mmt_startenv. Default is 1 for mmt_mode
=="add" and 2 for mmt_mode == "multiply"

* mmt_mode (String): Defineshow the environment should be modified between the scales. Possible
values. "add" or "multiply". Default is"add"

« example: the environmentsize for the subsequent median transform environment boxes will be

79

Selected topics of datareduction. Photometry Build 15.0.3262

env(0) = mmt _startenv, env(n) = env(n-1) mmt _node incr/fact

» default for mode "add" means then:

env(0) =1, env(1l) =1 + 1; env(2) =2 + 1; etc.

« default for mode "multiply" means:

env(0) =1, env(1l) = 1*2; env(2) = 2*2; env(3) = 4*2; etc

* noiseDetectionLimit (double): Threshold for determining the image noise. val ues between 0.0 and
1.0. Default is 0.1

e nsigma (int): Limit that defines the glitches on the wavelet level. Every value larger than
nsigma*sigmawill be treated as glitch. Default is5

» onlyMask (boolean): If set to true, the deglitching will only create a glitchmasks and not remove
the glitches from the signal. If false, the glitchmask will be created and the detected glitches will
be removed from the signal. Default value: true

» maskname: This paramter allowsto set a custom maskname for the glitchmask, that is added to the
frames object by thistask. Default value: "MMT _Glitchmask"

» sourcemask (String): It isthe name of amask. mmt deglitching is not only sensitive to glitches but
also to pointsources. To avoid deglitching of sources, the sourcemask may mask the locations of
sources. If thismask is provided in the frames object, the masked locations will not be deglitched by
this task. After the task is executed, the sourcemask will be deactivated. Use the PhotReadM ask-
FromlmageTask to write amask into the frames object. Instruction how to do it are provided in the
documentation of the task. Default value: "

» use_masks (boolean): this paramter determines, whether the masks are used to cal culate the noise.
If set to true, the standard deviation will only be calculated from the unmasked samples. Default
value: false

* noiseByM eanFilter (boolean): this paramter has effect, if neither a noise array or anoise value is
submitted by the user. In that case, MM TDeglitching has to calculate image noise internally. This
can be done by ssimply subtract all timelines by their mean filtered values (noiseByMeanFilter =
true). If noiseByMeanFilter = false (default) the noise will be calculated in the wavelet space as
describe by Starck and Murtagh. In both cases, the noisewill be cal cul ated separately for every pixel.
After execution of the task, the noise can be inspected: MM TDeglitching.getlmageNoiseArray()
returns the noise array

* noiseModel (Doubleld): a Doubleld that modelsthe noise. The standard internal approach isto use
aGaussian noisewith astandard deviation of 1. Thisvalueisneeded to calculatethenoisein wavel et
space (see (3)). Default: a Gaussian noise created by the class herschel .pacs.share.math.Gaussian-
Noise with the standard deviation of 1. The length of the default datais 100.000

The method works well till the maximum number of readouts of a glitch is much smaller than the one
of areal source. Thismethod works particularly well for observations containing mostly point sources
(e.g. deep field observations). Indeed, in these cases the sources do not affect the estimate of the noise
image and the sources are still large enough to be distinguished from glitches than usually last one or
two readouts. The following example works pretty well for this case:

franes =

phot MMIDegl i t chi ng(franes, scal es=3, nsi gma=5, nmt _node="rmul ti ply',incr_fact=2, onl yMask=0)

However, if the observations includes particularly bright sources, the task may deglitch their central
brightest core. In this case several tricks can be applied to avoid deglitching the sources. For instance,

80

Selected topics of datareduction. Photometry Build 15.0.3262

the user might choose use the previous settings parameters and provide also the "sourcemask”. This
will let the task mask all the glitches with the exclusion of the masked source readouts. In a second
pass, the user can re-run the task with "relaxed" parameters and without providing the sourcemask:

frames =
phot MMIDegl i t chi ng(franes, scal es=2, nsi gma=9, nmt _node="nul ti ply',incr_fact=2, onl yMask=0)

This deglitching method is not recommended for extended emission observation. Indeed, in most of
the cases the task is not able to properly recover the noise image due to the extended emission and
the brightest regions of the extended source are misclassified as glitches. In this case the second level
deglitching approach is recommended.

4.5. photRespFlatFieldCorrection

See description of the same task in the Point-source pipeline

4.6. photHighPassfilter

This task is used to remove the 1/f noise of the PACS data in the branch of the pipeline that uses
PhotProject. The task is removing from the timeline a running median filter. the median is estimated
within a box of a given width around each readout. The user must specify the box width depending
on the scientific case (see the ipipe scripts for different examples). Isis aso higly recommended to
properly mask the sources by providing a source mask.

out Frame = hi ghPassFilter(inFranme [, copy=copy, masknanme = "sourcemask"])

 inFrame (Frames): input Frames object

* environment (int) default value = 20. The filterwidth is the number of values in the filterbox. It
is 2*environement +1.

« algo(String): Theagorithmfor high passfiltering default value="median". Alternative agorithms:
"mean" : HighPassFilter applies a MeanFilter

» copy (int):
0 - return reference: overwrites the input frames (default)
« 1 - return copy : creates a new output without overwriting the input

» maskname (String): If maskname is specified and the mask is contained in the inframes object, a
MaskedMedianFilter will be used for processing.

 deactivatemask (Boolean): If amask coversthe sources, it can be critical to assure deactivation of
the mask beforethe projectionisdone! if amask has been provided, deactivatemask leavesthe mask
untouched (deactivatemask = False), or deactivates the mask after processing the Highpassfilter
(deactivatemask = True). Default value = True

» severeEvents (Boolld): A Boolld array that defines the time positions, where completely masked
environment boxes have severe impact on the processing. These incidents are reported by the task.

* interpolateM askedValues (Boolean): Usually masked values are not included in the Median cal-
culation. In the cases, where the median box is completely masked, the mask will be ignored and
the median will be taken from all box values, asif nothing were masked. If the parameter "interpo-
lateMaskedValues' is true (default), these completely masked filter boxes will be linearly interpo-
lated over all masked values. Thisis done by taking the first unmasked values right and left from
the masked environment and use them for theinterpolation. If it isfal se, the Median vector contains
Medians of all valuesin the environment box, as if no mask were there. Default = true.

