PACS Data Reduction
Guide: Spectroscopy

Issue user Version 15.0
March 2017

Build 15.0.3262

PACS Data Reduction Guide: Spectroscopy

Build 15.0.3262

Table of Contents

1. PACS Spectroscopy Launch Pad | ... 1
N 1 01 0o [0 w1 To o O PP PTRR 1
122 TEMINOIOGY eeueeeerieeeii ettt 2

1.2. Getting and saving PACS 0DSEIVELioNSvviiiiiieiiiii e 3
1.3. What type of observation do | have?coouiiiiiii e 4
1.4. What are the science products in my obServation?ccooeveviiieiiiiinieieiinneeennnn, 5
1.4.2. The QUELTEY FEPOMT ...ttt et e e 5
1.4.2. The science-quality CUDESuiiiiiiiieiiiii et 5
1.4.3. The SPeCtrum tabIESuuiiiiii e 7
1.4.4. The standalone Drowse ProdUCESiieriinieiiii e 7

1.5. 1 just want to 100K at My CUDES!couuiiii 8
1.5.1. QUIck-100K CUDE tOOISceeeeei e 9
1.5.2. Create quick-look images or spectrafromthecubescccoveviiiiiiieeennnn. 9

1.6. Useful scripts for working with PACS dataccoovvieiiiiiiiiiiieiii e 10
2. PACS Spectroscopy Launch Pad Tloooeueniiiii e 12
2.1 INEFOQUCTION <.ttt ettt ettt e et e e e 12
2.2. The PACS PIPEIINES ...ttt 12
2.2.1. The SPG scripts: the automatic pipeline run by the HSCooceeeniniin. 12
2.2.2. The interactive pipeling SCriPLSuueiiiiiiee e 13

2.3. For what observations must | re-pipelinethe data?ocoevviiiiiiiiiieiiiinieeennn, 14
2.4. For what observations is it useful to re-process the data?cccoeveeviiiinieeeinnnnen. 14
2.5. Which are the crucial pipeling taskS?cc.uuuiiiiiiiie e 15
2.6. Point and slightly-extended SOUICEScocuuuiiiiiiiiieiiii e 16
2.7, EXIENAE SOUICESeettiee ettt ettt ettt ettt e e et e e e e e eneans 17
2.8. Correcting for the uneven illumination: the forward modelling tool 18
2.9. Where can | learn about the errors in my Spectra?ccoeeveviveiiiiinneeiiineeeceinne, 18
3. Setting UP the PIPEIING ... 20
13 B = 1 4011 0o oo | PP PP PPTR 20
3.2. Getting and saving your 0bServation dataoveieviiiieiiiiineece e 20
3.3. What type of observation do YOU have?ccceuiiiiiiiiiiieii e 22
3.4, The PIPEIING MENUcciiiti ettt e e e e e era e eees 24
3.4.1. Where are the SCripS?ceeuue e 24
3.4.2. What are the differences between the pipeline scripts?oocvvvivieiininnnen. 25

3.5. Technical considerations for running the Pipelingeccccooviiiiiiiiieii e 28
3.6. Calibration files and the calibration treecooeviiiiiieiiiii e 30
3.6.1. Installing and updating the calibration filescccccoieiiiiiiii, 30
3.6.2. Checking what has been updatedccooeiiiiiiiiii 30
3.6.3. The Calibration treeoiiiiiiiei e 31
3.6.4. Comparing calibration file VErSioNSccccoiiiiiiiiiiiii e 32
3.6.5. Saving your ObservationContext and its calibration tree to pool 32

4. The pipeline: the first and the 18st SEEPScoevveiiii e 34
A1 INEFOAUCTION ...ttt e et e e et e e et e e e e 34
4.1.1. The PIPEliNG MENUcieeiie et 34

4.2. Thefirst part of all the pipelines: Level 010 0.5oeiiviiiiiiiiiiic e 34
.21, SHCING ettt ettt ettt ettt et enaas 34
4.2.2. PIPEliNG SEUD «..vueieiii et 35
4.2.3. The first pipeling tasksccuuiiiiiii e 37
4.2.4. Fagging; adding the wavelengthscooooiiiiiiiii e, 38
4.2.5. Slicing, MOre flagQingc.uuieeeuiiieeiiii e 39

4.3. Thefinal part of the pipeling: POSt-ProCESSINGvevevriieiiiii e 40
4.3 1. EXIENAE SOUICES .. .cciitiieeieii ettt ettt 40
4.3.2. Pointed observations of extended SOUICESccceuvuieeiiiiiieeiiiiiieeeeiieeeens 43
4.3.3. POINE SOUMCESeeetieteet ettt ettt ettt ettt e e e e e ebaas 43
4.3.4. Slightly extended SOUICEScccuuuieiiiiiieeiiii et e e e eai e 46

5. ChOPNOG PIPEIINES ...t ettt e e et e e et e e e e e eeees 47

PACS Data Reduction Guide: Spectroscopy Build 15.0.3262

oY% I [oo [0 1o o PSP 47
5.1.1. The PIPEliNE MENUccuuiii e e e e e 47
5.2. The 0.5 t0 2 scripts for al PIPEliNESocvniiiiii e 47
5.2.1. Masking for glitches; convert the capaCitanCecooovveeiiiiiiiiiieciineeennnn, 47
5.2.2. Compute the dark and the response: "Calibration source" scriptsonly 48
5.2.3. Compute the differential signalccocoiiiiiiiiiiii e, 48
5.2.4. Absolute flux calibration; "Calibration source" scriptsonlyccoeevennnens 49
5.2.5. Pointing offset correction: "Pointing offset correction” scriptsonly 49
5.2.6. Spectral flatfielding: all line+short range scan pipeline scripts 52
5.2.7. Spectral flatfielding: all long range scan and SED pipeline scripts................. 54
5.2.8. Wavelength grid and outlier flaggingccooveiiiiiiiiiiii e, 56
5.2.9. Spectral rebiNNiNGccuuiiiiiiei e 57
5.2.10. Combine the NOGSooiiiiii i 58
5.2.11. Flux calibration for "Telescope normalisation” scriptsonlyc..ccuueeeee. 59
I R = o e o) o= o PP 60
5.3. "Telescope normalisation drizzle maps' pipelingccocovvveviiiiiiiiicii e, 60
5.4. Pipeline steps for spectral linesin the light leak regions (mainly longer than
03 1) 61
5.5. The Split On-Off TeStiNg’ SCHPL ..u.ivviiiiieie e e e 61
5.6. Wrapper script 'Combine observations for afull SED'coooeviviiiiiiiiiciiiiees 63
B5.6.1. EXPIaNaLion ... ccvuiiiiiieii e 63
5.6.2. RUNNING the SCriPtcvvi e 63
6. Unchopped and Wavelength switching pIpEliNgScccoviiiiiiiiiiii e 68
30 O [oo [0 1o o PP 68
6.2. The 0.5 t0 2 scripts for al PIPEliNEScoovniiii i 68
6.2.1. Masking for glitChEScvvii i 68
6.2.2. Compute the dark and the response; subtract the darkcccocvvieennnnis 69
6.2.3. FIUX CAlIDIrationoiiiiiiiiii e 70
6.2.4. Correct for transients: original line scan pipdine script onlyc..ccuueeeee. 70

6.2.5. Correct for transients: new ("with transients") line scan pipeline script only 71
6.2.6. Correct for transients: new ("with transients") range scan pipeline script on-

P 73
6.2.7. Spectral flatfielding: original line scan pipeline script onlyc.cccoeeevnnnnis 74
6.2.8. Spectral flatfielding: origina range scan pipeline scriptonlycc.uveee. 77
6.2.9. Select the on/off dices: for both the line scan pipeline scripts ..., 79
6.2.10. Wavelength grid and outlier flaggingcccoveviiiiiiiiiine e, 80
6.2.11. Spectral rebiNNINGuiiiiieiie e 8l
6.2.12. Subtract the background: line scan onlyccoeeviiiiiiiiiii i 83
6.2.13. Plot and Save the reSUILScoceuviiiiiie e 83

6.3. Helper script 'Combine off-source with on-source' in unchopped range spec-

LU0 o0 o)V PSPPI 84
B.3.1. EXPIaNaLionccvuiiiiiieii i 84
6.3.2. Alternative USEfUl SCTIPLt ... covvneeii i 85
6.3.3. Running the helper SCriptcc.uiiiiiii e 85

6.4. Pipeline steps for spectral linesin the light leak regions (longer than 190um) 87

7. More detail 0N PIPEIINE tASKSu.iiei e 89

4% O [o o 8o 1o o PP 89

7.2. The pipeline task wavelengthGridcccoviiiiiiiiiii e 89
7.21. Asused iNthe PIPEIINE ...coviii e 89
7.2.2. The oversample and upsample Parameterscooeevveeeieeeiieeeiieeeeeeeaiees 90
A T o= =Y o (0] 0= (= 93
A 4 =X o 1= 6 o] o S 93

7.3. Cubes with an equidistant wavelength gridcocoiiiiiiiiiiii e, 93
7.3.1. Create your own equidistant CUDEScoevviiiiiiiiiiii e, 94
7.3.2. Comparison of equidistant with standard cube spectra.............c.cccoevevinennnnn. 95

7.4. The spectral flafieldingoooiiiiiiii e 97
7.4.1. Line scan flatfieldingccooeeiiiiiiii e 98
7.4.2. rangeScan flatfieldingooevviiiiiii 100

PACS Data Reduction Guide: Spectroscopy Build 15.0.3262

7.5. Advice on background subtraction for the unchopped modescccoeevennn. 104
7.6. Glitches, outliers, and SAUrAtiONcoeuviiiiiiiiii e 105
LGS 11 (o o PP 105
7.8.2. GlITCNES ... 106
7.6.3. Theinteraction of saturation and glitch masks for targets with bright spec-
L= I 1T =SSOSR 106
7.7. Spectrum errorsin the final CUBESc.oviiiii i 106
7.7.1. Inspecting the StdDev and RMS arrays in the PacsRebinnedCubes. 108
7.7.2. Inspecting the errors array of the projected/drizzled/interpolated Spectral-
S T 0] = T o= PPN 110
7.7.3. The errors in the extracted central spectrum of point SOUrCeS 110
7.8. NaNs and flags in rebinned and mosaic CUDESccocevvviiiiiiiiiieiiii e, 110
7.9. Drizzle: spectral-spatial resampling and mosaicking of CUbEScccvvviiiniiinnnnss 111
7.9.1. When can | USE drZzZIE?coouuiiiiiii i 111
7.9.2. Dealing with the off- and on-cubes (unchopped) and nod A and B (chopN-
0T) SR 111
7.9.3. Construction of the spatial gridccocoiiiiiiiiii e, 112
7.9.4. pixFrac: the shrinking factorccoooiii i 112
7.9.5. OUIIEr dELECLIONeieviiieeeii e 112
7.9.6. DIZZI€ ETON @ITAY ovvveiii e ettt e e e e e e e e e e eaaes 113
7.9.7. Structure of the output, and how to extract the sub-products that drizzle cre-
1= PSSP 113
7.9.8. Using drizzle on longer wavelength rangescoccovvevieiiiicvin e, 114
7.00. SPECPIOJECE ...ceiiiiiiii ettt ettt e e e e e a e e e aaaaaaaa 114
A8 S o 1= o g 1= 010 = = P 115
7.12. The Pointing offset COrrection taskscveiuiiiiiiieiiii e 116
7.13. The transient corrections of the unchopped pipelinescocoeiiiiiiiincieeeennn, 117
8. Dealing with point and slightly extended SOUICESccuviiiiiiiiieiii e, 120
<30 I [oo [0 1o o USSP 120
8.2. Combining the PACS and SPIRE full SED for point SOUrCeScccocvvvneevvnnennnnn. 120
8.3. Spectral line skew induced by off-centred SOUrCeScooevvviviiiiiiiiiiecie e, 121
8.4. Extracting point source spectra that are not located in the central spaxd 121
8.5. Extracting point source spectra that are located in the central spaxel 122
B.5.1. WLceiiiiieii et a e e a e e e 123
8.5.2. HOW 0 rUN the tasK ...e.vviiiiiiiiei e 123
8.6. Extracting the spectra of slightly extended SOUrCEScccevviviviiiiiiiieiiieeeeeeen, 124
8.7. Correcting for the uneven illumination; the forward modelling tool 126
8.7.1. Description of the "forward modelling” process........ccoocvvvveviiiiiiiieeiinnen, 126
9. The post-pipeline tasks for mapping observations and extended SOUrCeSccecevnneennnn. 129
125 O [oo [0 1o o USSP 129
9.2. The native footprint of the PACS IFU and sampling of thebeam 129
9.3. Tiling and pointed ODSENVALIONSciviiiiiiie e 130
9.4. Oversampled and Nyquist sampled mapping observationcccoeevvieiiiineiinnnns 132
9.5. Correcting for the uneven illumination; the forward modelling tool 132
9.5.1. Description of the "forward modelling” processccooevvvveviiiiiiiineiinnenn, 133
9.6. Fitting spectral cubes, and making maps from theresultscccccevveviiiiennen, 134
9.7. Changing the spaxel size of SPG cubes; mosaicing unrelated observations 135
10. Plotting and inSpecting PACS dalalc.ueiuiieiiiiicii e e e e 136
050 1 oo (0o o PRSPPI 136
10.2. Pipeline helper tasks explaiNedc..oiiiiiiiiii i 136
10.3. Interacting with sliced ProducCtSc.oviiiieiiiicii e 144
10.4. Plotting PACS spectral data yourself: how; and what are you looking at? 145
10.4.1. Genera considerations: what difference the Level makescc.uuen.... 146
10.4.2. Basic plotting, and comparing the before- and after-task spectra................. 147
10.4.3. Plotting the on-source vs. off-source spectra for chopNod mode observa
1 0] 1P SPPN 149
10.4.4. Plotting the good and bad dataccoeeeviiiiiiiiii e, 151
10.4.5. Plotting Status values and comparing to the signal and masks 152

PACS Data Reduction Guide: Spectroscopy Build 15.0.3262

10.4.6. Plotting the POINtingoovuiiiii e 154
10.5. Using the Spectrum Explorer on PACS SPECIIAvivvniiiiiiiiieeeiieeeeeeeiee e 157
10.6. The PACS IFU fOOIPIINE .evuiiiiiieiiie e e e e e e e e e e e e e e e e 160
10.7. The PACS Spectral FOOPrint VIEWESc.uieiiiiiiiiiiciieec e 163
10.8. PACS product VIEWEr (PPV) ..ouuiii e 164
10.9. Looking at the background spectrum for unchopped mode AOTSs, directly from an
(0015 = AV 1o o [P SOTPT P 166
10.10. How to know the PACS spectral resolution at a given wavelength 167
10.11. Masks @nd MASKING .. .cuuueerneriieeiiieeeirerae e e ee e e e e e e e et e e et e e e e e et e eaneeanns 167
10.11.1. Editing masks for afew bad valuescccoveiiiiiii i 169
10.11.2. Manipulating masks on the command-linecccoeeviviiiiniiieeeennnn, 171
10.11.3. The "flag" array iN CUDEScovviiii e 173
10.12. Using the Status and BlockTables to perform selectionson data......................... 174
10.12.1. The StatUS TabIE ..vvvueii e e e 174
10.12.2. Selecting discrete data-chunks using the Statusccoeceiviviiieeinneen, 178
10.12.3. BlockTable and MasterBIockTableccovvviiiiiiiiiiiiiiiie e, 178
10.12.4. Selecting discrete data-chunks using the block tablecoeeeenni 178

Vi

Build 15.0.3262

List of Figures

1.1. Some of the cubes of Level 2: the Rebinned (HPS3DR[BJR]), with one cube per wave-
length range (the outside 0 and 1) and per pointing (the inside O to 13); and the Projected (HP-
S3DP[BIRY]), with one cube per wavelength range (0 and 1: the pointings have been combined

INEO @ SINGIE CUDE) ...ttt ettt et et e e ab e e enaans 6
1.2. The standal one browse products (an example from a pointed observation from SPG 14.2) 8
3.1. Pipeline menu 1: chopNOG [iNE SCANccvvuniiiiiiie e 24
3.2. Pipeline menu 2: chopNOd FaNGJESCANcc.uureiiitieee ittt 24
3.3. Pipeline menu 3: unchopped 1IN SCaNoovuiiiiiii e 24
3.4. Pipeline menu 4: unchopped rangESCaNccveviiieiiiiie et 24
3.5. Pipeline menu 5: wavelength SWItChingooovveiiiiiiii e 24
3.6. Updating the calibration filleScoouuiiiiiiii e 31
5.1. Loading cubes from a ListContext into the Spectrum EXplOrerccoocvvvviieiiiiinieninnnnnn. 62
7.1. upsanpl e fixed, vary OVer SAMPl @iiiiiiiiei e 1
7.2. over sanpl e fixed, vary UPSanPl @iiiiiiiiii e 1
7.3. vary upsanpl @ and OVer SAPl @ ... 92
7.4. Dispersion as afunction of wavelength for the various spectroscopy filters for awave-

lengthGrid created with upsample=1 and oversample=2.cooeiiiiiiiiiiiiiiiee e 93

7.5. Comparison of the spectrum with a scaled grid and the same data interpolated onto dif-

ferent equidistant grids (fracMinBinSize = 0.5: blue; 0.35: red; 0.25: magenta): a very short

2 T0 =0 PP 96
7.6. Comparison of the spectrum with a scaled grid and the same data interpolated onto differ-

ent equidistant grids (fracMinBinSize = 0.5: blue; 0.35: red; 0.25: magenta): blue part of an

Sl U SUPPUPPRTTTR 96
7.7. Comparison of the spectrum with a scaled grid and the same data interpolated onto dif-

ferent equidistant grids(fracMinBinSize = 0.5: blue; 0.35: red; 0.25: magenta): red part of an

Sl U SUPPUPPRTTTR 97
7.8. Before and after flatfielding: blue curve and black dots are from before; yellow curve and

red dotS @re frOM GFLENcooeiii et 99
7.9. Before and after flatfielding: ZOOMviiiiiiiiiii e 99
7.10. Before and after flatfielding (polynomial fitting): blue curve and black dots are from be-

fore; yellow curve and red dots are from aftercoooeiiiii i, 101
7.11. Before and after flatfielding: ZOOMooiiiiiiiiii e 101
7.12. An example of an "S-curve" (red spectrum) that is a signature of flatfielding with too-

high an order for the fitting (iN raNgESCANS)cvvivinieeiiii e 102
9.1. Sky footprint of the PacsRebinnedCube (and PacsCubg)coeveeviiiiiiiiiiiiiiiiieeees 130
9.2. PSF NyqUISt SAMPIING ..ceveneeeei et 130

9.3. Some examples of cubes for atiling observation. Top centre is the rebinned cube taken
from the central position in the raster, with spaxels of 9.4" and the approximate N-E axes indi-
cated. Left and right of that are the same cube but interpolated (right) and projected (left), with
N-E indicated and spaxel sizes as you would get from an observation created by SPG 13. Bot-
tom are the entire raster made into a mosaic with speclnterpolate (right) and specProject (I€ft),
with N-E indicated and spaxel sizes as you would get from an observation created by SPG 13 .. 131
10.1. The plot from slicedSummaryPlot run at the very beginning of the pipeline: grey isthe
signal, black are the grating movements. Each grating scan is done twice, in opposite direc-
tions, creating aV shape, and the 2 sets of Vsin each nod (A and B) because there are two
wavelength ranges in these data. The signal is noisy due to the presence of glitches. The block
of data on the very left isfrom the calibration block. When run later in the pipeline there will

be additional curves on the PIOt.cooui i 138
10.2. The plot from slicedPlotPointing. The grey curve shows the end of the slew on to the

source, and the coloured crosses are labeled.oovvvviiiiiiiii 139
10.3. The plot from plotSignal Basic, where you can see the off (lower) and on (higher) line of

(012 = 0o 1 | £ PP 140
10.4. The plot from plotSignalBasic, after the off signals have been subtracted 140
10.5. The plot from plotPixels, showing the PacsCube datain dots and a rebinned version of

thOSE dALA GS 8 CUINVE. ...ttt ettt eeaa s 141

vii

PACS Data Reduction Guide: Spectroscopy Build 15.0.3262

10.6. plotCubesMasks bad data (blue squares) over plotted with plotCube good data (brown/

[0 10= 0 I 1 (1= 141
10.7. An example of the spectral from three different pixels (1, 8, 16) of asingle module 146
10.8. A zoomin on PlotXY of the grating and chopper movements for a Frames 153
10.9. Masked/unmasked data V.S. SEAEUSuvureiiiiiiiieiiii e e e e eens 154
10.10. Movement of PACS during an 0bServationcocouiviiiiieiiin i e 155
10.11. The IFU footprint. Crosses are the modul e centres and circled ones are modules 0 (bot-

tom-most),1,2 (top-most). Module 5 is immediately to the left of module 0. 156
10.12. The Spectrum Explorer on a PacsCube (screenshot from HIPE 12)ccoocevvnn. 158
10.13. The Spectrum Explorer on a Frames (screenshot from HIPE 12)cccovevivieeennnnn, 158
10.14. The PACS spectroscopy AeteCtor 1ayOULcccuuiviiniiiiieiii e e e e e 160
10.15. Sky footprint of the PacsRebinnedCube and PacsCubecccocviieiiiiiiniiieeennn, 161
10.16. The PACS spectral fOOtPprint VIEBWEScviiiiiiiii e 164
10.17. The PACS ProdUCE VIBWETcevviiiiiieeeiiieeiie s e e e e et e e e e e eaeae e s e e e aeeaaannes 165
10.18. Editing Mmasks With the PPVuniii e 170
10.19. The MasterBIOCKTEDIEuuuieeiiiiieeee e e s 179

viii

Build 15.0.3262

List of Tables

10.1. Coordinates of the Frames to the PacsCUubecoooieiiiii e, 161
MO = 0 R 1 010 107 1) 175
10.3. BIOCKTADIE COIUMNS ...ttt et e e et e e et e e e eees 179

Build 15.0.3262

Chapter 1. PACS Spectroscopy
Launch Pad |

1.1. Introduction

Welcome to the PACS data reduction guide (PDRG). We hope you have gotten some good data from
PACS and want to get stuck in to working with them. The PDRG explains the running of the data
reduction pipelinesfor PACS spectroscopy in HIPE, and how to interact with the data. Thisfirst chap-
ter—the PACS Spectroscopy Launch Pad |—isa"ReadMeFirst” to working with PACS spectroscopy .

1. How do | get and save a PACS spectroscopy observation?

2. How do | understand what type of observation | have?

3. What are the science products in my observation?

4. How can | plot my spectraand view my cubes?

5. What scripts can help me work with PACS spectroscopy?

The second chapter—Chapter 2, the PACS Spectroscopy Launch Pad I1—is about the pipeline, and

should beread by everyoneworking with PACS spectroscopy data (even if they do not want to run one

of the pipelinesin HIPE themselves). In this chapter we also summarise what post-pipeline processing
can or should be done to difference types of observation, and for which you may need to use HIPE.

1. What are the pipelines available for reducing PACS data

2. Do | need to re-run the pipeline (and if so, which one?)

3. Isit anyway useful to re-run the pipeline to improve some of the results?

4. Which arethe crucia pipeline tasks?

5. | have a point source: what do | do next?

6. | have an extended source: what do | do next?

7. Wheredo | go to learn about the errorsin my spectra?

The rest of the PDRG is:

» Chapter 3: gives more detail on the calibration files used in the pipeline processing, on getting
and saving data, on where the pipeline scripts are, and an explanation of the differences between
theseinteractive pipeline scripts. An observation gotten fromthe HSA will only have been processed
through one type of pipeline: this chapter is also useful for understanding whether you should
consider running one of the other pipelines for your observation.

 Chapter 4: concerns the beginning (Level 0—0.5) and the end (post-processing) parts of the reduc-
tion of PACS data, which are almost the same for all the pipelines. Chapter 5: explains the data re-
duction from Level 0.5 to 2 for chopNod mode observations. Chapter 6: explains the data reduction
from Level 0.5 to 2/2.5 for unchopped mode observations.

» Chapter 7: explains some of the more crucia pipeline tasks: wavelength regridding; flatfielding;
using the different cube mosai cking tasks (drizzle, interpolate, project); transient correction for the

unchopped mode; background subtraction for the unchopped mode; and the unique tasks of the
pointing offset pipeline. The errorsin the final PACS spectroscopy productsare also explained here.

PACS Spectroscopy Launch Pad | Build 15.0.3262

1.1.1.

Whether you run the pipeline or not, read this chapter to understand the effect these crucial tasks
can have on the appearance of the spectra in the science products of the pipeline.

» Chapter 8: explains the post-pipeline tasks that are provided for point sources and semi-extended
sources, and which can be run after any pipeline script.

» Chapter 9: explains the post-processing tasks to deal with mapping observations, creating mosaic
cubes of varioustype, the differences between the various types of cubes, and what each oneisbest
used for. Whether you run the pipeline or not, read this chapter to understand why the different
science-level cubes look the way they do.

» Chapter 10: includes scripts and general information about plotting PACS data for diagnostic rea-
sons during the pipeline processing, describesthe viewersfor inspecting PACS data (spectrally and
spatially); and explains how to work at a deeper level with some of the datasets of the cubes.

Additional reading when working in HIPE can be found on the HIPE help page, which you can access
from the Hel p#Help Contents menu. This coversthetopics of: HIPE itsdlf, I/O, scripting in HIPE, and
using the various datainspection and analysis tools provided in HIPE. In particular the PPE in PACS
Products Explained should be consulted to learn more about PACS products: how they are constructed,
for what purpose they are variously created, and accessing them within and outside of HIPE.

Documentation outside of HIPE can be found on the PACS calibration pages on the Herschel Science
Centre site, where the Observer's Manual and calibration documentation and information are provid-
ed (currently at herschel .esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb). A more permanent
repository of PACS documentation can be found with the HEL L archive PACS pages. The Quick Start
Guideisrecommended to begin with your PACSjourney, and a set of flowcharts guiding you through
the various PACS spectroscopy products can be found in the Product Decision Tree document posted
on HELL. The PACS Handbook is also recommended, as it is the post-operations, and final, version
of the Observer's Manual.

Text written like this refersto the class of a product (or to any product of that class). Different classes
have different (java) methods that can be applied to them and different tasks will run (or not) on
them. See the Scripting Guide, to learn more about classes. Text written| i ke t hi s refersto the
parameters of atask.

Terminology

The following definitions will be useful to know:

* HIPE Herschel Interactive Processing Environment

» DAG: the HIPE Data Analysis Guide (this explains the general HIPE data analysis tools)
» SG, the Scripting Guide (a guide to scripting in HIPE)

» PACS URM the User's Reference Manual, describes the PACS tasks, their parameters and their
function

» PPE in PACS Products Explained the PACS Products Explained, which is about the products you
get from the HSA or which you produce while pipeline processing PACS data

» HSA, HSC Herschel Science Archive and Herschel Science Centre

e AOT different PACS observing modes were programed with different Astronomical Observing
Templates by the proposer

* Leve 0 products are raw and come straight from the satellite

» Level 0.5 products have been partially reduced, spatialy calibrated, and corrected for instrument
effects by tasks for which no interaction is required by the user

http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb?template=viewprint
https://www.cosmos.esa.int/web/herschel/legacy-documentation-pacs
https://www.cosmos.esa.int/documents/12133/996891/PACS+Spectrometer+Quick+Start+Guide/fa5471f5-f6d2-6eb8-08b5-3828668cd164
https://www.cosmos.esa.int/documents/12133/996891/PACS+Spectrometer+Quick+Start+Guide/fa5471f5-f6d2-6eb8-08b5-3828668cd164
../../sg/html/sg.html
../../dag/html/dag.html
../../sg/html/sg.html
../../pacs_urm/html/pacs_urm.html

PACS Spectroscopy Launch Pad | Build 15.0.3262

 Leve 1 products have been morefully reduced, some pipeline tasks requiring inspection and maybe
interaction on the part of the user

» Level 2 productsarefully reduced and flux calibrated, including tasks that require the highest level
of inspection and interaction on the part of the user. Post-pipeline processing for point and extended
sources is done on these data

» Level 2.5 products can be found for unchopped range observations only. For this AOT, the on-
source and off-source observations are taken separately: therefore each is reduced to Level 2, and
then the off-source data are subtracted from the on-source data and the resulting products placed in
Level 2.5in the on-source observation. The post-pipeline processing can be done on these data

e Leve 3: can befound for chopNod, pointed, full SED-coverage observations only. These are spec-
trum tables, which are a concatenation of data from the two or three observations that were taken
to cover the entire PACS spectral range for atarget

» SPG: standard product generation: the data reduced with a standard pipeline by the HSC. For each
major version of HIPE a new SPG is run (this taking a few months of time). The SPG version of
any observation is shown in the HSA results tab, in the "Summary" tab of the Observation Viewer,
and also in the Meta datum "creator" of the ObservationContext. "SPG 13" is the SPG using the
pipeline scripts of HIPE 13.

» spaxel: a spatia pixel, the spatial unit of an Integral Field Unit (IFU). Each spaxel contains the
spectrum from one unique "pixel” on the sky. The native spaxel size of PACS is 9.4x9.4 arcsec;
when you mosaic together cubes the resulting cube's spaxels are smaller, but they are still called
"spaxels’.

1.2. Getting and saving PACS observations

Herschel data are stored in the HSA.

» They are identified with a unigue number known as the Observation ID (obsid). You can find the
obsid viathe HSA.

» They can be downloaded directly into HIPE, or one at atime to disc, or many as atarball.

e Thedatayou get from the HSA isan Observation Context, which isacontainer for all the science
dataand al the auxiliary and calibration data that are associated with an observation, and includes
the SPG products. The entire observations is stored on disk asindividual FITSfiles organised in a
layered directory structure. The ObservationContext you load into HIPE contains links to all these
files, and GUIs are provided to navigate through the layers.

There are several ways to get and save observations from the HSA or disk via HIPE. It does not
matter which method you use.

» Get thedatadirectly from the HSA into HIPE on the command line, and then save to disk:

obsid = 134....... # enter your own obsid
To load into H PE:
myobs = get Cbservati on(obsid, useHsa=True)

To load into H PE and at the sane tine to save to disk

A to save to the "MyHsa" directory (HOVE .hcss/ MyHsa)

myobs = get Cbservation(obsid, useHsa=True, save=True)

B: to save to your "local store" (usually HOVE/ .hcss/|store)
myobs = get Cbservati on(obsid, useHsa=True)

saveObservat i on(nyobs)

C. to save to another disk location entirely, use:

pool | = "/ Vol unes/ Bi gbi sk/ "

pool n = "NGC3333"

myobs = get Cbservati on(obsid, useHsa=True)

saveObservati on(nyobs, pool Locati on=pool |, pool Nane=pool n)

PACS Spectroscopy Launch Pad | Build 15.0.3262

See the DAG sec. 1.4.5 for more information on getObservation (for example, how to log on to the
HSA before you can get the data, and more about "MyHSA"), and Section 3.2. For full parameters
of getObservation, seeits URM entry.

To get the data back from disk into HIPE:

A and B: If you saved the data to disk with the default name and location (either [HOME]/.hc-
ss’MyHSA or [HOME]/.hcsg/Istore) then you need only specify the obsid:

obsid = 134...... # enter your obsid here
myobs=get Gbser vat i on(obsi d)

C: If you used saveObservation with apool Nane and/or pool Locat i on specified:

obsid = 134...... # enter your obsid here

pool | = "/Vol unes/ Bi ghi sk/"

pool n = "NGC3333"

nmyobs=get Cbser vati on(obsi d, pool Locati on=pool |, pool Name=pool n)

In Chapter 3 you can find a longer summary of getting and saving. The PACS pipelines use these
command-line methods. To learn about the GUI methods, see chap. 1 of the DAG.

1.3. What type of observation do | have?

PACS spectrometer observations were executed following a set of observing templates: the AOTs.
Different AOTs may need to be be reduced with different pipelines.

chopNod, unchopped, or wavelength switching AOTSs: the difference between these lies in the
observing technique used to sample the telescopetastronomical background. ChopNod was the
most common AOT. Unchopped was used for sources in crowded fields where chopping-nodding
was not possible; for unchopped rangeScans the observers had to specify a separate observation
for the off-source (background) position, for unchopped lines scans the on- and off-source were
taken within one observation. Wavelength switching was a so for crowded fields but this mode was
discontinued a few months into the mission.