81

Selected topics of datareduction. Photometry Build 15.0.3262

As it was mentioned before

4.7. photProject

This task accepts a frames object as input that has been processed by a pacs pipeline. The minimum
contents of the frames object must be a signal array and the pointing status entries provided by the
AddInstantPointingTask. PhotProject maps the images contained in the frames class into one single
map and returnsit as a Simplelmage object that contains the map, the coordinates (in form of aworld
coordinate system wcs) and inputexposure, noise (error) and weight maps. The mapping process by
default uses all activated masks from the input frames object. A second functionality of PhotProject
is the preparation for the second level deglitching. This is done with the paramter deglitch = true.
In that case, a Maplndex Object is created (instead of the Simplelmage) that contains the necessary
information to deglitch the signal contributions into each output pixel with a Sigma clipping. Thisis
done with the secondL evel DeglitchTask, which needs the Mapl ndex as inpuit.

i mge = phot Proj ect (i nFrames, [outPixel Si ze=out Pi xel si ze,] [copy=1,] [nonitor=1,]
[optim zeOrientation=optim zeOrientation,]\
[wes=wcs,] [pixfrac=pixfrac,] [calibration=calibration])

* inframes (Frames): the input frames class

» calTree (PacsCalibrationTree): calibration tree containing all calibration products used by the
pipeline

» copy (int): Oif the original frames class should be used, 1 if a copied version should be use.
« 0 - return reference: overwrites the input frames (default)
e 1-return copy : creates a new output without overwriting the input

» weightedsignal (Boolean): set thisto True, if the signal contributions to the map pixels should be
weighted with the signal error. The error istaken from the noise array intheinframes object. Default
value: False.

» pixfrac (float): ratio of drop and input pixel size.

» outputPixelsize (float): The size of apixel in the output dataset in arcseconds. Default is the same
size astheinput (6.4 arcsecs for the red and 3.2 arcsecs for the blue photometer).

« monitor (Boolean): If True, showsthe map monitor that allowsin situ monitoring of the map build-
ing process. Default value: false.

» optimizeOrientation (Boolean): rotates the map by an angle between 0 and 89 degrees in a way
that the coverage of the outputimage is maximized as a result, north points no longer upwards.
Possible values:

« false (default): no automatic rotation
* true: automatic rotation

» wcs: alowsto specify acustomized westhat is used for projection. Usually photProject calculates
and optimizes its own wcs. The wcs parameter allows to overwrite the internally created wcs. The
easiest way to create a Wcs is to use the WesAmapTask (that is also used internally by this task),
modify its parameters. The necessary paramters to modify are:

< wcs.setCrota2(angle): the rotation angle in decimal degrees (45.0 for 45 degrees)

» wes.setCrpix1(crpix1):The reference pixel position of axis 1. Use the center of your map: map-
width/2 (the Ra-coordiante)

82

Selected topics of datareduction. Photometry Build 15.0.3262

» wes.setCrpix2(crpix2):The reference pixel position of axis 2. Use the center of your map:
mapheight/2 (the Dec-coordinate)

* wes.setCrvall(crvall):The coordinate of crpixl (ra-value in decimal degrees - use Maptool-
sra_2 decimal(int hours, int arcmin, double arcsec) for conversion)

« wcs.setCrval2(crval 2): The coordinate of crpix2 (dec-value in decimal degrees - use Maptool-
s.dec_2 decimal(int degree, int arcmin, double arcsec) for conversion)

» wes.setParameter ("NAXISL", mapwidth, "Number of Pixels along axis 1.") :crpix1*2, if you
follow these instructions

« wes.setParameter ("NAXIS2", mapheight, "Number of Pixels along axis 2") :crpix2*2, if you
follow these instruction

* deglitch (Boolean): It specifies, that PhotProject does not create a map, but writes all contributions
to the map into a Maplndex object instead. After PhotProject is finsished, the Maplndex can be
obtai ned with mstack = photProject.getValue("index"). The PacsM apstack istheinput object for the
second level deglitching with secondLevel DeglitchingTask. Possible values: false (default) or true.

+ dlimindex (Boolean): together with deglitch = trueinstructs PhotProject to build amemory efficient
index for deglitching. Building an index first means that second level deglitching will take longer,
but can be processed with significantly less memory requirements (ca. 20% compared to the default
slimindex = false).

» image (Simplelmage): the returned Simplelmage that contains amap and aWcs (World Coordinate
System).

« index: if the option deglitch is used, the Simplelmage is not created. Instead a Maplndex object is
produced that must be used as input to the secondL evel DeglitchingTask. The index is not returned
by index = photProject(....) like the Simplel mage. I nstead, photProject has to be executed (photPro-
ject(...) and then index = photProject.getVaue("index") must be called.

The photProject task performs a simple coaddition of images, by using the drizzle method (Fruchter
and Hook, 2002,PASP, 114, 144). There is not particular treatment of the signal in terms of noise
removal. The 1/f noiseis supposed to be removed by the high-passfiltering task. The drizzle algorithm
is conceptually simple. Pixelsin the original input images are mapped into pixelsin the subsampled
output image, taking into account shifts and rotations between images and the optical distortion of
the camera. However, in order to avoid convolving the image with the large pixel "footprint" of the
camera, we alow the user to shrink the pixel before it is averaged into the output image, as shown
in the figure below.

_t— Input pixals
* * *
i, r’/
P T,
- B e *
R “Drop*
* * *

Figure4.10. Drop size

The new shrunken pixels, or "drops", rain down upon the subsampled output image.