Lineor Range spectroscopy: with awavelength range that encompasses one unresolved line only
(Line); an observer-defined wavelength range (Range); or the full spectral range of PACS (SED,
which is part of Range).

Pointed, under sampled mapping (tiling), Nyquist mapping, or oversampled mapping: refers
to the pointing mode: a single pointing; alarge-step raster to cover alarge field-of-view (tiling); a
smaller-step raster to achieve aNyquist spatial sampling of the beam; or very afine-sampling raster
to oversample the beam.

For the three mapping modes, whether undersampled or not dictates which pipeline task can be used
to combine the rasters into a single, mosaic cube.

A more detailed summary for each mode is provided in Section 3.3. Note that observations always
contain data from the blue and the red camera (the only exception being when one camerafailed).

Once you have downloaded an observation into HIPE you can find al relevant AOT information with:

obsSunmmar y(nmyobs)

or look at the pacsObsSummary in the ObservationContext (use the Observation viewer on your
"obs"). In the summary text ook for the section "AOT and instrument configuration”, e.g.

AOT and instrunent configuration:

ACT: PacsLi neSpec
Mbde: Mappi ng, Chop/ Nod
Bands: B3A RL (prine diffraction orders sel ected)

../../dag/html/Dag.DataIO.Hsa.html#sec-direct-data-download
../../hcss_urm/html/herschel.ia.toolbox.util.GetObsTask.html
../../dag/html/dag.html

PACS Spectroscopy Launch Pad | Build 15.0.3262

I's bright: YES (shortened range node)
Raster |ines: 5
Rast er col ums: 5

Raster line step: 14.5 (arcseconds)
Raster point step: 16.0 (arcseconds)
Chopper : | arge throw

Nod cycl es: 1

and there you will find:
» AQT (line or range)
» Mode (mapping or pointed; and unchopped, wavel ength switching, or chopNod)

For Mapping modes, note down the size of the steps (Raster line or point step) and number of steps
(Raster lines or columns); this information will be useful later.

1.4. What are the science products in my ob-
servation?

1.4.1.

1.4.2.

The quality report

The quality report comesin theform of aquality and/or qualitySummary in the ObservationContext.
They both contain the same information, but the qualitySummary (if present) also contains a report
created after amanual check of the observation has been done at the HSC.

Click on the +quality/+qualitySummary from withim the Data tab of the Observation viewer and the
report viewer will open to the right of that tab. The most important things to check are the Quality
flags and comments: noting that by SPG 14 most observations have no flags and if there are no com-
ments to make, the comments part will be blank. See aso the quality documentation on herschel.e-
sac.esa.int/twiki/bin/view/Public/DpK nownl ssues.

The science-quality cubes

The cubes produced at the end of the SPG pipeline are found in Level 2 for most observations, L evel
2.5 for the on-source observation of an unchopped range pair. Since there can be, within any observa-
tion, several pointings and multiple wavelength ranges, al the related cubes are gathered together in
contexts: one context for the red camera and one context for the blue camera. In addition, PACS pro-
duces different types of cube depending on the pointing mode adopted, and there are always separate
sets of red and blue contexts for each type of cube.

» Double-click on your observation in the Variables panel (or right-click and select the Observation
Viewer). The viewer will open in the Editor pane of HIPE.

* Inthedirectory-likelisting on the left of the Observation viewer (under "Data"), click on the + next
tothe"level2" (or "level 2.5" if thereis one)

* The names of the cube contexts start with HPS3D (Herschel-PACS 3-dimension) and then contain
the letters indicating the specific type of cube held in therein:

« HPS3DP[R|B] are the red and blue ([R|B]) projected cube contexts
* HPS3DRJ[R|B] arethe red and blue rebinned cube contexts

» HPS3DDI[R|B] arethe red and blue drizzled cubes contexts

* HPS3DI[R|B] are the red and blue interpolated cubes contexts

Click on the + next to the HPS3DX X to see their individual, numbered, cubes:

http://herschel.esac.esa.int/twiki/bin/view/Public/DpKnownIssues
http://herschel.esac.esa.int/twiki/bin/view/Public/DpKnownIssues

PACS Spectroscopy Launch Pad | Build 15.0.3262

S e WA

= level2
#- (% HPS3DPE
= HPS3DPR
F @ 0
e @ 1
= HPS3DREB
=0
- (% History
F @ o
i) @ 1
[y @ 2
s @ 3
[y @ 4
F lg 5
[y @ [
e @ 7
F @ g
[y @ g
@ (%10
LB bl
@ (%12
@ (%913
& @ 1
@ (% HPS3DRR

CRRE T

Figure 1.1. Some of the cubes of Level 2: the Rebinned (HPS3DR[BJR]), with one cube per wavelength
range (the outside 0 and 1) and per pointing (the inside 0 to 13); and the Projected (HPS3DP[BJ|R]), with
one cube per wavelength range (0 and 1: the pointings have been combined into a single cube)

A summary of the contents of all levels of an ObservationContext is given in the PPE in PACS
Products Explained. To summarise:

* HPS3DRJ[R|B]. The context of rebinned cubes of class PacsRebinnedCube. There is one cube
per wavelength range and per pointing specified in the observing proposal. These cubes have an
irregular spatial grid and a non-equidistant wavelength grid. The spaxelsare 9.4". For observations
of point or slightly extended sources, the correctly-calibrated spectrum must be extracted from these
rebinned cubes.

» HPS3DP[R|B]. The context of projected cubes of class SectralSmpleCube are mosaic cubes
created for all mapping observations. There is one cube per wavelength range requested in the
observing proposal. These cubes have aregular spatial grid but also a non-equidistant wavelength
grid. Thespaxelsare 0.5" for pointed observations, and up to 3" for mapping observations (3" if there
is no drizzled cube provided, otherwise the same size as the spaxels of the related drizzled cube).

» HPS3DDI[R|B]. The context of drizzled cubes of class Spectral SmpleCube and are mosaic cubes
created for lineScan Nyquist and oversampled mapping observations, i.e. those with:

» Nyquist mapping: in the blue, step sizes of up to 16" with a 3x3 raster; in the red step sizes of
up to 24" with a2x2 raster

« Oversampled mapping: in the blue, step sizes of up to 3.0" with a3x3 raster; inthe red 4.5" step
sizeswith a 2x2 raster

There is one cube per wavelength range specified in the observing proposal. These cubes have a
regular spatial grid but also a non-equidistant wavelength grid. These cubes have a spaxel size that
depends on the spatial sampling of the raster and the wavelength.

Warning: you should not use the drizzled cubes from SPG 13 as the fluxes are incorrect. Use
the projected cubes instead. Those of SPG 14 and 15 (i.e. the final products in the archive) have
correct fluxes.

» HPS3DI[R|B]. The inter polated cubes of class Spectral SmpleCube and are mosaic cubes creat-
ed for pointed and tiling observations. There is one cube per wavelength range specified in the

PACS Spectroscopy Launch Pad | Build 15.0.3262

1.4.3.

1.4.4.

observing proposal. These cubes have aregular spatial grid but also a non-equidistant wavelength
grid. They always have a spaxel size of 4.7" (SPG 13) or 3" (SPG 14). Undersampled mapping is
any mapping mode for which the steps sizes are larger than the Nyquist values given above, or the
number of steps less, for each cameraindependently.

» For cubes at Level 2.5, which is alevel you will find in the on-source observations taken in the
unchopped range scan mode, the same cube are provided but with aBSjust before the cameraletter.
This stands for "background subtracted", and these are cubes for which the off-source Level 2 has
been subtracted from the on-source Level 2: these are then the science products to use.

Gotothe+ next to the HPS3DX X. Thelist of numbers (+0, +1, +2...) aretheindividual cubes. A tooltip
appears when you hover over a cube detailing its contents (wavelength range, position in raster, type
of cube). Click on the numbersto see the associated cube open, either within the Observation Viewer,
or to see it in a new window, right-click on the number and chose the Spectrum Explorer (SE: see
the DAG chap. 6). Using the SE you can look at the spectra of your spaxels, perform mathematical
operations, extract spectra or sub-cubes, make velocity and flux maps and fit your spectra. You can
also drag-and-drop the cubes (to the Variables panel) to take them out of the ObservationContext and
from there export as FITS.

See Section 10.6 to learn more about the native footprint of the PACSintegral field unit, and that entire
chapter to learn about the various cubes provided. (To find the observing mode of your observation,
see Section 1.3.)

Note that if the observer did not request an off-source observation, then the final science products for
unchopped rangeScans will be in the Level 2 of the observation, rather than Level 2.5.

The spectrum tables

From Track 13 we provide atable of the data of the rebinned cubes, which can befound in the contexts
called HPSTBR[R|B]. Within each context there is one table for each requested wavelength range
of the observation, and all the spaxels and all pointings (for mapping observations) are contained in
each table. The columns of data include the spaxel coordinates, the raster coordinate, as well as the
wavelengths, fluxes and stddev values. See the PPE in PACS Products Explained for a more detailed
explanation of thistable.

From Track 14 we provide a table of extracted spectras HPSSPEC[R|B] at Level 2, HPSSPECB-
S[R|B] at Level 2.5, and HPSSPEC at Level 3. The first you can find for all pointed observations,
and the second only for the subset of pointed observations that are chopNod and were taken to cover
the entire SED in two or three separate observations. For this second, the data from both cameras
and all the SED obsids are included in a single table (i.e. thereis no [R|B]). The datain these tables
are: the spectrum taken directly from the central spaxel, the point source-calibrated spectra”c1", "c9"
and "c129" from the task extractCentral Spectrum for the chopNod AOTS and "c1" and "c9" for the
unchopped AOTSs. The spectra are converted into columns in the tables, and column names and Meta
data help you understand the tables. See the PPE in PACS Products Explained for a more detailed
explanation.

The standalone browse products

The standalone browse products are created from the Level 2/2.5 cubes, and the Level 2/2.5/3 tables
produced by the SPG, all of which are explained above. The standalone products are: the interpol ated,
drizzled, and/or projected cubes (depending on the AOT) but with an equidistant wavelength grid (i.e.
each binin the spectral grid isthe same size); the data of the rebinned cubesasatable. All are provided
as FITSfiles.

Thereason for providing cubes with an equidistant wavel ength grid is that these cubes then have afull
WCS, with equidistant gridsin the two spatial and the spectral direction. Cube viewers (e.g. ds9) can
deal nicely with these cubes. A table of the data of the rebinned cubes is also provided: these cubes
can never have aregular spatia grid, but by providing the spectral data as a table, the user can read
them into most other software and deal with them perhaps more easily than in cube format.

../../dag/html/Dag.Ch.CubeSpectralAnalysis.SEII.html

PACS Spectroscopy Launch Pad | Build 15.0.3262

These standal one products can either be downloaded directly from the HSA, or can be extracted from
an ObservationContext: in the browseProduct level or in the Level they come from. They have the
same name as the cubes discussed above but with an "EQ" added:

HPS3DEQP[R|B]. The projected cube context in with an equidistant wavelength grid
HPS3DEQD[R|B]. The drizzled cube context with an equidistant wavelength grid
HPS3DEQI[R|B]. Theinterpolated cube context with an equidistant wavelength grid

HPSTBR[R|B]. The rebinned cube contexts, with the data in a tabular format rather than a 3d
product

HPSSPEC[R|B]. The extracted spectrum table contexts, taken from Level 2 or 2.5, for al pointed
observations

HPSSPEC. The extracted spectrum table context, taken from Level 3, for all pointed, chopNod,
full SED observations: concatenated table for red and blue camera and all obsids that contributed
to thefull SED coverage

If you have the on-source observation of an unchopped range mode on/off pair, the same products
from Level 2.5, but with BS in the name, are also provided.

= obs1
@ pacsObsSummary
@ (% History
@ (% quxiliary
@ (% hrowselmageProduct
= browseProduct
@ obsSummaryAsHTML
4 (% HPS3DEQIE
= HPS3DEQIR: L102 N1 RiD 0)
“- (% History
g 0: L102 N1
@ (% HPSSPEC
@ (% HPSSPECB
@ (% HPSSPECR
@ (% HPSTERB
@ (% HPSTBRR
- (= calibration

Figure 1.2. The standalone browse products (an example from a pointed observation from SPG 14.2)

Read the PPE in PACS Products Explained for more information on these products.

1.5. I just want to look at my cubes!

Which Level 2 cubes should you look at?

 If you have aLevel 2.5 in your ObservationContext, then you are looking at the background-sub-

tracted on-source observation of an unchopped rangeScan observation-set and this Level contains
the final cubes. Otherwise go to Level 2

If you have a pointed observation of a point or semi-extended source, ook at the rebinned or inter-
polated cubes (HPS3DR[R|B], HPS3DI[R|B]): the second are easier to load into software outside
of HIPE because they have aregular spatial grid (which has been spatially-resampled from the first
by the speclnterpolate task), while the first have the native footprint of the PACS IFU

Tiling observations: the projected or interpolated cubes (HPS3DP[R|B], HPS3DI[R|B]), where the
second are generally preferred

Mapping observations:. drizzled or projected cubes (in that preference order) (HPS3DD[R|B], HP-
S3DP[R|B])

Extract the cubes from their contexts (the HPSXXX) with a drag-and-drop, or on the command line;

To get the first level 2 blue drizzled cube
cubes = obs.refs["level 2"]. product.refs["HPS3DDB"] . product.refs[0].product
To get the second level 2.5 red projected cube

PACS Spectroscopy Launch Pad | Build 15.0.3262

cubes = obs.refs["level 2_5"]. product.refs["HPS3DPBSR'] . product . refs[1]. product

1.5.1. Quick-look cube tools

There are anumber of GUIsthat can be used to inspect PACS cubes. These are explained in the DAG
chps 6 and 7. When you have a cube highlighted in the Variables pane of HIPE (or in the directory
listing in the Data panel of the Observation viewer) you can call up these tasks via the right-click
menu. Note that all of these GUIswork on the individual cubes, not on the context they are contained
within (see Section 1.4), so you heed to go down past the HPS3DX X level in the Level 2 layer of the
ObservationContext, to the +0, +1...

» To scroll through 2D wavelength slices of your cubes you can use the Standard Cube Viewer.

* The SpectrumExplorer (see the DAG chap. 6). This is a spectral#spatial visualisation tool for
spectra and cubes. It alows for an ingpection and comparison of spectra from individual spaxels
or from separate cubes, and it gives access to various mathematical tasks viaits Spectral Toolbox

menu (see chap. 6.4).

» The Cube ToolBox, which you also access via the SpectrumExplorer: see the DAG (chap 6.4, chap
6.5). Together with the Spectrum Toolbox, this allows you to inspect a cube spatially and spectrally
at the sametime. It also has analyses tasks#you can make line flux maps, velocity maps, and extract
out spectral and spatial regions.

» The Spectrum Fitter GUI, which you also access viathe SpectrumExplorer: see the DAG chap. 7.
ThisGUI allowsyoutofit the spectraof your cubeswith avariety of models. (For cubesit should be
accessed viathe Toolbox menu of the Spectrum Explorer, not directly from the HIPE Tasks panel.)

1.5.2. Create quick-look images or spectra from the
cubes

A few quick inspection tasks so you can get afeel for your cube data:

» Extract the spectrum of asingle spaxel from a pointed observation/r ebinned cube with thetask
extractSpaxel Spectrum, which will only work arebinned cube (HSP3DR[R|B]).

sl i cedRebi nnedCube = obs.refs["l evel 25"]. product.refs["HPS3DRR'] . product
spaxel X, spaxelY = 2,2
slice =0
spect rum = extract Spaxel Spectrun(slicedFi nal Cubes, slice=slice,\
spaxel X=spaxel X, spaxel Y=spaxel Y)

To know which slice you want (i.e which cube in the context), you can use the task slicedSum-
mary(slicedRebinnedCube). To know which spaxel you want to extract, open the cube with the
Standard Cube Viewer, and the spaxel X and Y coordinates (in that order) of the spaxel under the
mouse can be found at the bottom-Ieft of the viewer. The "spectrum” output can be opened in the
Spectrum Explorer.

» Extract the spectrum of a single spaxel from a mapping observation/any cube with the cube
GUIs provided in HIPE. Extract the cube, e.g. for the second cube

cube = obs.refs["l evel 2"]. product.refs["HPS3DPR'] . product. refs[1]. product

Open the cube in the Spectrum Explorer (right-click menu on "cube" in the Variables panel of

HIPE), and from there select the Cube Toolbox (the « i icon at the top of the "SE"), which will
open in the top part of the SE.

The Cube Toolbox tasks are located in the drop-down menu to the right of the plot panel: to extract
a single spectrum use "extractRegionSpectrum”, where you can select out a single spaxel with a

../../dag/html/dag.html
../../howtos/html/Dag.Ch.CubeSpectralAnalysis.SEII.html
../../howtos/html/Dag.CubeSpectrumWorking.html
../../howtos/html/Dag.CubeSpectrumViewing.html
../../howtos/html/Dag.CubeSpectrumWorking.html
../../howtos/html/Dag.CubeSpectrumWorking.html
../../howtos/html/Dag.Ch.SpectralFitting.SEII.html

PACS Spectroscopy Launch Pad | Build 15.0.3262

click on the cube image. See the DAG (chap 6.7.3) to learn more about using the SE and the Cube
Toolbox.

Extract thesummed or aver age spectrum of aregion: using the Cube Toolbox mentioned above,
you can also select arectangular or circular region using the task extractRegionSpectrum: see the
DAG (chap 6.7.5). Thistask will work on the Level 2/2.5 cubes: HSP3D[R|D|I|P][R|B].

Extract an image of a single wavelength point is done the most rapidly with the Standard Cube
Viewer, on any mosaic cube, right-click menu "Extract current layer”.

Extract a wavelength-integrated image: following the steps for "Extract the spectrum of asingle
spaxel” above to select the correct cube and open the Cube Toolbox, from there select the task
"IntegrateSpectralMap". See DAG (chap 6.7.10.1) to learn how this works.

Plot the spectrum of a spaxel together with the RM S estimate: using the pipeline helper task
"plotCubesStddev" on any rebinned cube (HPS3DR[R|B]). See Section 7.7.1 for alonger explana-
tion of thistask.

1.6. Useful scripts for working with PACS da-

ta

There are useful scripts provided for working with PACS spectroscopy that can be obtained via the
HIPE Scripts menu. Those of most interest to the non-pipeline processing astronomer are:

Fitting PACS cubes: three scripts are provided for fitting aspectral linein PACS cubes and making
images from the fitting results, e.g. integrated flux and velocity. These scripts are:

1. Spectroscopy: Fitting mapping observations (mosaic cubes). For the mosaic cubes of mapping
observations, and starting from the interpolated, drizzled, or projected cubes (HPS3D[1,D,P][R]|

B]).

2. ectroscopy: Fitting mapping observations (pre-mosaic cubes). Also for mapping observations
but thistime starting from the rebinned cubes (HPS3DR[R|B]). The difference with the previous
script isthat the fitting is done on these individual cubes of the raster and then the mosaicking is
done onthefitting result images, i.e. creating 2d mosaics (images) rather than 3d mosaics (cubes).

3. Spectroscopy: Fitting single pointing cubes. For pointed observations, creating fitting imgesis
more qualitative than quantitative, but nonetheless is useful for visualising the results for ex-
tended sources observed as a single pointing. The script starts with the interpolated cubes (HP-
S3DI[R|B]).

Changing the spaxel size: for those who do not wish or need to reprocess the data but do wish to
create cubes with a different spaxel size (e.g. to compare cubes that the SPG created with dightly
different spaxel sizes), this can be done with a useful script called Spectroscopy: create mosaic
cubes with any spaxel size.

Mosaicking multiple observations: how to combine observations that were taken as separate obsids
but which cross-over spatially and spectrally, is explained in the useful script called Spectroscopy:
Mosaic multiple observations

Point sour ces: for point sourcesit is necessary to use the tasks provided to produce a correctly-cal-
ibrated spectrum of the point source from the rebinned cubes (those in HPS3DR[R|B] in the obser-
vation). The two scripts are: Spectroscopy: Point source loss correction (central spaxel) and Spec-
troscopy: Point source loss correction (any spaxel).

Soectroscopy: Combine PACS and SPIRE spectra: isascript that is aimed at observations of point
sources, where you wish to combine the spectrum of these two instruments into a single spectrum.
Note: thisis not a mathematical combination, the spectra are simply stored in a single product, for
ease of viewing and transporting.

10

../../howtos/html/Dag.Sec.CubeSpectrumWorking.html#Dag.Sec.CubeSpectrumSelection.SEII
../../howtos/html/Dag.Sec.CubeSpectrumWorking.html#Dag.Sec.CubeSpectrumStats.SEII
../../howtos/html/Dag.Sec.CubeSpectrumWorking.html#Dag.Sec.CubeFluxMapCSAT

PACS Spectroscopy Launch Pad | Build 15.0.3262

e Spectroscopy: Convolution for spectral images: this script shows you how to take two spectral
images (e.g. as created in thefitting scripts) and convolve the shorter wavel ength image to the beam
of the longer wavelength image: the images can then be directly compared to each other.

11

Build 15.0.3262

Chapter 2. PACS Spectroscopy
Launch Pad Il

2.1. Introduction

This chapter should be read by those wondering whether it is necessary to run the pipeline on their
data themselves. For many observations, the SPG will produce good results and reprocessing will
produce little change. However, note that the pipeline processing results do depend to a degree on the
observations themsel ves (on the "observing conditions’, if you like, and the brightness and complexity
of the source). Hence, a re-processing for the more complex sources may improve the results. A de-
tailed inspection of the spectra of the PacsRebinnedCubes (HPS3DR[R|B]) of Level 2/2.5 is strongly
recommended (for all AOTS), before deciding whether to reprocess or not.

This chapter should answer the following questions:

1. Where and what are the PACS spectroscopy pipelines?

2. For what observations do | need to re-pipeline the data?

3. For what observations will it be useful to re-process the data, to try to achieve a better result?

4. Which arethe crucial pipeline tasks that have the greatest effect on the resulting spectra?

)]

. | have a point source: what do | do next?

6. | have an extended source: what do | do next?

~

. Wheredo | go to learn about the errorsin my spectra?

2.2. The PACS pipelines

2.2.1. The SPG scripts: the automatic pipeline run by
the HSC

The SPG scriptsare those run at the HSC in automatic mode. The SPG treatsthe following AOTs sep-
arately: unchopped line and wavel ength switching, unchopped range, chopNod line, chopNod range.
The SPG processing takes afew months to run and hence there is alag between arelease of HIPE and
the availahility of those SPG productsin the HSA. The very final processing of PACS dataisthat run
in HIPE 14.2, for which this PDRG is written.

To know which SPG your downloaded observation was processed with, look at the Summary tab for
the observation in the Observation viewer, or, for an observation called "obs',

print obs.neta.["creator"]

The SPG scripts used within any track of HIPE are available from the HIPE Pipeline menu, within
each of the submenus described below. They are not intended for interactive usettheinteractive scripts
should be used#rather they are provided for completness. In HIPE 14 the SPG scripts are based on
the T elescope nor malisation pipeline for the chopNod observations, and the Calibr ation sourceand
RSRF pipeline for the unchopped observations. There are no differences in the range of tasksrunin
the SPG pipeline and the equivalent interactive ones.

12

PACS Spectroscopy Launch Pad 11 Build 15.0.3262

2.2.2. The interactive pipeline scripts

The pipeline menu in HIPE is split into five: chopNod line, chopNod range, unchopped line, un-
chopped range, wavelength switching (an old mode, which uses the unchopped line pipeline script
and which we do not discuss separately further). Inside each of these are a choice of pipeline scripts.

For the chopNod modes:

1. Using the telescope background spectrum for the flux calibration (T elescope Nor malisation; this
is the default script), and that which the SPG script is based on

2. Producing drizzled cubes for lineScan mapping observations (T elescope nor malisation drizzled
maps), and which is also incorporated in the SPG script

3. Using the calibration block and RSRF to flux calibrate the data, including producing drizzled cubes
(Calibration source and RSRF)

4. Pointing offset corrections for bright point sources, reducing with the telescope normalisation
method (Pointing offset correction (point sour ces))

5. Comparing on-source spectra to off-source spectra; a"helper" script, not afull pipeline (Split On-
Off)

6. Combine observationsfor afull SED, also a"helper" script, runs the pipeline on multiple obsids
and combines the results at the end (rangeScan only)

For the unchopped modes:

1. Using the calibration block to flux calibrate the data (Calibration sour ce and RSRF). Includes a
"transient correction" task for the lineScan AOTs only, and is the script on which the SPG script
is based

2. Using the calibration block to flux calibrate the dataand apply amore effective transient correction,
for line and rangeScan (...with transient correction)

3. Pipeline process the on-source and of f-source observations, and then subtract them (Combing off-
sour ce with on-sour ce: rangeScan only). Thereis also a PACS useful script offered viathe HIPE
Scripts menu do to this subtraction (Scripts#PACS Useful scripts#Spectroscopy: Off-subtraction
and post-processing in unchopped range spectroscopy)

How many wavelength rangesareincluded in your observation, and whether you have asingle pointing
or amapping observation does not matter: all pipelines handle al these cases.

Tolearn more about these pipédline scriptsand their differences. see Section 3.4.2.
To accessthe scripts. go to the HIPE menu Pipelines#tPACS#Spectrometer. The scripts assume
* You know the "obsid" of your observation

» You havethecalibration files on disk; normally you will usethe latest update (updates are searched
for automatically when you start HIPE)

* You do the red and the blue camera separately

Torun thescripts,

* Read the instructions at the top, and at least skim-read the entire script before running it
* Itishighly recommended you run line by line (at least the first time)

» Tobeableto edit and save the script, save the script to a new, personalised location: otherwise you
are changing the script that comes with your HIPE installation. However, as these scripts evolve

13

PACS Spectroscopy Launch Pad 11 Build 15.0.3262

with time, do not blindly continue to use that pipeline script for future processing: always check
against the |atest release of HIPE

Asyou run the scripts,

 Plotting and printing tasks are included, with which you can inspect the data layout or the spectra
themselves

» Youwill beoffered variouswaysto save theintermediate data productsto apool on disk, but saving
cubes or spectraas FITSfilesis only possible towards the end of the pipeline, when single FITS
able products are created

In addition, the SPG scripts are provided in each of the pipeline sub-menus.

2.3. For what observations must | re-pipeline
the data?

There are only afew cases where it may be necessary to re-pipeline the data.

1. Spectral lines at wavelengths redder than 190um, it will be necessary to run the "calibration
sources and RSRF" scripts for these observations, and moreover using a very particular version
of the RSRF (relative spectral response function). See Section 5.4 (chopNod) or Section 6.4 (un-
chopped) for more explanation. Y ou can re-reduce your data from Level 0.5 (if working from an
SPG >=13 observation).

The observations that have this "red leak" will be processed separately (and correctly) and will be
provided via the HSA as Highly-processed data products some time in 2017. Hence you should
look first for these HPDPs before reprocessing the data yourself.

2. Updatesto thecalibrations (especialy if your previous reduction was several HIPE version ago).
Any changes to the calibration between the time the data you have were processed and the current
status will require running some or al of the pipeline. You can consult the "What's New" pages
to find out what is new in each track (e.g. herschel.esac.esa.int/twiki/bin/view/Public/HipeWhat-
sNew14x for Track 14), and to learn how to install calibration updates go to Section 3.6. If you
do have data with an old calibration, you should either reprocess the data yourself, or, since the
final product in the archive are those with the final calibration, get your observations again from
the HSA and use the SPG products.

Note: in SPG 13 and earlier, the rangeScan observations were not flatfielded by the SPG. In SPG 14
thisisnow done: ranges of lessthan about 5 microns are flatfiel ded with the lineScan task and those of
longer with anew version of the rangeScan flatfiel ding task. See the pipeline chapters to learn more.

2.4. For what observations is it useful to re-
process the data?

For certain types of observations it is useful to try out a different pipeline script to that run by the
SPG: to seeif you can get a better result, to check for contamination; or to try to improve the results
of some of the crucial pipeline tasks.

1. Bright point sources: with continuum flux levels of order 10s Jy and more. A specia pipeline
script for these brighter point sources where the source is located with the central 3x3 spaxels—
and ideally close to the centra one—is provided for pointed chopNod mode observations. This
end result of this script is a calibrated spectrum of the point source, and this spectrum should be
cleaner than the standard, point-source calibrated spectrum that you can obtain yourself from the
cubes created by the SPG or from the spectrum tables provided in the ObservationContext. The

14

http://herschel.esac.esa.int/twiki/bin/view/Public/HipeWhatsNew14x
http://herschel.esac.esa.int/twiki/bin/view/Public/HipeWhatsNew14x

PACS Spectroscopy Launch Pad 11 Build 15.0.3262

script is called Pointing offset correction (point sources). You can start the pipeline from Level
0.5 if working from an SPG >=13 observation. Do compared the results of this script to that of the
standard script. The pipelineis explained in Section 5.2.

2. Check for contamination in the off-sour ce pointings for chopNod mode observations using the
script Split on-off scripts. If the continuum level in the off-cubesiis higher than in the on cubes, or
spectral lines are visible, then you probably have contamination.

Another way to check for off-source contamination for chopNod mode AOTs is to run the Tele-
scope Normalisation and the Calibration source and RSRF pipeline scripts and compare their
results (using the rebinned cubes for the comparison). If there is line emission in the off-source
spectra, then the spectral lines will look very different in the two sets of resulting cubes. In this
case, you should favour the result from the calibration block pipeline, while noting that this will
not "get rid" of the contamination, it will at least not exaggerate its effect.

For unchopped rangeScan observations, checking the off-source data is straightforward: compare
the Level 2 rebinned cubes (HPS3DR[R|B]) from the off-source observation to the same cubes
for the on-source observation. For unchopped lineScans, doing this comparison is also simple but
requires afew additional lines of code as the appropriate products are not immediately availablein
the ObservationContext, but need to created. Thisis explained in Section 10.9.

3. Transientscorrection for unchopped AOTs: unchopped rangeScan AOTs have no transient cor-
rection in the SPG scripts, and that in the lineScan script isafirst version of the correction method.
A better transient correction can be found in the ...with transient correction pipeline scripts, for
line and rangeScan observations. Transients are short or mid-term effects that change the response
of the detector (e.g. following cosmic ray hits), and so affect the flux levels of the spectraover short
and intermediate time-scales. Please note that new transient correction tasks are interactive and
will require more than a blind running of the script.

While there is no transient correction in the SPG script for unchopped observations, it turns out
that the flatfielding (which is done in both scripts) does agood job of fixing transients anyway.

4. Complex spectra: with many emission lines, with absorption lines, faint spectra, or those with
broad-band features. It is worth checking the results of the flatfielding task for these spectra (for
this you need to re-run the pipeline: see below), possibly adjusting the flatfielding to deal better
with the presence of these features.

2.5. Which are the crucial pipeline tasks?

1. Spectral flatfielding. The flatfielding can be a crucial task for improving the SNR of the final
spectra. Theflatfielding operatesin the spectral domain. For each spaxel of acubethere are several
discrete spectrathat need to be averaged to create the final single spectrum. If some of the discrete
spectra are discrepant in signal level, the flatfielding will correct this, and so improve the SNR of
the subsequently-averaged spectrum, and should also smooth the continuum shape.

For very faint targets (continuum of only a few Jy and/or with faint lines) it could be worth checking
theresults of theflatfielding by running thistask yourself, with the "verbose" pipeline script param-
eter to set True. For faint spectra, the correction is very difficult to compute when the continuum is
near 0, and henceit is aso worth checking that the results are reasonable—if the continuum of the
flatfielded spectrahave the same SNR asthose before, it is even not worth doing aflatfielding at all.

For targetswith crowded spectral linesor with absor ption lines, theflatfiel ding may not adequately
exclude the lines when fitting the continuum (a necessary step in the process). It isworth checking
the results by performing the flatfielding yourself, with the "verbose" pipeline script parameter to
set True. The flatfielding masks out lines as part of its process, but for spectra with multiple lines
or absorption lines it may help to specify the lines to mask out viaan input linelist.

Flatfielding for rangeScans. The longer wavelength range of the SEDs can make it difficult to
flatfield well if there are changes in slope (and especially if they are steep) in the spectra. For

15

PACS Spectroscopy Launch Pad 11 Build 15.0.3262

some targets this left a"residua” curvature in the flatfielded spectra, especially before HIPE 14.2
when the default fitting was a polynomial. In HIPE 14.2 a spline became the default fitting and
this performed better: very few observations are expected to be affected by theseflatfield residuals.
However, if you do see curvesin the spectra of the cubes you get from the HSA, this could be due
to the flatfielding.