83

Selected topics of datareduction. Photometry Build 15.0.3262

Fine output grid

Hj|.
Hj|.

f;‘_ P~
Coarse input pixel grid leI Cl77
I~
LSS
R

Figure4.11. Drizzle

The flux in each drop is divided up among the overlapping output pixelsin proportion to the areas of
overlap. Note that if the drop size is sufficiently small not all output pixels have data added to them
from each input image. One must therefore choose a drop size that is small enough to avoid degrading
theimage, but large enough that after all images are "dripped” the coverageisfairly uniform. Due to
the very high redundancy of PACS scan map data, even in the mini-map case, avery small drop size
can be chosen (1/10 of the detector pixel size). Indeed, asmall drop size can help in reducing the cross
correlated noise du eto the projection itself (see for aquantitative trestment the appendix in Casertano
et a. 2000, AJ, 120,2747). The size of the drop sizeis usually fixed through the ~pixfrac" parameter,
which given the ratio between the drop and the input pixel si ze. The mathematical Formulation of
the drizzling method is described below:

N, .
2inq AxyWaylyy
Ly =
) Wx" v
N,
u{\{’ }."' — E HI}JW Ty
1

where I(X'y") is the flux of the output pixel (x',y"), a(xy) is the geometrical weight of the input pixel
(x,y), w(xy) istheinitial weight of the input pixel, i(xy) is the flux of the input pixel and W(X'y") is
the weight of the output pixel (x'y"). The geometrical weight a(xy) is given by the fraction of ouptput
pixel area overlapped by the mapped input pixel, so 0 < a(xy) < 1. The weight w(xy) of the pixel can
be zeroif it isabad pixel (hot pixels, dead pixels, cosmic rays event, ...), or can be adjusted according
to the local noise (the value is then inversely proportional to the variance maps of the input image).
Thus, the signal Ix'y' of the output image at pixel (X',y") is given the sum of all input pixels with non
zero geometrical (a(xy)) and initial weight w(xy), divided by the total weight (sum of the weight of
all contributing pixels).

Selected topics of datareduction. Photometry Build 15.0.3262

Thekey parameters of thistask arethethe output pixel sizeand thedrop size. A small drop sizecan help
in reducing the cross correlated noise due to the projection itself (see for a quantitative treatment the
appendix in Casertano et al. 2000, AJ, 120,2747). However, theremaining 1/f noise not removed by the
high-passfilter task is still a source of cross-correlated noise in the map. Thus, the formulas provided
by Casertano et al. 2000, which account only for the cross correlated noise due to the projection, do
not provide areal estimate of the total cross correlated noise of the final map. Indeed, thisisafunction
of the high-pass filter radius, the output pixel and the drop size. Nevertheless, those formulas can be
used to reduce as much as possible the cross-correlated noise due to the projection. We stress here
that the values of output pixel size and drop size strongly depend on the redundancy of the data (e.g.
the repetition factor). For instance, a too small drop size would create holes in the final map if the
redundancy is not high enough (see Fruchter and Hook, 2002 and the PDRG for a clear explanation).
Thedrop sizeisset inthe pixfrac parameter inthe photProject input. The pixfrac parameter isexpressed
as the ratio between the drop and in input pixel size. A drop size of 1/10 the input pixel sizeisfound
to give very good quality in the final map. Since these parameters have to be adjusted case by case,
we invite you to play with them to find the right balance between noise, cross-correlated noise and
S/N of the source for creating the optimal map. The photProject task comesin two flavors: asmple
average of the input pixel contributions to the given output pixel as done in the previous line, or a
weighted mean of those contributions. The weights are estimated as the inverse of the error sgquare.
However, since the noise propagation is not properly done in the PACS pipeline a proper error cube
must be provided to obtain good maps.

4.8. photProjectPointSource

Creates the final map in chop-nod mode. See the corresponding photProjectPointSource entry in the
URM for the description of this task. The description of the projection method can be found under
photProject earlier in this document.

85

Selected topics of datareduction. Photometry Build 15.0.3262

4.9. Features of the Map Monitor

The currently processed frame (nc¢

slide through all buffered frames and
see, how the map is constructed

86

Selected topics of datareduction. Photometry Build 15.0.3262

Theuse of the Map Monitor isstraight forward. After PhotProject is started with the option monitor=1,
the Map Monitor appearsand shows how themapis constructed. It hasabuffer for all processed frames
and maps. The dider moves through this buffer and displays the map in all stages of construction.
Here are some remarks:

 autodisplay: if thisis selected, the map isimmediately displayed, while PhotProject processes the
data. Uncheck this option and the buffer initially fills much faster.

« memory: depending on the size of the processed Frames class the buffer may use alot of memory.
Start PhotProject with all memory you can afford. If the Map Monitor runs out of memory, it will
deleteits buffer to avoid out of memory situations and go on showing only the currently processed
map. Inthislow memory modethe dlider isdisabled (but it still indicatesthe number of the currently
processed frame).

4.10. Errors in PACS maps
4.10.1. High Pass Filtering

Two different components can be used to describe the noise in a PACS maps processed with HPF
and photProject:

* noise per pixel
» cross-correlated noise

The former is given by the error map and it should scale as the inverse of the square root of the
observing time or the coverage, until the confusion noiseisreached. Thelatter depends on the mapping
itself and on other sources of cross-correlation such as the 1/f noise left after running the HighPass
filter task. In principle the noise per pixel should be estimated via error propagation. However, the
high-passfilter task completely changes the noise power spectrum of the PACS timeline, thus making
it impossibleto propagatetheerrors. In opracticeit meansthat the error maps generated by photProject
contain values that has no real meaning. To overcome this problem we use two different methods to
estimate the error map depending on the data redundancy.

* high redundancy case (few AOR of the same field or high repetition number within the same
AOR): the error maps is computed from weighted mean error

* low redundancy case (only scan and cross scan without repetitions): the error map is derived from
coverage map via calibration obtained from high redundancy case

For the detailed description of the methods and the analysis see Popesso et al. 2012 (A& A submitted)

4.10.1.1. PhotCoverage2Noise

Since it is the most frequent observational case in PACS maps, the low redundancy case has been
implemented as a HIPE task PhotCoverage2Noise. The error map is produced via a calibration file
using the coverage map. The calibration file parameterized as a function of hp width, output pixel
size and pixfrac was produced on data with very high redundancy in medium and fast speed, with a
cross-correl ation noise correction factor parameterized as well in the same parameter space. The error
map is generated applying a best polynomial fit to the coverage map as function of the highpass filter
width, output pixel size and drop size. an example of running the task is given below:

map=phot Cover age2Noi se(map, hp=hp_w dt h, pi xf rac=pi xf rac)
The parameters of the task are the following:
 imagel n: simple image containing image, coverage, error

 imageOut: image containing the new errormap. Usually it should be the same asthe original image
(that isthe default if imageOut is not supplied)

87

Selected topics of datareduction. Photometry Build 15.0.3262

* hp: highpass filter width with which the input map was processed
 pixfrac: drop size

e camera: "blue" or "red"

 parallel; paralel mode True or False

* copy: copy image or not

» imageOut: output image name

e scical: "scit, "ca", "al" to select whether you would like to process only the science part (sci) or
the calibration part (cal) of your date or both (all

» copy (int): Oif the original frames class should be used, 1 if a copied version should be use.
» 0 - return reference: overwrites the input frames (default)
e 1-return copy : creates a new output without overwriting the input

From the above parameters the input image, the highpass filter width, the pixel size and the drop size
isrequired any any case.

4.10.2. JScanam

During the JScanam processing a standard deviation is calculated from the flux of the detector pixels
which contributeto any given map pixel. Thisstandard deviationsare stored in asimpleimage attached
to the maps.

4.10.3. Unimap

During the Unimap processing several tasks are used to estimate the contribution of different kinds
of noises and prepare the data to the final GLS map maker. The main contributors are pixel noise,
and electronic noise. The software combines the pixel noise and the electronic noise to produce an
estimate of the noise (i.e. the error) affecting the final map. Thisis saved as an array dataset attached
to the final Unimap product.

4.11. Reducing minimaps (combining scan
and cross-scan)

The minimap mode is a special way to execute scanmap observations. A minimap always consists of
two obsids (the scan and cross scan), which is why they need to be handled together. In the following
wewill provide asample script that can be used to reduce the minimap observations. First you need to
place your obsid in an array which we can loop over. Basically they can be put into asingleline but it
is better to organisethem in pairs so it is easier to oversee them. Y ou also need to define the directory
where you want to put your images and set in the coordinates of your source (rasource, decsource)
in decimal degrees.

If you wish to follow these instructions in real-time, we suggest you cut and paste the entirety of this
loop into apython script filein the Editor tab of HIPE. Y ou can also look at the Pipeline menu scripts,
which present the pipeline reduction for different types of AORs.

create an array of names—al |l being of the sane source

the \ is a line break you can enpl oy

the nunbers here are the obsids of your scan (odd entries)
and associ ated cross scan (even entries)

Nobs = [\

13421111, 13421112, \

88

Selected topics of datareduction. Photometry Build 15.0.3262

13422222, 13422223, \
1

and an array of caneras (these are the only possible)
channel = ["blue", "red"]

where the data are
direc = "/yourDirectory/"

coordi nat es

rasource = # RA of the source in degrees
decsource = # DEC of the source in degrees
cosdecCOS(decsour ce*vat h. Pl /180.)

Then you can start looping over your observation. Note here: the scripts below that are indented from
the very first line, are indented because they are still part of the for loop that begins here:

for k in range(l en(Nobs)):
if k %2: continue
OBSI DS=[Nobs|[k] , Nobs[k+1]]

This part makes sure that the scan (k) and cross-scan (k+1) are processed together. Then you need to
do the standard pipeline processing up to alevel for each individua obsid and channel. The following
"for" loop does this. Y ou can aso set the pixel size of your final map using variables. The frames=[]
is needed to let HIPE know that we are using an object array (we are holding each Frames created
inalist). It will contain an array of images as they are used in the single observation case. Continue
with the script:

for j in range(len(channel)):
print "\nReducing OBSID:", OBSIDS[i], " (", i+1, "/", len(Nobs), ")"
#
for i in range(len(OBSIDS)):
frames=[]
obsi d=0BSI DS[i]
print channel [j]
channel
canmera = channel [j]
out put nap pixel size:
if camera=='blue':
out pi xsz=3. 2
elif camera=='red" :
out pi xsz=6. 4

Then you need to get your ObservationContext. In this example we use the simplest method using the
Herschel Science Archive. For this you need the login properties set.

obs = get Cbservati on(obsid, useHsa = True)

For parallel mode observations use:

obs = get Cbservation(obsid, useHsa = True, instrunent="'PACS)

otherwise it will return a SPIRE ObservationContext (which you cannot process unless you have the
SPIRE/dll version of HIPE).

However please note that the HSA do not encourage the use of getObservation with useHsa=True
within a loop, as it places great stress on the archive—and especially if the loop crashes, you will
have to retrieve the data all over again! It isfar better to have the data already on your disc. To get
your observation from your private pool:

dir
obs

"/yourDirectory/' #this you can also put outside the |oop
get Cbservati on(obsi d, pool Locati on=dir)

(See Chapter 1 for more instruction.) Then you need to extract some important information from your
observation, such as operational day (OD) number and scan speed. These are going to be used later.

89

Selected topics of datareduction. Photometry Build 15.0.3262

OD = obs. net a. get ("odNunber") . val ue
obj ect = obs. neta. get("object").val ue
scanSpeed = obs. neta. get (' mapScanSpeed'). val ue

if scanSpeed == 'nedi un :
speed = 20.

elif scanSpeed == 'l ow :
speed = 10.

elif scanSpeed == 'fast':
speed = 60.