To run the flatfielding, you need to run the pipeline script from Level 0.5. The flatfielding steps
in the pipeline scripts are explained in Section 5.2.6 and Section 5.2.7 (chopNod line, range), Sec-
tion 6.2.7 and Section 6.2.8 (unchopped line, range). How to compare different flatfielding at-
tempts, and some more things to pay attention to is explained in Section 7.4.

2. Wavelength grid. The wavelength grid used in the SPG pipeline (which is also the default in
the pipeline scripts) has been chosen to give the best-looking spectra for most observations. The
wavelength grid of the final cubes is created from the individual grids that are present in each of
the 16 pixels that feed each spaxel, each of which is dlightly offset from the others. The pipeline
regularises this collection of grids into a single one, common to all spaxels and all cubes of the
samewavelength setting. Thisregularised grid is created by the task "wavelengthGrid" with the aid
of two parameters—over sanpl e and upsanpl e—which determine the final spectral sampling
and which data-points are sampled for each bin. It isimportant to note that if upsampleis#1 (which
itisinthe SPG), the signal in the bins then become correlated as some of the same data-points feed
neighbouring bins. If thisis a problem you will need to re-run the pipeline from Level 0.5 until the
end, and chose the parameters of the wavelength grid differently. Theinterplay and effect of choos-
ing different values of over sanpl e and upsanpl e isexplained in more detail in Section 7.2.

3. For the unchopped modes you may want to redo the background subtraction. For unchopped
range scans the SPG uses only one obsid as the off-source, and if your observation has more than
one you will need to reprocess the data yourself. For unchopped line scans (and possibly range
scans), itisworth changing theal gor i t hmparameter in the task " specSubtractOffPosition”. For
both cases you need to re-run the pipeline from Level 1: the unchopped pipelines are explained in
Chapter 6, and some examples of background subtraction are included in Section 7.5. However,
the accuracy of the continuum level was never apriority for this AOT, and hence it is assumed that
most observations with this mode were focussed on emission lines.

2.6. Point and slightly-extended sources

For point sources, stop the pipeline at the creation of the final rebinned cubes (called "dlicedFinal-
Cubes' or "slicedDiffCubes’, or HPS3DR[BS][R|B] in Level 2/2.5 of the ObservationContext). Then
you have to extract your point source spectrum using one of the tasks provided to do this, since you
have to remove the extended source correction factor and apply the point source flux correction(s).
These tasks are explained in Section 8.4 (not-centred point sources) and Section 8.5 (centred point
sources) and their use in the pipeline can be found in Section 4.3.

The post-processing tasks for point sources are part of the pipeline scripts, and hence are documented
using the terminology and product names of the pipeline (Section 4.3). However, if you want to try
some of these tasks on your SPG products, as just gotten from the HSA, we have created two useful
scripts that show how to run these tasks: on a pipeline product or on any observation gotten from
the HSA: Scripts#PACS useful scripts#Spectroscopy: Point source loss correction (any spaxel) and
Foectroscopy: Point source loss correction (central spaxel).

Noting that all pointed observations have a spectrum table as part of the Level 2/2.5/3 and standalone
browse products, in which you can find the spectrum of the central spaxel and the point-source cor-
rected output of the pipeline task extractCentral Spectrum. Hence, if you have a point source in a
pointed observation, and that source is located within the central spaxel, this spectrum table is the
science-grade product you need to use. More detail on this spectrum table can be found in the Quick
Start Guide and in the PPE in PACSProducts Explained, and in the flowchartsin the Product Decision
Tree which you can find in the HELL archive.

A few tips:

16

https://www.cosmos.esa.int/documents/12133/996891/PACS+Spectrometer+Quick+Start+Guide/fa5471f5-f6d2-6eb8-08b5-3828668cd164
https://www.cosmos.esa.int/documents/12133/996891/PACS+Spectrometer+Quick+Start+Guide/fa5471f5-f6d2-6eb8-08b5-3828668cd164
https://www.cosmos.esa.int/web/herschel/legacy-documentation-pacs

PACS Spectroscopy Launch Pad 11 Build 15.0.3262

1. For bright point sources with continuum levels exceeding 10 Jy, we also offer the Pointing offset
correction (point sources) interactive script for chopNod observations. The resulting spectrum
should be cleaner than that gotten from the SPG. The output of this script isthe"c9" or "c129" from
extractCentral Spectrum. Thistask is explained in Section 4.3.

2. For very faint point sources, where there is more noise than signal in the spaxels surrounding the
central one, use the output "c1" from the task extractCentral Spectrum (Section 8.5). Use "c129"
only if it has more flux and the same SNR as"c1".

3. For point sourceswith an uncertain continuumlevel: any unchopped mode observation or for spec-
tralongwards of 190 pm: use only the result "c1" (faint sources) or "c9" (most sources) produced
by extractCentral Spectrum (see Section 8.5).

4. For point sources where you have SPIRE data, or several PACS bands, and you want to push the
extracted point source spectra together into a single product, you can use a useful script Script-
SHPACS useful scripts#Spectroscopy: combine PACS and SPIRE spectra. This script is explained
in Section 8.2.

For semi-extended sour ces, i.e. those that are still entirely contained within the central 3x3 spaxels
of the IFU (a practical limit being a diameter of about 15") and for which you have a good idea of the
source morphology, there is atask to extract and calibrate its spectrum. See Section 8.6.

2.7. Extended sources

For extended sources there is a choice of several different types of cubesthat can be created. This de-
pends on the AOT of the observation: whether pointed or mapping, what type of mapping observation
it was, and whether it isalineScan or arangeScan. See Section 1.3 and Section 3.3 for advice on how
to know the AOT. For mapping observations, the end result of the pipelineisusually a"mosaic" cube,
of which we offer three: drizzled, projected, and interpolated. For pointed observations, the end result
iseither the sametype of cube as used for point source work (arebinned cube) or aspatially-resampled
version of that (interpolated cube).

If you want to create a cube that is not present in the ObservationContext gotten from the HSA (since
only the two of the three possible cubes are provided), or re-create cubes with a different spaxel size,
but do not wish to run afull pipeline script, you can follow two PACS Useful scripts: Scripts#PACS
useful scripts#Spectroscopy: Post-processing for extended sources, and Spectroscopy: Re-create the
standal one browse products.

A few tips:

1. Drizzle is optimised for spectral regions of 1 or 2 microns, and it may take a long time to run.
Drizzleresults for HIPE 13, from the HSA or those created using the pipeline scripts had incorrect
fluxes. However, in HIPE 14 this was corrected, and all the products now in the HSA are correct.

2. Specinterpolate is not recommended for oversampled maps, and while it is not optimised for
Nyquist-sampled maps, the results can be used (compare to the specProject results first).

3. For single pointings, bear in mind alwaysthat the beam is very much undersampled: the spaxelsare
not small enough to fit at least 2 or 3 of them within the FWHM of the beam. This means that there
aregapsinthe spatial coverage, which will result in aloss of information—flux—such that the true
source morphology can never be fully reconstructed and flux not recovered. How important this
is depends on the size and morphology of your source. It is recommended that you compare your
results to those obtained from photometry where-ever possible.

Once you know what cube you want to work with, and where to get it from—Level 2.5 for unchopped
range observations, Level 2 for al others—you can then work with your cubes with various tools
in HIPE. Some useful scripts have been written to introduce you to the tools that HIPE provides for
inspecting and fitting cubes: see Section 1.6.

17

PACS Spectroscopy Launch Pad 11 Build 15.0.3262

2.8. Correcting for the uneven illumination:
the forward modelling tool

The spaxels of the PACS IFU are not evenly illuminated, with the result that there is effectively some
flux loss between the spaxels over most of the PACSwavelength range. To correct for thisan extended
source correction was created, and thisis applied to all observations by the pipeline. Thisfully corrects
the integrated fluxes for all fully-extended sources (those with a flat or gradual flux gradient of no
more than 20% within asingle 47" square FoV). For point sources sources, this correction is taken out
before the point source corrections are applied, and the fluxes will still be correct. This also applies
to semi-extended sourcesif using the extended-to-point correction in HIPE. However, the integrated
flux derived in an aperture in spectral cubes that contain:

* crowded fields

« off-centred point sources

» semi-extended sources not processed through the extended-to-point correction in HIPE
» sources which are extended and with flux gradients

will not be correct. The inaccuracy in the flux will depend on the morphology of the source at the
wavelength of your observation and its coupling to the detector's beam efficiencies on every pointing
(mapping) pattern. Hence, if you do aperture photometry on your source (from small sources to the
entirefield), you could end up under- or over-estimating the flux in the aperture.

To estimate the inaccuracy in the measured flux, if you know (or can model/estimate) the surface
brightness distribution of the source (i.e. its morphology at the wavelength of your observation), you
can apply a "forward projection” in HIPE: this takes in your input surface brightness model/image,
and working with the pointing/mapping pattern of your observation, it produces a result which folds
in the uneven illumination. You can then compare the modelled result to your observed result. See
Section 9.5 (extended sources) and Section 8.7 (point and small sources) for moreinformation. Scripts
and explanation for this tool will be provided on the PACS documentation pages of the Herschel
web-site, currently at herschel .esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb, and the Her-
schel Explanatory Legacy Library pages. You can also raise a HSC helpdesk ticket to request the
"FMT" package.

2.9. Where can | learn about the errors in my
spectra?

An explanation of how error estimates are provided for PACS spectroscopy is given in Section 7.7.
Y ou are encouraged to read this section carefully.

All the cubes at Level 2/2.5 have an error array, but they are created differently.

» Rebinned cubes (HPS3DR[R|B]), aka PacsRebinnedCubes. These cubes are created from Pac-
sCubes. In each spaxel of a PacsCubethereisa collection of (at least 16x2) spectra, all of the same
wavel ength range but gathered by 16 different instrument detectors and during subsequent runs on
the grating. These individual spectra are combined into a single spectrum, for each spaxel, by av-
eraging along an input regular wavelength grid, with bin-sizes dightly larger than the separation
of the data-points and optimised to the wavelength. Each bin in the wavelength grid of the output
rebinned cube, therefore, has a contribution from several data-points from theinput PacsCube. The
scatter in these data-points is computed and becomes the "stddev" array of the rebinned cube. Since
PACS spectral sampling is highly redundant over most of the spectral range, this can be considered
ameasure of the noise in the input spectrum due to a combination of stochastic (photon) noise and
instrumental noise.

18

http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb?template=viewprint

PACS Spectroscopy Launch Pad 11 Build 15.0.3262

The task that creates the wavelength grid that is used for the rebinned cube has the parameters
"upsample" and "oversample" that determine (i) the bin sizes as afraction of the spectral resolution
and (ii) the stepping forward along the input PacsCube wavelength array as the data-values of
each bin are computed. These two parameters affect the spectral sampling and also the degree of
dependence of the bins on their neighbours (i.e. how many data-points are shared between bins).
Different values of upsample and oversample will result in a dightly different appearance of the
resulting spectra—the line shapes and the apparent noise. The values chosen by the SPG pipeline
are determined by the density (degree of redundancy) of the spectra: thereis one set of valuesfor all
line scans and range scans performed with High density, and another set of values for range scans
performend with Nyquist density, and all SEDs. Thisis explained in more detail in Section 7.2.

Drizzled cubes (HPS3DDI[R|B]) are created by the task drizzle, which works on PacsCubes. It also
takes the scatter in the PacsCubes data-points along the same wavelength grid used to create the
rebinned cubes, and propagates them using the standard error propagation rules, ightly modified to
work with the drizzle method. For more information on how drizzle handles errors, see Section 7.9.
Theresult isplaced in an array called "error".

Projected cubes (HPS3DP[R|B]) are created by thetask specProject. Thistask propagatesthe stddev
array of the rebinned cubes using standard error propagation, i.e. for each projected spaxel (which
are smaller than the spaxels of the rebinned cubes), the error is SQRT([(stddev of rebinned spaxel)
x (weight of the projection of that rebinned spaxel onto the projected output pixel)]*2). The result
isplaced in an array called "error".

Interpolated cubes (HPS3DI[R|B]) havean error array created by aninterpolation of the stddev array
of the rebinned cube, using the same algorithm that interpolates the flux array. The interpolation
error (speclnterpolate estimates the fluxes between irregularly gridded datapoints) is not included.

For point sources extracted from rebinned cubes using the point-source tasks, you will find the fol-
lowing:

extractCentral Spectrum: works on the rebinned cubes. The stddev array(s) of these cubes is(are)
propagated by the standard rules, e.g. the errors are combined for the output spectra which are a
combination of several spaxels (c9 and c129). The output spectraall have aweights array, whichis
the propagated stddev of the rebinned cube but inverted: 1/stddev**2

extractSpaxel Spectrum: works on the rebinned cubes, and does propagate the stddev to a weights
array. The associated task pointSourcel ossCorrection, used when the extracted spaxel spectrumis
to be point-source calibrated, also propagate errors.

Calibration uncertainties are not included in these errors. The calibration uncertainties are givenin the
Quick Start Guide, and information about additional corrections necessary for point, semi-extended,

and extended sources can also be found there.

19

https://www.cosmos.esa.int/documents/12133/996891/PACS+Spectrometer+Quick+Start+Guide/fa5471f5-f6d2-6eb8-08b5-3828668cd164

Build 15.0.3262

Chapter 3. Setting up the pipeline
3.1. Terminology

Level O products are raw and come straight from the satellite. L evel 0.5 products have been partially
reduced and corrected for instrument effects generally by tasks for which no interaction is required
by the user. Level 1 products have been more fully reduced, some pipeline tasks requiring inspection
and maybe interaction on the part of the user. Level 2 products are fully reduced, including tasks that
require the highest level of inspection and interaction on the part of the user. Level 2.5 products can
be found for unchopped range observations, where the separate off-source observations have been
subtracted from their associated on-source observations. L evel 3 products are provided for chopNod
pointed SED observations, and are a concatenated table of spectrafrom all the observations taken to
cover the entire SED (usually 2 or 3 obsids).

The ObservationContext is the product class of the entity that contains your entire observation: raw
data, SPG-reduced products (SPG: the automatic pipeline run at the HSC), calibration products the
SPG used, auxiliary products such as telescope pointing, and etc. You can think of it as a basket of
data, and you can inspect it with the Observation Viewer. Thisviewer is explained in the HOG chap.
15, and what you are looking at when you inspect a PACS ObservationContext is explained in the
PPE in PACS Products Explained.

Framesis the class that contains Level 0, 0.5 and 1 astronomical data; the pipeline will start on the
Level O Frames taken out of your ObservationContext. Also in Level 1 and in Level 2 are various
cubes: PacsCube, PacsRebinnedCube, and three types of Spectral SmpleCube: projected, interpolat-
ed, and drizzled cubes, and each can have an "equidistant" variations (see the PPE in PACS Products
Explained). Moreover, in the pipeline the data are held in a"diced” form: at the end of Level 0.5 the
single Frames product split into several separate Frames, of different wavelength, nod, pointing etc.,
and these are then taken through the rest of the pipeline. This makes handling by the pipeline tasks
more efficient. The slicesare held in products of class SicedFrames, SicedPacsCube, SicedPacsRe-
binnedCube or ListContext.

For the spectrometer detector we have pixels, modules and spaxels. The "pixels* are the basic unit of
the detector, there being 18 pixelsarranged in 25 columns, each column being a"module”. The"pixels”
are aso known asthe "spectral pixels', since between the central 16 of them the entire spectrum asked
for inthe observation is detected (pixel 0 and 17 are not used for science). Each modul e of the detector
is converted into a single "spaxel” on the sky. The "spaxels’ are also known as spatial pixels, these
are the basic unit of tan Integral Field Unit such as PACS. Each spaxel is 9.4"x9.4" on the sky and
contains an entire spectrum.

Thefollowing (Help) documentation acronyms are used here: DAG: the Data Analysis Guide, aguide
to the data analysis tools in HIPE for al types of Herschel data; PDRG: this PACS Data Reduction
Guide; HOG: HIPE Owner's Guide; PPE in PACSProducts Explained: the PACS Products Explained,
which shows what products are contained in a PACS observation and what the various layers, meta
data, and etc of these products are.

Text written like this refers to the class of a product (or to any product of that class). Different classes
have different (java) methods that can be applied to them and different taskswill run (or not) on them.
See the SG to learn more about classes. Text written| i ke t hi s refersto the parameter of atask.