Using the scan speed you can set up highpass filter half-width value (in units of readouts). Y ou might
want to EDIT the widths and TEST the photometry for different values here. For point sources at
medium scan speed, values of the highpassfilter half-width of 20 in the blue and 25 in thered provide
good results. But of course the width depends on the science case and the scan speed. A little example
generalising the scan speed dependence can be found below, which you can chose to include in this
big for-loop script if you like:

if canera=='blue':

hpfw dt h=i nt (CEI L(20 * 20./speed))
elif canera=='red" :

hpfw dt h=i nt (CEI L(25 * 20./speed))

Get the pointing product from the ObservationContext, get the cal Tree, extract houskeeping parame-
ters and the orbit ephemeris product

pp = obs. auxiliary. pointing

cal Tree = get Cal Tree()

phot HK=obs. | evel 0. r ef s["HPPHK"] . product . ref s[0] . pr oduct [" HPPHKS"]
oep = obs. auxiliary. orbitEpheneris

Then you get the Level 0 data cube (frames) for the blue or red channel Frames. We can aso obtain
the "filter" information from the meta data at this point and convert it into human-readable form. Itis
important if we observe in both wavelength regimes of the blue camera.

i f camera=='blue':
frames[i]=obs. | evel 0.refs["HPPAVGB"] . product.refs[0].product
if (frames[i].nmeta["blue"].getValue() == "bluel"):
filter="bl ue"
el se:
filter="green"
elif camera=='red":
franmes=obs. | evel 0. ref s["HPPAVGR"] . pr oduct . ref s[0] . pr oduct
filter="red"

Now we need toidentify instrument configuraiton blocksin the observation and removethe calibration
block keeping only the science frames.

frames[i]
frames[i]

findBl ocks(franmes[i], cal Tree=cal Tree)
renoveCal Bl ocks(franes)

After that we need to execute the tasks already described in Chap. 3.

frames[i] = phot Fl agBadPi xel s(franmes[i], cal Tree=cal Tree)
frames[i] = photFl agSaturation(franmes[i], cal Tree=cal Tree, \

hkdat a=phot HK)
frames[i] = phot ConvDi gi t2Vol ts(franmes[i], cal Tree=cal Tree)
frames[i] = convert Chopper2Angl e(franmes[i], cal Tree=cal Tree)
frames[i] = phot Addl nst ant Poi nti ng(franes[i], pp, orbi t Ephem = oep)
if (isSso):

print "Correcting coordinates for SSO ", Date()

if (obsid == obsids[0]):
timeOffset = ft.mcrosecondsSi ncel958()
frames =
correct RaDec4Sso(franes, hori zons, ti e f set, or bi t Ephem=oep, | i near =Fal se)
frames[i] = phot Assi gnRaDec(franes[i], cal Tree=cal Tree)
frames[i] = cl eanPl at eauFranes(franes[i], cal Tree=cal Tree)

90

Selected topics of datareduction. Photometry Build 15.0.3262

frames[i] = addUtc(frames[i], tinmeCorr)

frames[i] = photRespFl atfieldCorrection(frames[i], cal Tree = cal Tree)
frames[i] = photOffsetCorr(frames[i])

frames[i] = phot NonLinearityCorrection(frames[i])

The non-linearity of the PACS Photometer flux calibration at very high fluxesistaken into account by
applying a correction factor after performing the flat-fielding and responsivity calibration from Volts
to Jy by the photRespFl atfieldCorrection task. The correction, applied trhough the task photOffsetCorr
and photNonLinearityCorrection, affects only pixelswith fluxes above approximatively above 100 Jy.

These tasks flag the known bad pixels, flag saturated pixels, convert from ADUs to Volts, convert
chopper angles into angles on the sky apply the flat-field, compute the coordinates for the reference
pixel (detector centre) with aberration correction (and correct for motions of Solar System objects if
necessary), and assign ra/dec to every pixel and convert Voltsinto Jy/pixel,

At this point you have gotten to the Level 1 product, which is calibrated for most of the instrumental
effects. Y ou might want to save this product before the highpass filter task to be able to go back and
optimise your data reduction afterwards. There are three ways to save your Frames.

FIRST OPTION to save the data: use the 'save' task to store your datalocally:

savefile = direc+"frane_"+"_" + obsid.toString() + "_" \
+ canera + "Level _1.save"
print "Saving file: " + savefile

save(savefile, "frames[i]")

SECOND OPTION to savethe data: storeyour datalocally asaFI TSfile, specify the output directory
asyou did for the first option:

savefile = direc+"frame_"+"_" + obsid.toString() + "_" \
+ canera + "Level _1.fits"
print "Saving file: " + savefile

simpleFitsWiter(franmes[i], savefile)

THIRD OPTION: store frames in memory by copying to a new Frames (not a good idea if you do
not have a big-memory machine)

frames_original[i]=frames[i].copy()

The next step would be high pass filtering your data to remove the 1/f noise. However this filtering
can severely affect the flux of your source. That is why you need to mask your astronomical object(s)
before filtering. Here we propose two ways of masking your sources.

FIRST MASKING OPTION: mask the source blindly within 25 (or whatever you like) arcsec ra-
dius of the source coordinates (rasource and decsource). Thisis appropriate when you have only one
source and you know its coordinates (the typical minimap case). If you have many sourceswith known
coordinates, you can still use this method by looping over a prior source list and masking within the
desidered aperture around the source position. Just be aware that looping in Jython is quite time con-
suming.

First you need to define the mask HighpassMask to use for masking sourcesin the highpass filtering.

awaysour ce=SQRT(((franes[i].ra-rasource)*cosdec)**2 \
+(frames[i].dec-decsource)**2) < 25./3600

if (frames[i].get Mask().contai nsMask("H ghpassMask") == Fal se)
frames[i].addMaskType("H ghpassMask", " Maski ng source for Hi ghpass")
frames[i].set Mask(' Hi ghpassMask' , awaysour ce)

The first line selects the pixel coordinates that are closer to the source than 25 arcsec. The second
line examines if the HighpassMask already existsin frames and if not then creates it from the pixels
selected in the first line. Then we can run highpass filtering while masking the source:

91

Selected topics of datareduction. Photometry Build 15.0.3262

frames[i] = highpassFilter(frames[i], hpfw dth,\
masknane="H ghpassMask")

Tip
@ In many cases the MMT deglitching might detect bright sources as glitches (check this).
It is often useful to disable the deglitching on the target in frames mask. Y ou do this by
overwriting the mask within your desired region:

mask=frames[i].get Mask(' MMI_d it chmask")

awaysour ce=SQRT(((frames[i].ra-rasource)*cosdec) **2\
+(frames[i].dec-decsource)**2) > 25./3600.

frames[i].set Mask(' MMT_G it chmask', mask & awaysour ce)

Here thefirst line reads the mask created by the MMT deglitching task. Then it finds the
pixel coordinates that are farther than 25 arcsec from the source, and finaly it puts back
the mask for each and all pixels that were masked originally by MMT deglitching and are
is farther from the source than 25 arcsec.

SECOND MASKING OPTION: mask the source based on sigma-clipping of the map. Thisis more
general than previous one but it might need some tuning to set the threshold properly (use MaskViewer
to do this).

So, first we create amap with high pass filter without masking anything aswe saw it in Chap 5.

frames[i] = highpassFilter(frames[i], hpfw dth)
frames[i] = filterOnScanSpeed(franmes[i],|im t=10.0, scical ="sci", copy=True)
mapl = phot Project(franmes[i], cal Tree=cal Tree, cali brati on=True,\

out put Pi xel si ze=out pi xsz)

Now we need to restore the frames saved before the high pass filtering

restore(savefile)

We will then find a threshold to mask, find out where the sources are, and then mask everything
above that threshold. The choice of the threshold depends on the science case and there is no general
criterium. This part of the pipeline needs a high level of interaction. That is why having the Level 1
product saved before is a good way to avoid repeating the whole prior data reduction several times.

Define the threshold on the basis of the map's standard deviation value. The following line derive the
standard deviation of the map where thereis signal

t hr eshol d=STDDEV(mapl. i mage[mapl. i nage. wher e(ABS(mapl. i mage)\
> le-6)])

Then we masksall readoutsin the timeline at the same coordinates of the map pixelswith signal above
the threshold (bonafide sources) using the photReadM askFroml mage task:

maskMap = nmapl
frames[i] = phot ReadMaskFrom mage(frames[i], maskMap, extendedMaski ng=True,\
maskname="Hi ghpassMask", threshol d=t hreshol d, cal Tree = cal Tree)

This task basically goes over the final map (here it called maskMap) pixel by pixel and along their
(time-ordered data) vectors, and if the value of vector datais larger than the threshold it masks that
point. It is possible to check the HighpassMask with MaskViewer:

from herschel . pacs. signal inport MskVi ewer
MaskVi ewer (f r ames)

And now you have set the mask, you can again run the highpass filter on the Frames.

Of course if you intend to execute this step you cannot use the loops but process only one obsid at
atime.

92

Selected topics of datareduction. Photometry Build 15.0.3262

Now you have masked your source (using option 1 or 2), you can continue.
Begin by running the highpass filter on the data.

frames[i] = highpassFilter(frames[i], hpfw dth, masknane="H ghpassMask",\
, i nterpol at eMaskedVal ues=Tr ue)

Tip
@ If the hpfwidth is smaller than the source size, the whole hpfwidth could be masked. In
this casethetask will calcul ate the median over the given hpfwidth asif it was not masked.
Thusit will remove a so source flux. In these case the "interpolation™ parameter should be
set to let the task interpolate between the closest values of the median over the timeline—
True as we have here.

Now we can perform the second level deglitching (see Chap. 4). We can also check what fraction of
our data were masked by the second level deglitching. If the valuesislarger than 1% you might want
to investigate the deglitching a little further to make sure that only real glitches are masked.

frames[i]=phot MapDeglitch(frames[i])

mask = franes[i].get Mask(' Mapd it chmask')

nMask = mask.where(mask == True). | ength()

frac = 100. *nMask/ | en(franes. si gnal)

print " Second | evel deglitching has nasked "+str(nMask)+" pixels."
print ' Second | evel deglitching has nasked % 2f' % rac+' % of the data.'

Then we select the frames taken at constant scan speed (allowing 10% uncertainty with the keyword
"limit=10.0"). Finally we can create our map using the highpass filtered data as we saw it before.

frames[i] = filterOnScanSpeed(franes[i],limt=10.0, scical ="sci", copy=True)
map2 = phot Project(franmes[i], cal Tree=cal Tree, cali brati on=True,\
out put Pi xel si ze=out pi xsz)

We can look at our map using the Display command.
Di spl ay(map2)
then we can save our map into afitsfile using asimple fits writer

outfile = direc+ "map_"+"_"+ obsid.toString() + " " + filter + ".fits"
print "Saving file: " + outfile
sinpl eFi tsWiter(map2,outfile)

Of coursewe can choose any namefor our output file (outfile); if you reduce more than one obsidswith
this script then it is advisable to use afilename that includes at |east the obsid and thefilter (red, green
or blue) information (giving the same name means the next loop's result will overwrite the previous).

Now we are finished with one obsid and our loop will start on the second one. After the second loop
is finished we can join our frames and create a map using the scan and the cross-scan. First we join
the frames that are stored in frames object array

if i ==0:
frames_al | =franmes[0] . copy()
el se:
frames_all.join(franes[i])

Then we use photProject to simply project all the frames onto acommon map, del ete thejoined frames
to save space, and write out our final map in afitsfile.

map = phot Proj ect(franmes_all, calibration=True, cal Tree=cal Tree, \
out put Pi xel si ze=pi xsi ze)

Di spl ay(map)

del (frames_all)

outfile = direc+ "map_"+"_"+ OBSIDS[0].toString() + \

93

Selected topics of datareduction. Photometry Build 15.0.3262

OBSIDS[1] .toString + "_" + filter + ".fits"
sinpl eFi tsWiter(map,outfile)

4.12. Dealing with Solar System objects
(SSOs)

The processing of observations of SSOs require some extra attention since the execution of one indi-
vidual observation does not account for moving objectsin real time, but recentres the telescope with
each new pointing request. Thus, by default, the assignment of pointing information to the individual
Frames assumes a non-moving target. Here we present a little piece of code that can be included in
any photometer processing script to take into the account the motion of a SSO during the observation.