3.2. Getting and saving your observation data

The fastest ways to get an observation into HIPE were explained in Section 1.2. Here we add alonger
guide to getting and saving Herschel data.

» Get an observation directly from the HSA into HI PE on the command line

obsid = 134....... # enter your own obsid

20

../../hipeowner/html/sec-viewers-in-hipe.html
../../dag/html/dag.html
../../hipeowner/html/hipeowner.html
../../sg/html/sg.html

Setting up the pipeline Build 15.0.3262

to load into H PE:
myobs = get Cbservati on(obsid, useHsa=True)

to load into H PE and at the sane tine to save to
the "MyHsa" directory (HOVE/ .hcss/ MyHsa):
myobs = get Cbservation(obsid, useHsa=True, save=True)

See the DAG sec. 1.4.5 for more information on getObservation (for example, how to log on to the
HSA before you can get the data, and more about "MyHSA").

Use the parameter save=Tr ue in getObservation to save the data after they are gotten. They are
saved to a pool on disk, located off of your "MyHSA" directory (HOME/.hcsssMyHsa). You do
not need to specify anything else: the data go to this disk location with a naming and organisation
that are predetermined.

This method is useful for single observations and brings the data directly into HIPE in the format
that the PACS pipeline requires (i.e. an ObservationContext).

To save your observation to disk if you loaded your data into HIPE using getObservation with-
out save=True, use saveObservation. Your data is placed either in a pool in your local store
(HOME/.hcsy/Istore) or in a specified location.

"myobs" is the name of the Observati onCont ext
To save to your "local store" disk |ocation:
saveObser vat i on(nyobs)

To save to another disk |ocation

pool | = "/ Vol unes/ Bi gbi sk/ "
pool n = "NGC3333"
saveObservation(myobs, pool Locati on=pooll, pool Name=pool n)

To save the observation to the local store with adefault (sub)directory name that is the observation
identification number (the 1342 number), use the first command given above. Otherwise use the
second. For both, the directory will be created if it does not already exist.

Note: if using saveObservation, the ObservationContext is not saved by default with the calibration
treeit wasreduced with by the SPG. If youwishto do that, set the parameter saveCal Tr ee=Tr ue
(see Section 3.6.5). It is not necessary to do this, since you can instead just note down the version
of the calibration tree used, which you can load from disk any time.

Download a tar file from the HSA. See the DAG sec. 1.4.7 for more information. This is the
method to useif you have several observations, or avery large one. Onceyou havethetarfileondisk,
you will need to import the datainto HIPE. Thisis explained in the DAG sec. 1.5. To summarise:

Get the data fromthe HSA as a tarball
On disk, untar the tarball, e.g.

cd /Users/ e/ fronHSA

tar xvf nel342.tar

In H PE, then

nyobsi d=1342. # enter your obsid

nypat h="/ User s/ ne/ f r onHSA/ ne1342/ "

nyobs=get Cbser vat i on(obsi d=nyobsi d, pat h=nypat h)

obsid is necessary only if nore than one observation
#is in that directory

Y ou can chose to keep the data on disk as they are, in the directory they were untarred into. The
format of the data on disk isdifferent to the pool format that getObservation(save=True) or saveOb-
servation create, but as long as you always remember where you put your data and what the obsid
is, you can get it back into HIPE using saveObservation, no matter how you saved it to disk.

Import directly into HI PE while on the HSA. Thisis useful for single observations and can bring
the data directly into HI PE as an ObservationContext. Thisis covered in the DAG sec. 1.4.5 ("using
the GUI: HUI"). Briefly, you need to find your observation (e.g. by obsid), then in the query results

21

../../dag/html/Dag.DataIO.Hsa.html#sec-direct-data-download
../../dag/html/Dag.DataIO.Hsa.html#sec-shopping-basket
../../dag/html/Dag.DataIO.Hsa.html
../../dag/html/Dag.DataIO.Hsa.html
../../dag/html/Dag.DataIO.Hsa.html

Setting up the pipeline Build 15.0.3262

tab of the HUI, click the download icon to access a "Send to HIPE" menu, from which select to
download "All".

To get the data back from disk into HIPE: If you data were saved to disk with saveObservation
or with save=Tr ue in getObservation, then to access them again you can use getObservation.

If you saved the data to disk with the default name and location (which will be MyHSA using
getObservation, or [HOME]/.hcsg/Istore using saveObservation), then you need only specify the
obsid:

obsid = 134...... # enter your obsid here
nyobs=get Cbser vat i on(obsi d)

If you used saveObservation with apool Name and/or pool Locat i on specified (i.e. you did not
save to not the default location) then instead you type:

obsid = 134...... # enter your obsid here

pool | = "/Vol unes/ Bi gbi sk/ "

pool n = "NGC3333"

myobs=get Cbser vati on(obsi d, pool Locati on=pool |, pool Name=pool n)

The DAG explains these parameters of getObservation: see its sec. 1.7 to know how to access the
dataif they were saved el sewhere than your local store, or to learn about the GUI methods.

The reason for these several ways to get and save data, and the different formats that data are stored
on disk as, is partly historical and partly to provide arange of useful methods for users.

The full set of parameters for saveObservation and getObservation can be found in the HCSS URM,
for example here.

3.3. What type of observation do you have?

There were five observing modes for PACS spectroscopy, differing in the wavel ength range covered
and in the way the background was measured. How you process the datawill depend on the observing
mode. All modes had a pointed version (one single position) and araster version (tiling/mapping).

chopNod line scan (a.k.a "chopped"). A scan of a narrow wavelength range with deep spectral
sampling, centred around a central defined wavelength (often specified as a particular spectra line
taken from alibrary of lines). The sky background was measured through afast modulation (" chop-
ping") between the source and a near-by background (off-source) using the internal PACS chopper
mirror. This was done at two telescope pointings (two nod positions); hence the name "chopNod".

chopNod rangeScan. The same observing method as for chopNod line scan, but with a longer
wavel ength range covered, with a choice of adeep or a Nyquist spectral sampling. This mode also
alowed one to cover the entire SED (this was usually done with two observations).

Unchopped line scan. A scan of a narrow wavelength range with deep spectral sampling, centred
around acentral defined wavelength (often specified asaparticular spectral linetaken from alibrary
of lines). The sky background was measured by repeating the same scan at a clean sky position
(off-source) just after the source had been observed. This mode was used for sources without any
near-by source-free emission.

Unchopped rangeScan. The observing method asfor unchopped line scan, but with alonger wave-
length range covered, with a choice of a deep or a Nyquist spectral sampling. This mode also al-
lowed oneto cover the entire SED. However, in this mode the off-source observation was a separate
obsid, rather than being the end of the same observation.

Wavelength switching: this mode was not offered for very long into the mission, and it is reduced
in the same way as the unchopped line scan data are. This mode was also for targets with no near-
by clean background, and the switching was done in wavel ength space rather than between the sky
and the target.

22

../../dag/html/sec-getobservation.html
../../hcss_urm/html/herschel.ia.toolbox.util.GetObsTask.html

Setting up the pipeline Build 15.0.3262

A convenient way to see the observing mode, and other relevant information about the observation
you are looking at, is with obsSummary:

obsid = 1342196875
myCQbs = get Cbservati on(obsi d, useHsa=True)
obsSummar y(mybs)

Or look at the "pacsObsSummary" in the ObservationContext. In the 'AOT and instrument configu-
ration' section of the output you will find information about the observing mode: LineSpec or Range-
Spec, Mapping or Pointed, Chop/Nod or Unchopped:

AOT and instrunent configuration

ACT: PacsLi neSpec

Mbde: Mappi ng, Chop/ Nod

Bands: B3A RL (prinme diffraction orders sel ected)
I's bright: YES (shortened range node)

Raster |ines: 5

Rast er col ums: 5

Raster line step: 14.5 (arcseconds)
Raster point step: 16.0 (arcseconds)
Chopper : | arge throw

Nod cycl es: 1

The different types of pointing "Modge" are:

» Oversampled mapping: in the blue, steps of up to 3.0" with a 3x3 raster; in the red steps of up
to 4.5" with a 2x2 raster. In this mode the PSF of PACS is over-sampled, and it is possible to
reconstruct the appearance of a source by combining (viaamapping) theindividual pointingsinto a
larger cube. The SPG pipeline usesthe tasks drizzle (for line scans) or specProject (for rangeScans)
for these cubes, and these tasks are al so recommended in the interactive pipeline scripts. The name
of the SPG products in an ObservationContext, in Level 2 or 2.5, are HPS3DDR (Herschel PACS
spectroscopy 3D drizzled red [or blue]) and HPS3DPR (projected red [or blue]).

* Nyquist mapping: in the blue, step sizes of up to 16"x14.5" with a 3x3 raster; in the red step sizes
of up to 22"x24" with a 2x2 raster. In this mode the beam (which is a convolution of the PSF with
the spaxels footprints) is Nyquist sampled—a worse spectral sampling than for the oversampled
mode but good enough to still use drizzle or specProject to map the rastersinto a single cube.

» Undersampled mapping: any step size larger than Nyquist (in either direction), or where the num-
ber of raster stepsislessthan required for Nyquist or oversampled. For these cubes the beam is not
fully sampled and hence while it is possible to create a "mosaic" cube using interpolation (rather
than mapping), the appearance of the target cannot be properly reconstructed—too much informa-
tion (flux) is missing where there are gaps in the sampling of the beam pattern. In the SPG pipeline
(and repeated in the interactive pipeline scripts) we provide the interpolated and projected mosaic
cubesfor this mode; the name of theinterpolated cubesin an ObservationContext, in Level 2 or 2.5,
isHPS3DIR (Herschel PACS spectroscopy 3D interpolated red [or blu€]).

Notethat it is possible to have one type of mapping in the blue and another in the red: for example,
if the observer requested a 22"x24" raster astheir line of interest was in the red, then the SPG will
consider thered datato be Nyquist sampled but the blue datato be undersampled. Thereforethe SPG
will provide projected and drizzled red cubes but projected and interpolated blue cubes. Y ou can
easily create any types of cube yourself viathe pipeline scripts or a useful scripts. see Section 2.7.

» Single pointing: for these observations the science should be done on the rebinned cubes (HP-
S3DR[R|B]: Herschel PACS spectroscopy 3D rebinned cubesred [or blug]). However, the rebinned
cubes have anirregular footprint and can be difficult to load into cube viewers outside HIPE. There-
fore we also provide interpolated cubes (HPS3DI[R|B]) for this mode.

It is possible for an observation to be oversampled in one direction but Nyquist or undersampled in
the orthogonal direction. In these cases the mapping is done according to the lowest spatial sampling.

For more information on these modes and the tasks that create their cubes, see Chapter 9.

23

Setting up the pipeline

Build 15.0.3262

3.4. The pipeline menu
3.4.1. Where are the scripts?

In the following chapterswe describe how to run each of the spectroscopy pipelines. A summary of the
various pipeline scripts can be found in the Spectroscopy Launch Pad (Section 2.2.2). The pipelines
take you from Level O (raw) to Level 2 (fully-processed) or Level 2.5 (for background subtracted
for unchopped rangeScan AOTS). The pipelines can be found in the HIPE Pipeline menu, as these

figures show:

an [JEHEIE Scripts Window Tools Help

Spectrometer b
— Chopped large range scan SED
JTMinfo_kul.py xfﬁ ChopNodf Unchopped line scan
~ | Unchopped range scan
Wavelength switching

Figure 3.1. Pipeline menu 1: chopNod line scan

@ Telescope Normalization

Calibration source and RSRF
[Pointing offset correction (point sources)
split On-Off

[@ L05_Frames.py

11_ChopNod

Telescope Normalization drizzled maps | L2_ChopNod

STl

By
FAII

PG Scripts Window Tools Help

Photometer >‘H = [|

Spectrometer M Chopped line scan & short range scan

Chopped large range scan SED

Minfo_kul.py % ' ChopNodi Unchopped line scan

Unchopped range scan

Wavelength switching

»

14 SPG scripts

Figure 3.2. Pipeline menu 2: chopNod rangeScan

@ Telescope Normalization

Calibration source and RSRF
[Pointing offset correction (point sources)
@ split On-Off

@ Combine observations for full SED

it LOS_Frames
@ L1_ChopNod
12 _ChopNod

B

ey

1+ JAGEIGES Scripts Window Tools Help

Photometer » Ea Db

2 K m Y =
Spectrometer Y Chopped line scan & short range scan ¥
Chopped large range scan SED »

Unchopped line scan
Unchopped range scan
Wavelength switching

‘Minfo_kul.py X

L3

SPC scripts
Calibration source and RSRF
@ __with transient correction

Yot LOS_Frames

11 _unchop
12 UnchopLine

Figure 3.3. Pipeline menu 3: unchopped line scan

1 AN Scripts Window Tools Help

Photometer

oo b |
Chopped line scan & short range scan
Chopped large range scan SED
Unchepped line scan
Unchopped range scan
Wavelength switching

Spectrometer M

TMinfo_kul.py X

3
3

>
>
L}

Figure 3.4. Pipeline menu 4: unchopped rangeScan

L%

x '~ ChooNo
SPG scripts
calibration source and RSRF

.with transient correction

L1_Unchopped
@ 12_unchopped
@ Combine off-source with on-source | # L25_UnchopRange

AGENES Scripts Window Tools Help

Photometer »

=5 bl =
Chopped line scan & short range
Chopped large range scan SED
m Unchopped line scan
-] Unchopped range scan
Wavelength switching

Figure 3.5. Pipeline menu 5: wavelength switching

scan b
»

»
»
»

=

% ChopNodLi...ection.py x| © New-1 x

SPG scripts
Calibration source and RSRF

L LOS_Frames
L1 Waveswitch
12 Waveswitch

Select the pipeline script you want and it will open in the Editor pane (noting that the SPG scripts are
not intended for interactive use, they are provided only for completeness). From there you can edit
it and run it, but if you want to save your edits you should save it to a different location on disk—
otherwise you are changing the HIPE copy of that pipeline script.

The scripts start with an explanation and some set-up. They can be run al in one go or line-by-line,
to be used variously depending on your level of experience. The scripts contain all the pipeline tasks,

24

Setting up the pipeline Build 15.0.3262

pipeline hel per plotting tasks, and basi ¢ descriptions of what thetasks are doing; theindividual pipeline
tasks are more fully described in the PACS URM.

The "SPG Scripts' sub-menu is the PACS standard product generation [SPG] pipeline which isrun,
in automatic mode, by the HSC: those in HIPE 14 will produce "SPG 14" products. These pipelines
scripts do not differ much from the interactive ones which are described in this PDRG.

Weremind you herethat you should consult PACS documentation web-page, hosted on the Her-
schel site (here), for information about the calibration of PACS data such as spectral |eakages, sensi-
tivity, uncertainties, ghosts, saturation limits, and PSFs.

3.4.2. What are the differences between the pipeline
scripts?
As shown in the figures in the previous section,

* Inthe"Chopped line scan and short rangeScan" menu are several interactive pipelinescripts: "Tele-
scope normalisation”, "Calibration sources and RSRF", "Telescope normalisation drizzled maps’
and "Pointing offset correction (point sources)". This menu is for chopNod observations of line
scan and short rangeScan (<5 microns) mode. The additional script " Split On-Off" isahel per script,
which can be used to produce cubes of on-source and off-source data to check for off-source con-
tamination.

* In the "Chopped large rangeScan SED" menu are: "Telescope normalisation”, "Calibration
sources and RSRF", "Single obs", "Background Normalisation", "Pointing offset correction (point
sources)". The additional helper scripts are: "Combine observationsfor afull SED", to run the cho-
sen pipeline script on two or more observations and combine the final cubes and any point-source
calibrated spectra into a single product, and "Split On-Off", which can be used to produce cubes
of on-source and off-source data to check for off-source contamination. This menu is for chopNod
rangeScan AOTs (from 5 microns up to the full SED).

* Inthe"Unchopped line" menu: "Calibration sources and RSRF" and "...with transient correction".
This menu is for line scan unchopped observations. The first script includes the original transients
correction task written for this mode, which corrects the transient that can occur at the beginning
of an observation. The second script is new to HIPE 13, and includes a more complete transients

correction task.
This new pipeline with the new transient correction tasks should not be used blindly: test the results
carefully.

* Inthe"Unchopped range" menus: "Calibration sourcesand RSRF"" , "...with transient correction",

and "Combine on-off". This menu is for all rangeScan unchopped observations, no matter how
long or short the range. The first and second scripts reduce any single observation, and the third
is to subtract the off-source observation results (the background) from the on-source observation
results. Thereisalso a PACS script do this subtraction: Scripts#PACSuseful scripts#Spectroscopy:
off-subtraction and post-processing in unchopped range spectroscopy. The first script does not
include any transients correction. The second script was new to HIPE 13, and applies a new and
comprehensive transients correction.

This new pipeline with the new transient correction tasks should not be used blindly: test the results
carefully.

3.4.2.1. The SPG scripts vs the interactive scripts

The SPG scripts are provided in the pipeline menus for each AOT, however they are not intended for
interactive use. They were provided in previous versions of HIPE for users to check what had been
done on their ObservationContext by the SPG of that version of HIPE, asin previousversions of HIPE
there were some tasks not run by the SPG. From HIPE 14 onwards, all tasks of the standard pipeline
are those of the SPG pipeline.

25

http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb

Setting up the pipeline Build 15.0.3262

3.4.2.2. When to use line and when to use range

For chopNod AOTs, the "line scan" menu scripts are to be used with Line spectroscopy AOTs and
Range spectroscopy AOTs with a range of less than about 5 microns. The flatfielding from the line
scan script performs better for these short ranges than theflatfield of the rangeScan script. Thisiswhat
is aso donein the SPG scripts.

For unchopped AOTSs, you always have to use scripts from the "line scan" menu for Line spec-
troscopy AOTs and scripts from the "rangeScan” pipeline for Range spectroscopy AOTS, even for
short range scans. L ater we demonstrate how to use the flatfielding task of the line scan pipeline script
for the shorter range scans. Thisiswhat is also done in the SPG scripts.

More on the differencesin flatfielding for line and rangeScan AOTs can be found in Section 7.4.

3.4.2.3. The pipeline scripts "Telescope normalisation" and "Cali-
bration sources and RSRF"

This"Telescope normalisation” pipeline script has been the default and the SPG script since HIPE 13.
Beforethat it was the " Calibration sources and RSRF" script. These two methods differ in the way the
telescope background is handled and the data are flux calibrated.

Both scripts are valid, they are just different. This earlier script uses the data from the calibration
block, taken in the beginning of all observations at key wavelengths, together with the rel ative spectral
response function (RSRF), to flux calibrate the science spectra. The RSRF was computed before the
launch of Herschel; the RSRF and the spectra of the calibration blocks were monitored throughout the
mission with observations of calibration sources.

However, this pipeline script was never the preferred script for sourceswith low continuum flux levels
(less than about 10 Jy) or of long duration. To deal better with these observations, the "Telescope
normalisation” script was developed, and this one is now preferred for all chopNod AQTSs. Instead of
using the RSRF and the calibration block to flux calibrate the spectra, it uses the off-source spectrato
background subtract and to also relatively spectrally response-correct the on-source spectra, resulting
in a spectrum corrected for the background but in units of "telescopes’. These units are then turned
into Jy using a calibration file that contains the spectrum of the telescope in Jy. Since the off-source
datapoints and the on-source datapoints are taken right next to each other, any detector response drifts
or jumps will be better 'corrected out' than with the calibration block method. It produces results that
arecleaner (especialy for broad-band features), and better for thelong-duration and faint observations.
For all observations, the band-matching is also better.

Note that the absolute flux levels of the two methods have been calibrated to return the same results.
The spectra produced by the calibration block and the background normalisation scripts may show
dight differences in the contiuum shape, but the spectral line (integrated) fluxes should not differ
strongly. If they do, it could be that you have contamination in the background (off-source) pointings.
Inthiscase, you should not only check for the contamination but al so prefer the calibration block result:
this script cannot remove the contamination, but it will not also be incorrected in the flux calibration

it applies.

To measure the fluxes of spectral lineslonger than 190 pm, you must use the " Calibration sources and
RSRF" script: see Section 5.4 (chopNod) or Section 6.4 (unchopped).

3.4.2.4. Telescope normalisation drizzle maps

New to HIPE 14 and higher: because of an oversight that lead to an incorrect calibra-
tion of drizzle cubes created by HIPE version 13 (see the HSC pages which are currently at
herschel .esac.esa.int/twiki/bin/view/Public/DpK nownl ssues and herschel .esac.esa.int/twiki/bin/view/
Public/PacsCalibrationWeb) when using the Telescope normalisation method, it is now necessary to
calibrate the data when creating drizzle cubes slightly differently to when calibrating any other type
of cube. The drizzle cubes require a calibration applied to the Level 1 PacsCubes, for which one par-

26

http://herschel.esac.esa.int/twiki/bin/view/Public/DpKnownIssues
http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb?template=viewprint
http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb?template=viewprint

Setting up the pipeline Build 15.0.3262

ticular calibration file has to be used. All other cubes (rebinned, projected, and interpolated) require a
calibration applied to thefinal PacsRebinnedCubes of Level 2, for which adighty different calibration
fileis necessary. The two calibrations differ only very slightly: the noise level is very dightly higher
for the drizzle cubes, but the overall flux levels, line fluxes, and continuum slopes, will be the same.
However, this means that for mapping line scan chopNod observations for which drizzle cubes are
required, the "Telescope normalisation drizzle maps" pipeline script needs to be used rather than the
"Telescope normalisation™ script.

If using the "Calibration sources and RSRF" pipeline script, no change from previous HIPE versions
for drizzled cubes is necessary, and these can be created from within the pipeline script itself.

3.4.2.5. The pipeline scripts "Pointing offset correction (point
sources)"

Thisscript isfor chopNod pointed observations of bright point sources (continuum #10 Jy) which are
located close to the central spaxel (certainly well with the central 3 spaxels). It uses the Telescope
normalisation method to do the flux calibration, but in addition applies a wavel ength-dependent cor-
rection to the spectral fluxesto correct for the effect of pointing jitter; the spectra of the central spaxels
(where the point source is expected to be located) are corrected. The correction is done by comparing
the fluxes of the point source in the central spaxels of the cubes to the corresponding fluxes of the
PACS beams, and for this reason it works best on brighter sources located closer to the centre of the
FoV. The science end-product of this pipeline is an extracted, point source calibrated spectrum. Its
purpose is to produce spectra that are cleaner, and hence if you are looking for broad features it is
worth trying this pipeline.

We recommend you experiment with the pointing corrections of this pipeline, since they can have an
important effect on the result. It is also recommended to compare the pipeline end-result spectrum
with that from the "Telescope normalisation” script, e.g. using the Spectrum Explorer (see the DAG
chap. 6). They should not differ too markedly.

3.4.2.6. The unchopped pipeline scripts with the old and the new
transient correction

A "transient" is any temporary impact on the detector while an observation was being performed, and
which affected the response detector for that of that time-line data-stream. An example would be a
cosmic ray, or observing something faint immediately after something very bright. Since a transient
changes the response of the detector, the flux calibration will be incorrect for the transient-affected
datapoints. The usual appearance of atransient event, in thetime-line spectrum, isaspike (up or down)
followed by a decay back to the normal count levels. The decay can have along or a short timescale.
Transients often occurred at the beginning of an observation, immediately after the (bright) calibration
block was "observed". For the chopNod AQOTS, the signal we deal with is differential: subsegquent
data-points are subtracted from each other by the pipeline before the flux calibration is done. Asthe
datapoints are taken very close in time to each other, transients generally have a negligible effect and
are dealt with by the glitch detection pipeline tasks. But for the unchopped AOTS, thisis not the case
and the transients need to be dealt with in another manner.

Before HIPE 13, a pipeline task to correct for the transients that occurred in the beginning of the
observation (after the calibration block) was done only for line scan AOTSs. In HIPE 13 we provided
two new pipeline scripts, which both apply a new, more comprehensive set of tasks for correcting
transients occurring at any point in an observation, for line and rangeScan AOTs. These new tasks
are presented in the menu as "...with transient correction”. The transient corrections tasks should not
be run blindly: the plots produced should be checked and the results should be compared to the SPG
scripts: they should not differ too much.

While no transient correction is done in the SPG scripts for unchopped observations, aflatfielding is
done. It turns out that the correction performed by the flatfielding task is similar to that performed by
some of the new transient correction tasks. Hence, alevel of transient correction is, effectively, done
for the unchopped observations.

27

../../dag/html/Dag.Ch.CubeSpectralAnalysis.SEII.html

Setting up the pipeline Build 15.0.3262

3.4.2.7. The pipeline script "Combine off-source with on-
source" (unchopped range)

This pipeline script is for rangeScan unchopped AOTSs. For this observing mode, the off-pointings
are a separate observation to the on-source pointings. Hence, to fully reduce such data it is necessary
to reduce first the on-source and then the off-source observations, and then subtract the off-source
(background) from the on-source. The scripts starts with some set up, including setting the obsids of
the on- and off-source observations, and runs the main pipeline script to reduce the data, and then
does the subtraction.

Thereisalso aPACS script Scripts#PACS useful scripts#Spectroscopy: off-subtraction and post-pro-
cessing in unchopped range spectroscopy. The same tasks are run in the pipeline and the useful script,
but the first doesit in a hands-off loop while the second is run line-by-line.

3.4.2.8. "Split On-Off" testing script

Thisisascript offered for al chopNod AOTSs. Itsaim is to produce separate cubes for the on-source
pointings and the off-source pointings, which can be compared to see if the off-source spectra have
significant spectral features (lines) that will affect their use in subtracting the telescope background
from the on-source spectra. After checking that all is well, you then need to run one of the actual
pipeline scripts.

Since this script is just to check the on and off-source spectra to each other, you could run it aimost
blindly, i.e. just set the obsid and the camera you want to reduce, and run therest all in one go.

3.4.2.9. The bulk-processing script "Combine observations for full

SED"

For chopNod rangeScans (but aimed at full SEDs) we offer a"Combine observations for full SED"
script that can be used for point sources, where at the end of the pipeline the point source spectrum is
extracted, and multiple spectra arising from separate observations and from the red and blue camera
are concatenated into a single spectral product.

In this script you will run apipeline script for each observation and camera—whichever pipeline script
you want to run: you should copy to a directory and edit is as necessary (setting the parameters of
tasks, making the appropriate saving and plotting, etc.), since the script will then be run in one go. At
the end of each running of the single observation script, it will save the various cubes and then run
the point source extraction task extractCentral Spectrum on them, and save the final extracted spectra
concatenated into a single Spectrumld.

3.5. Technical considerations for running the
pipeline

Some technical considerations when running the pipeline are:

« If you run the pipeline helper plotting tasks (by setting verbose=1 in the pipeline script), most the
plots will open in new windows, the ones near the end open in the Editor panel.

» Theamount memory to assign to HIPE to run the pipeline depends on how much datayou have, but
>=4GB for sureisrecommended. Consider the size of your observation, in pool, on disk, compared
to the memory you have assigned to HIPE.

 To optimise memory use you can use "temporary pools" into which the sliced spectroscopy pipeline
products will be read into and out of during each pipeline task, rather than being held in HIPE
memory the wholetime. If you know before starting HI PE that you want to use this option then you
should set, in [HOME]/.hcss/user.props, the following:

28

Setting up the pipeline Build 15.0.3262

hcss. pacs. spg. usesi nk = true

If, as you run the pipeline, you run low on memory (#25% free) a pop-up will ask you if you wish
to switch to using a temporary pool. If you accept then this property ("usesink™) will be enforced
in your current HIPE session after the ongoing task has finished. If you want to switch to using the
temporary pool at any time while you are pipeline processing your data, type the following into
your HIPE Console:

from herschel . pacs. share. util inport PacsProduct Si nkW apper
PacsProduct Si nkW apper . get | nstance() . set Used(1)

and then continue with the pipeline but you will now be using the temporary pool method.

The temporary pool will be placed in [HOME]/.hcss/Istore/standard, a directory which every now
and then you will want to clear out. The downside of this technique this is that the pipeline pro-
cessing is slower, and this can be a problem when reducing multiple-repetition SEDs#however,
processing such large SEDs can also be demanding on memory. If you are working on a machine
with many 10s of GB of free memory, then you should be able to run without this temporary pool.

Tip

@ If you want to change the directory off of which the "standard" directory is placed
(i.e. "Istore"), the easiest way is to change where the local store ("Istore”) isheld. This
you can change in the HIPE preferences/properties panel, typing in the path where you
want /Istoreto go in Data Access#local Store. Note, however, that by default all saving
and restoring of productsto pool go to this"local store" directory, soif you change this
property you change where everything you save when following the pipeline will go
(from the ObservationContext through to the SicedFrames and thence on to the final
cubes). If you are going to change this definition, it will be much easier to do so before
you have any interaction with pools, i.e. before you begin pipeline processing.

Tip
@ If you need to clear up memory, you can try to delete all products you don't need

del (slicedFranmesol d, notwant edproduct)

System gc()
#or delete al
clear(all =True)

wherethe first deletes two products and the second is ageneral memory clean-up com-
mand, deleting everything.

Y ou can also temporarily clear up some memory by saving "slicedFrames" (or "sliced-
Cubes") to pool, because when you do thisthe pointer to that product movesfrom HIPE
memory to the pool, hence clearing out some HIPE memory:

name="0BSI D_"+str(obsi d)+"_"+canera+"a descripti on"
saveSl i cedCopy(sl i cedFranes, nane)

This is only a temporary measure, because as soon as you run the next pipeline task
the pointer will then move back to the HIPE memory location of "slicedFrames’. But it
may be useful to clear up as much memory as possible, implement the temporary pool
method, and then begin with the pipeline again.

Note that you do not need to reload the slicedFrames from disk, you are saving to disk
only to move the pointer "outside” of HIPE.

The syntax used here will make more sense once you have run the pipeline.

« If you wish to fiddle with your data (other than using the plotting tasks provided in the pipeline)
you could consider doing that in a separate instance of HIPE. Using GUIs and creating busy plots
can use quite a bit of memory.

29

Setting up the pipeline Build 15.0.3262

« If you close HIPE without saving products created, they will be lost. Consider saving the pipeline
results at judicious places in the pipeline script.

» The cube mosaicking task drizzle requires more memory and processing time than the sister tasks
specProject and specinterpolate. The difference in requirementsis not dramatic if you have asin-
gleline and arelatively small raster (9 pointings or so). But we do recommend that you run with
>=10GB assigned to HIPE and for larger raster observations, have patience. Output to the terminal
you started HIPE from can help you to assess its progress.

Warning
O Note: stopping atask using the red STOP button will not always produce immediate re-
sults. A task can take awhile to stop—if it isin the middle of aloop, for example. Hence
it is not agood ideato allow the memory use to stay in the red: if HIPE freezes you will
have to kill it and you will lose everything you have done (and not saved).

Usually, if you stop a pipeline task then the product the task was being run on will be
unchanged: the product is only changed at the very end of the task's processing.

3.6. Calibration files and the calibration tree

3.6.1.

3.6.2.

The PACS calibration tree is updated (online) whenever an update is ready, and loaded onto your
disk via the updater. It can then be loaded into HIPE via a command (you will see this as you run
the pipeline). You also get a calibration tree with the ObservationContext that you get from the HSA.
Thisisthe calibration tree that the SPG used when it created your ObservationContext, i.e. it is dated
from that time.

When you save your ObservationContext to disk using the saveObservation task, to save it together
with its calibration tree requires the use of the parameter saveCal Tr ee, set to True. Saving with
the calibration tree takes up more space on disk and more time to work, and it is not necessary if you
instead remember to note down which calibration tree that ObservationContext—whether you just got
it from the HSA or reduced it yourself—was created with. To save a calibration tree along with the
ObservationContext, it must be attached to the observation: see Section 3.6.5.

Installing and updating the calibration files

First, you should consult the calibration documentation e.g. Observer's Manual and Perfor-
mance and Calibration documents on the PACS public wiki: here. Information about spectral |eak-
ages, sensitivity, uncertainties, saturation limits, ghosts and PSFs can be found there.

The calibration files are not provided with the HIPE build; if, after opening HIPE, you get a pop-up
telling you to install the calibration products, it means that the calibration file set has been updated by
the PACSteam and you are being offered the chance to get that update. Click on "Install" and the new
calibration products will be downloaded and installed. They are placed in [HOME]/.hcss/data/pcal -
community (or pcal-icc, but only for the PACSteam). If thisisthe very first time you are using HIPE
and you have never installed any calibration files before, then you should select "Install", otherwise
you will have no calibration files at all.