4.12.1. correctRaDec4Sso

During the process of the data reduction, the task correctRaDec4Sso is able the reassign coordinates
to the pixels of each frame by using the calculated position of the target as the referenceinstead of the
centre of the FOV. It uses the horizon product that is available for data that have been processed with
the SPG (standard product generation, i.e. the automatic pipeline processing done on the data as you
got them from the HSA) version 4 or higher. The version islisted in the metadata of the Observation-
Context under the keyword "creator". Any attempt to correct the pointing of SSOswith datathat have
been processed with an earlier version will crash the session. Thisiswhy the code listed here checks
whether the horizons product can be found in the ObservationContext.

#Necessary nodul e i nports:
from herschel .ia.obs.auxiliary.fltdyn inport Horizons
from herschel .ia.obs. auxiliary.fltdyn inport Ephenerides

#Extraction of SSO rel evant products:
1s it a solar System bject ?
i sSso = isSol ar Syst entbj ect (obs)
if (isSso):
try:
hp = obs.refs["auxiliary"].product.refs["HorizonsProduct"]. product
ephem = Epheneri des(oep)
print "Extracting horizon product ..."
if hp.isEmpty():
print "ATTENTI ONl Horizon product is enpty. Cannot correct SSO proper

notion!"
hori zons = None
el se:
hori zons = Horizons(hp, ephemn
except:
print "ATTENTION! No horizon product avail able. Cannot correct SSO proper
notion!"

hori zons = None
el se:
hori zons = None

Note that for now the correctRaDec4Sso task can only be applied also to multiple associated observa-
tion (e.g. scan and cross-scan). In our example below we will show the general method:

OBS| D=[1342199515, 1342199516]
for obsid in OBSID:

if (isSso)
print "Correcting coordinates for SSO..."
if (obsid == OBSID[0]):
tinmeOf fset = franes. get Status("FI NETI ME") [0]
frames = correct RaDec4Sso(franmes, horizons,
ti mef f set, or bi t Ephenroep, | i near =Fal se)
frames = phot Assi gnRaDec(frames, cal Tree=cal Tree)

94

Selected topics of datareduction. Photometry Build 15.0.3262

The correctRaDec4Sso() task first determines the start and end time of the observation and then ex-
tracts the theoretical position of the SSO from the horizons product for the two time stamps. The sec-
ond half of the task interpolates the coordinates for each frame. Some of the code performs necessary
time-format conversions. The interpolation is not done relative to the start of the observation of the
given OBSID, but to thetime that is handed to the task viathe "timeOffsat" option. In the script thisis
set to the start time of thefirst in thelist of observations. Thetrick isthat al subsequent scan mapsare
referenced to the time frame of the first scan map of the sequence. As aresult, all individual frames
of all obsids will be referenced to the calculated position of the SSO.

4.13. Branching off after levell

There are several mapmakers available for creating the final image from the basic calibrated data
(levell products). Some of these mapmakers require the level 1 product in a specific format. Currently
one converter isavailablein HIPE that convertsthelevel 1 datato aformat digestibleto Scanamorphos,
one of the most popular mapmaker.

4.13.1. ConvertL1ToScanam

This code converts level 1 frames obtained within the context of the classical HIPE pipelineinto lev-
el 1 frames that can be saved to fits and ingested in Scanamorphos. The frames object is saved in the
current directory under the name: [obsid]_[filter] Scanam _level 1Frames.fits the suffix Scanam lev-
€l 1IFrames can be replaced by auser input, and the directory where the file is written can be changed.
The usage is very simple, first you need propagate your data up to levell stage when all the basic
calibrations are performed then feed the final frame product (called framesin our example) to the task:

succes = convertL1ToScanan(frames, [obsid], [cancel ditch], [assignRaDec],
[suffix=suffix], [outDir=outDir])

Basically the task only needs alevel 1 frames but optionally there are some parameters that one would
want to change.

» obsid: obsidisan optional parameter that you can useto providethe obsid if it isnot in the metadata.

» cancelGlitch: a boolean keyword that you can use to avoid propagating the glitch mask to the
scanamorphos file (default isfalse)

« assignRaDec: aboolean parameter to force the computation of the pixels coordinate that scanamor-
phos needs (default isfalse). The code checks that the coordinates are present, if they are not there
and assignRaDec is false, the code exits.

 suffix: astring to use to add to the name of the output fits files. Default is Scanam_level 1Frames.
Do not include thefits extension to the string.

 outDir: astring to specify the output directory in which the converted frames object will be stored.
Do not add thefinal / to the path.

4.14. Photometry on PACS images - aperture
correction

The final product of the PACS photometer is a simple image. The source extraction and aperture
photometry of objects on images is described in Sec 4.19 and Sec 4.21 of the DAG. However, the
aperture photometry measures the flux within afinite, relatively small aperture. Thetotal flux however
is distributed in a much larger area well outside the aperture. To account for this missing flux you
need to apply a correction factor to the flux values. Such correction factors are determined through
careful signal-to-noise measurements of bright celestial standards and are available as calibration files
in HIPE. A there is adedicated task to perform the aperture correction in HIPE.

95

../../dag/html/Dag.ImageAnalysis.HowTo.SourceExtraction.html
../../dag/html/Dag.ImageAnalysis.HowTo.AperturePhotometry.html

Selected topics of datareduction. Photometry Build 15.0.3262

4.14.1. photApertureCorrectionPointSource

Run the aperture correction task as in the following example:

result _apcor = phot ApertureCorrecti onPoi nt Sour ce(apphot =nyResul t, band="bl ue",
paral el | Cbservati on="Fal se", scanSpeed=20\
cal Tree=cal Tree, responsivityVersion=7)

ThenyResul t variableis the output of the aperture photometry task. The band parameter deter-
mines the filter. Because the aperture correction changes when there is an update in responsivity cal-
ibration, you must specify which responsivity calibration was used when your image was processed.
Y ou can check the responsivity calibration version by printing out your calibration tree (see Sec. Sec-
tion 2.5.4) and looking for the entry responsivity. Currently there are two possible values for the ver-
sion 5, 6 or 7. The aperture correction is dlightly different for different scanspeeds and also might
depend on if the observations carried out in parallel or prime mode. The user can choose the appro-
priate aperture correction by providing two optional parameters paralellObservation (True/False) and

scanSpeed (10,20 or 60)
Note
3 Currently the task works only using the output of the annularSkyA perturePhotometry task
Note
S The task overwrites the values in the myResult file so if one needs the fluxes without
aperture correction it is advisable to save the before performing the task
Note
g To those who want to do aperture photometry outside HIPE, the aperture correction val-

ues are available in the following documents: http://herschel.esac.esa.int/twiki/pub/Pub-
lic/PacsCalibrationWeb/bolopsf_20.pdf and http://arxiv.org/abs/1309.60993

Y ou can examine the task output in the same way as the output of the aperture photometry tasks (see
e.g. Sec 4.21.2 of the DAG).

96

http://herschel.esac.esa.int/twiki/pub/Public/PacsCalibrationWeb/bolopsf_20.pdf
http://herschel.esac.esa.int/twiki/pub/Public/PacsCalibrationWeb/bolopsf_20.pdf
http://arxiv.org/abs/1309.6099
../../dag/html/Dag.ImageAnalysis.HowTo.AperturePhotometry.html#Dag.Sec.PointSources

	PACS Data Reduction Guide: Photometry
	Table of Contents
	Chapter 1. PACS Launch Pads
	1.1. Introduction
	1.2. PACS Data Launch Pad
	1.2.1. Terminology
	1.2.2. Getting and saving PACS observations
	1.2.3. Looking at your fully-reduced data

	1.3. PACS Photometry Launch Pad
	1.3.1. Does the observation data need re-processing?
	1.3.2. Re-processing with the pipeline scripts
	1.3.3. Considerations when running the pipeline
	1.3.4. Further processing

	Chapter 2. Setting up the pipeline
	2.1. Terminology
	2.2. Getting and saving your observation data
	2.2.1. Getting
	2.2.2. Saving

	2.3. What and where are the pipeline scripts?
	2.4. How much can you improve on the automatic pipeline?
	2.5. Calibration files and the calibration tree
	2.5.1. Installing and updating the calibration files
	2.5.2. Checking what has been updated
	2.5.3. The calibration tree
	2.5.4. Comparing calibration file versions

	2.6. Saving your ObservationContext and its calibration tree to pool

	Chapter 3. In the Beginning is the Pipeline. Photometry
	3.1. Introduction
	3.2. Science case interactive pipeline scripts
	3.2.1. Point sources: high pass filtering and photProject
	3.2.1.1. Setting up for your Object
	3.2.1.2. Setting up your map output parameters
	3.2.1.3. Building the list of observations and preparing for processing
	3.2.1.4. Processing
	First processing pass: S/N mask
	Second processing pass: tight S/N masking based on combined maps
	Combining multiple source mask and source circular patch: final map

	3.2.1.5. Photometry

	3.2.2. Extended sources: MADMAP
	3.2.2.1. MADmap pre-processing
	Pixel-to-pixel offset correction
	Exponential signal drift removal
	Iterative drift correction

	3.2.2.2. Optimising MADmap pre-processing
	3.2.2.3. Running MADmap
	Preparation
	makeTodArray
	Usage
	Functionality

	runMadMap
	Usage
	Functionality

	3.2.2.4. MADmap post-processing
	Introduction
	Map making basics
	Unrolling and Median filtering
	PGLS algorithm
	Results
	References
	Usage

	3.2.2.5. Open issues and known limitations
	Computing requirements

	3.2.2.6. Troubleshooting
	Glitches in the readout electronics
	Improper module-to-module drift correction
	Point source artifact

	3.2.3. Extended sources: JScanam
	3.2.4. Extended sources: Unimap
	3.2.4.1. Unimap installation and configuration
	3.2.4.2. The Unimap interactive script
	3.2.4.3. Run Unimap
	3.2.4.4. Advanced use of the unimap script
	3.2.4.5. Quality inspection of final maps
	3.2.4.6. Unimap Referencess

	3.3. Chopped point source pipeline
	3.3.1. Differences in processing between chopped and scanned observations
	3.3.2. A typical processing script for chopped PS AOT data

	Chapter 4. Selected topics of data reduction. Photometry
	4.1. Introduction
	4.2. Used Masks
	4.3. Second level deglitching
	4.3.1. Pre-requisites and what is second level deglitching?
	4.3.2. Command-line syntax
	4.3.3. The most important syntax options
	4.3.4. A detailed look at the MapIndex task
	4.3.4.1. Memory-saving options
	The size of the MapIndex
	What can you do with the slim MapIndex: working with little memory
	Iteratively deglitch large observations

	4.3.5. A detailed look at the secondLevelDeglitch task
	4.3.5.1. Avoid deglitching strong gradients

	4.3.6. Deglitching without MapIndex (mapDeglitch)
	4.3.7. MapIndexViewer: a useful tool for diagnostic and fine tuning
	4.3.7.1. Optimising the Sigclip algorithm with the MapIndexViewer for best deglitching results
	4.3.7.2. How to write your own Sigclip algorithm in jython
	4.3.7.3. Command line options for the MapIndex

	4.4. MMT Deglitching
	4.4.1. Details and Results of the implementation

	4.5. photRespFlatFieldCorrection
	4.6. photHighPassfilter
	4.7. photProject
	4.8. photProjectPointSource
	4.9. Features of the Map Monitor
	4.10. Errors in PACS maps
	4.10.1. High Pass Filtering
	4.10.1.1. PhotCoverage2Noise

	4.10.2. JScanam
	4.10.3. Unimap

	4.11. Reducing minimaps (combining scan and cross-scan)
	4.12. Dealing with Solar System objects (SSOs)
	4.12.1. correctRaDec4Sso

	4.13. Branching off after level1
	4.13.1. ConvertL1ToScanam

	4.14. Photometry on PACS images - aperture correction
	4.14.1. photApertureCorrectionPointSource