Checking what has been updated

The updater GUI tells you which calibration files have been changed. To see the relevant information
about the release, in the calibration updater pop-up click on "Show details...". In the new panel that
appears, look at the "Release Notes' tab for a summary of the new set version. In there will be listed
the calibration files (the FITS files) that have been included in the update and information about the
changes made.

You can also look at theindividual "Files' tab to see what (if anything) has changed in the individual
filesthat are being updated. Some files will have no information in them—most of the information is

30

http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb

Setting up the pipeline Build 15.0.3262

3.6.3.

inthe Release Notestab and inthe Filestab inthefilescalled "PCalBase TimeDependency FM_v#",
which also contain a summary of the release.

Calibration Product Update

"I'Z' There is an update available for the PACS Calibration products.
t ’ The following calibration set version will be updated: 41.
(v)
Products will be copied into the directory: /users/kexter/.hcss/data/peal-ice

This location can be changed in the Preferences panel.

Last update was: 08-May-2012 12:38:16
Hide details...

Release Notes | Files

Release Notes
Release note for calibration set version v4 L

Release Note for Calibration Set v41

|After having finished verifying the new PACS photometer flux calibration, we are
ready to implement an update for four calibration entries in the calibration tree. 2
[The should be made available all at the same time, because they depend on each &
other. Please, also remember to update the corresponding class definitions that are |&
needed for the calibration tree inquiry. The four products cover: 2

@ response calibration (version 7) => calTree.refs[" photometer”]. product.refs &
[‘responsivity”].product 2

= flat field (version 4, internal version number 7) => calTree.refs
['photometer’].product.refs[flatField"]. product .-

® aperture correction (encircled energy fraction, version 3) => calTree.refs &
['photometer’].product.refs["apertureCorrection’]. product

® non-linearity correction (version 2) => calTree.refs["photometer’].product.
refs["nonLinearCoef’].product

Note that the aperture correction calibration contains a new entry that corresponds
[to the FM7 response calibration. J+/°rgen said that the corresponding class
definition must be extended for that reason.

Updated calibration products

[The following calibration product has been added :

Not Now @
Figure 3.6. Updating the calibration files

To check which pipeline tasks this will affect, check the comments in the pipéline script which say
which calibration files are used by various tasks.

The cdibration files take up >4 gigabyte. To install them in a directory other than the default
[HOME]/.hcss/data/pcal -community: in the updater pop-up click "Not Now"; go to the HIPE Prefer-
ences panel (from the Edit menu); click on Data Access#Pacs Calibration; in the "Updater" tab that
is now in the main panel change the name of the directory in the space provided. Do not click on
anything else—you do want to use the "Community Server" as these are the products that have been
tested, the "ICC" ones are till in the process of being validated. Click to Apply and Close. Then go
to the Tools menu of HIPE, and select pacs-cal#run Updater. Voila.

You can aso inspect the calibration sets and products with a Calibration Sets View via the HIPE
menu Window#Show View#Workbench#Calibration sets. This allows you to inspect the calibration
sets that have been installed on your system. The viewer shows the rel ease notes for the selected set
(numbered boxes at thetop), or the calibration filelist for the selected set (optionsviathe central drop-
down menu). The cdibration filelist isalist of what calibration files, and their version numbers, are
included in the selected set, and the release note you will see is the general one for that set. A new
release of a calibration set will include some updated calibration files and also al the rest that have
not changed.

The calibration tree

Before beginning the pipeline you will need to define the calibration tree to use with your reductions.
The calibration tree contains the information needed to calibrate your data, e.g. to translate grating
position into wavelength, to correct for the spectral response of the pixels, to determine the limits
above which flags for instrument movements are set, and the flux calibration. The calibration tree is
a set of pointers to the calibration files in your installation, it is not the calibration files themselves.
Tasksthat use calibration fileswill have the parameter cal Tr ee, which you set to the name you have
given to the calibration tree (see below).

To usethe latest calibration tree you have in your installation is done with,

31

Setting up the pipeline Build 15.0.3262

cal Tr ee=get Cal Tr ee(obs=nyobs)

Where obs=mnyobs setsthe parameter obs to the ObservationContext you are going to be working
on, here called "myobs". This is done so that those few calibrations that are time-specific will take,
astheir time, the time of your observation.

If you want to reduce your data with an older calibration tree, you can do this by typing

cal Tree=get Cal Tree(versi on=13) # to use version 13

If you want to use the calibration tree that is with the ObservationContext (assuming it has been saved
there), you type,

cal Tree=nyobs. cal i brati on

Data just gotten from the HSA will always have a calibration tree attached to it. Data someone else
reprocessed may not, especialy if they did not save it to pool with its caibration tree attached (see
Section 3.6.5).

3.6.4. Comparing calibration file versions

To compare the version of the calibration files you will use by default when you begin pipeline pro-
cessing your data, to those used by the HSC when the SPG pipeline was run, you do the following:
where "myobs’ is the name of the ObservationContext, type,

The caltree that cones with you data
print nyobs. calibration
print myobs.calibration.spectroneter

The caltree you have on di sk
cal Tr ee=get Cal Tr ee(obs=mnyobs)
print caltree

print caltree. spectroneter

To print out the information on the calibration tree gotten from "myobs’ (the first command in the
script above), it is necessary that the calibration tree is present in "myobs’. This will be the case for
SPG pipeline-reduced datajust freshly gotten from the HSA. But if you (or anyone el se) used saveOb-
servation to saveit to disk, then whether the cal Treeisincluded or not depends on whether the param-
eter saveCal Tr ee was set to True or False when the observation was saved with saveObservation
(see below).

Y ou can also check the calibration version your SPG data were reduced with by looking at the Meta
data"cal TreeVersion" in the ObservationContext. This givesyou the "v"ersion number of the calibra-
tion tree used to reduce those data,

print obs.neta["cal TreeVersion"].|ong

To check what version of the pipeline your SPG data were reduced with, look at the Summary of
the ObservationContext (using the Observation viewer, via aright-click on your ObservationContext
in the Variables pane of HIPE): it will say something like "SPG v9.1.0" which means that HIPE
user-release 9.1.0 and the "SPG" pipeline script found in there were used to create your SPG Levels.
To see that script, you will need to get that version of HIPE and look in the pipeline menu.

3.6.5. Saving your ObservationContext and its calibra-
tion tree to pool

To save the calibration tree with your ObservationContext, you need to first attach the calibration tree
to it, and then set the parameter saveCal Tr ee to True:

obsid = 134...... # enter your obsid here

32

Setting up the pipeline Build 15.0.3262

Exanple |: you | oaded data into H PE directly fromthe

HSA and now wish to save it to disk, to the default [ocation
along with its calibration tree

saveObser vati on(nyobs, saveCal Tr ee=Tr ue)

and to retrieve these both |ater

myobs=get Cbser vat i on(obsi d)

myCal Tr ee=obs. cal i brati on

Exanple |l: you | oaded data into H PE directly fromthe

HSA and now wish to save it to disk, to the default [ocation
but with the latest calibration tree that you have on di sk
myCal Tr ee=get Cal Tr ee(obs=mnyobs)

myobs. cal i brati on=nyCal Tr ee

saveObser vati on(nyobs, saveCal Tr ee=Tr ue)

and to retrieve these both |ater

myobs=get Cbser vat i on(obsi d)

myCal Tr ee=obs. cal i brati on

Notethat it isnot really necessary to save the calibration tree: the calibration files themselves are held
on disk, all you need to know is the calibration tree version that was used (or which you want to use)
to reduce the data.

33

Build 15.0.3262

Chapter 4. The pipeline: the first and
the last steps

4.1. Introduction

4.1.1.

Thevery first part of all pipelines—level 0to 0.5—and the very final, post-processing parts are almost
the same for all the pipeline scripts. Therefore we explain these both in this chapter.

A change from the pipeline scripts in HIPE 12: some of the pipeline "helper” tasks, to print or plot
information at various stages of the pipeline, have been taken out. However, they still exist in HIPE,
and are still explained in Section 10.2.

The pipeline menu

Before reading this chapter, you should read Chapter 1, Chapter 2 and Chapter 3, which explain how
to get data, how to have a quick look at them, how to find the interactive pipeline scripts, what the
differences between the pipeline scripts are, whether you need to reprocess your data, about the cali-
bration updater, what to pay attention to for different types of sources, and how much memory you
should run HIPE with—thisis all information which we do not repeat here.

The pipeline scripts are found in the HIPE Pipeline menu. Read Chapter 3 to decide which script you
want to use. The script will open in the Editor pane, and if you want to edit and save it, you will need
to save it to anew location so asto not overwrite the version that comes with the HIPE build.

The following (Help) documentation acronyms are used here:PACS URM: User's Reference Manual,
also the HCSS URM; PDRG: this PACS Data Reduction Guide; SG the Scripting Guide.

4.2. The first part of all the pipelines: Level 0
to 0.5

4.2.1.

The first part of the pipeline is where the instrument signature is removed and the data are dliced
according to an astronomical logic. No user interaction is required, and this stage of processing is
almost the same for all the pipeline scripts. If you are working with "SPG 14.x" data from the HSA,
thereisinfact no need to run thispart of the pipeline, and you can go straight to Chapter 5 for chopNod
observations and Chapter 6 for unchopped.

Slicing

The spectroscopy datathat are input into the pipeline are held not as asingle uniform whole, but rather
as a ListContext of individual parts of the observation—these are called "slices'. This dicing of the
observation data follows an astronomical logic: mainly on wavelength and pointing (e.g. on- and off-
source, the positioninaraster,...). The classname of the dliced product isthe classname of the products
it contains but with a"Sliced" at the front: the SicedFrames holds Frames products, for example.

Slicing wasintroduced becauseit makes handling the data more efficient on memory use. It also allows
the users to break their observation datainto logical unitsto process them separately, if the entirety is
too largeto reduce in one go. However, note that the HI PE visualisation toolswill only work on single
dices at a time. Consequently, when you want to visualise the data in a product, or see its contents
listed, you will need to take the product out of the SlicedProduct: the Frames out of its SicedFrames.
Y ou will be shown how to do this.

Tip
@ Thetask selectSlices was written to allow subsets of data, sets of dices, to be extract from
aproduct and placed into anew one. Thisisno longer really necessary in the pipeline, but

34

../../pacs_urm/html/pacs_urm.html
../../hcss_urm/html/hcss_urm.html
../../sg/html/sg.html

The pipdine: the first and the last steps Build 15.0.3262

may be useful for the few very heavy observations or when working on a memory-poor
computer.

To select dices for other factors fill the necessary parameters with an appropriate value:
for example, set| i nel d to the number that is the line-identification for the spectral line
you want to work on. The task slicedSummary can help fill in the parameters with the
appropriate values (e.g. the line identification number), e.g.

HI PE> sl i cedSunmmary(sl i cedCubes)

noSlices: 4

noCal Slices: 0

noSci enceSlices: 4

slice isScience nodPosition nodCycle rasterld lineld band
di mensi ons wavel engt hs

0 true ["B'] 1 1 11 [2] ["B3A"][18,25, 1631] 63.288 -
63. 489
1true ["A"] 1 1 11 [2] ["B3A"][18,25,1631] 63.288 -
63. 489
2 true ["B'] 1 1 11 [3] ["B3A"][18,25,61631] 57.362 -
57.947
3 true ["A'] 1 1 11 [3] ["B3A"][18,25,61631] 57.362 -
57.947

To select the short wavelength range set wavel engt h to any number between 57.362
and 57.947, or setl i nel d to[3].

Consult the URM entry for the selectSlices to learn more about these parameters.

4.2.2. Pipeline setup

>>>>>> 1 Setting Up

i nport os, sys

verbose = True

For new transients correction |ine scan pipeline script:
from javax.swi ng inport JOptionPane

interactive = Fal se

if ((not locals().has_key('multiCbs')) or (not nmultiCbhs)):
obsid = 1342250905

useHsa = 1

obs = get Observation(obsid, verbose=True, useHsa=useHsa, pool Locati on=None, \
pool Nane=None)

#if useHsa: saveQbservation(obs, pool Locati on=None, pool Nanme=None)

if verbose: obsSunmmary(obs)

1. To seeplots of intermediate processing stages, set verbose to True.

2. For the new transients correction pipeline script for unchopped line scan, you can chose to inspect
aplot of thetransient correction task and decide whether to apply the correction, or not. By default
the choiceisinteractive=False.

3. Input the obsid of your observation; the example observation can be used to test the pipeline.

4. getObservation: then you get the ObservationContext of that observation, either from the HSA
(useHsa=1 optionally followed by saving that observation to disk) or from a pool on disk
(useHsa=0 and possibly also defining pool Locati on and pool Nane). The use of get/
saveObservation is explained in Section 1.2.

The"if ((not locals()..." is because this script can also be run as part of another script that combines
observations; this syntax means that "if this parameter has not already been set, then set it here”.
When running this script on asingle observation, you can execute the if statements after changing
the obsi d to your value.

35

The pipdine: the first and the last steps Build 15.0.3262

5. obsSummary: print a summary of the observation details: see Section 10.2 for more information
on thistask.

>>>>>> 2 Extract the Level O

pacsPropagat eMet aKeywor ds(obs, ' 0', obs. | evel 0)
| evel 0 = PacsCont ext (obs. | evel 0)

» pacsPropagateM etaK eywor ds propagates the M etadata of the to-level of the ObservationContext
tothe Level 0, so it can be carried forward to the reduced products later.

» Thereisacommented-out set of commands related to the pointing products: thisis no longer nec-
essary if working with observations created by SPG 13 and higher, since the pointing products that
comewith these observations aretheimproved version that the pipelinetask cal cAttitude cal cul ates.

Next, calibration tree and getting the data.

>>>>>> 3 CGet the calibration tree, canera, extract the
sliced products

cal Tree = get Cal Tr ee(obs=0bs)
if verbose

print cal Tree

print cal Tree. common

print cal Tree. spectroneter

if ((not locals().has_key('multiObs')) or (not multi Qos))
canera = 'blue

sl i cedFr anes
sl i cedRawRanp
sl i cedDntHead

Sli cedFranes(l evel 0.fitted. get Camera(canera) . product)
| evel 0. raw. get Caner a(caner a) . product
| evel 0. dnt. get Caner a(caner a) . product

if verbose: slicedSummary(slicedFranes)

» getCalTree gets the calibration tree (see Section 3.6 to learn more). We always recommend that
you use the latest calibration tree rather than the one that comes with the data.

 Set the camera ("red" or "blue™).

« Extract thefirst diced productsto begin the pipeline processing on: the science data (JicedFrames);
theraw science datafor asingle detector pixel (usedin the saturation masking task); and the DecMec
data (used in some of the masking tasks).

» dicedSummary: prints a summary of each dlice in "slicedFrames’, including the wavelength in-
formation (line, band, and whether wavelengths have been calibrated or not) and pointing (raster,
nod, nodCycle). See Section 10.2 for a description of the output of this task.

Before beginning the pipeline, you can set up some variables that will be used when saving data.

>>>>>> 4 Setup for saving products

cal Set = str(cal Tree. version)

try:
tar get = str(obs. neta["object"].val ue).\
replace(" ","").replace(".","").replace("+","plus")
od = "OD"+str(int(obs.netal"odNunmber"].value)).zfill(4)
hi peVersi on = (str(Configuration.getProjectlnfo().track) \
+' _'+str(Configuration.getProjectlnfo().build)).replace(".","_")
except:

target, od, hi peVersion = "" "" ""
saveQut put = True
outputDir = str(Configuration.getWrkDir())+"/pacsSpecQut/"

if (not os.path.exists(outputDir)): os.nkdir(outputDir)
if verbose and saveQut put:

36

The pipdine: the first and the last steps Build 15.0.3262

print "The products of this pipeline will be saved in ", outputDir

nameBasis = str(obsid)+"_"+target+"_"+od+"_H pe_"+hi peVersi on+\
" _cal Set _"+cal Set +"_"+canera+" _rsrf"

» To save products at various stages of the pipeline, either SlicedProducts or single FITS files (de-
pending on which stage of the pipeline you are at), set the basis of the filenames here; the target
name, observing day, number of the calibration tree and the version of HIPE you are using, and an
indication of what pipeline you are running ("rsrf", or "telescope”, ..)

» SetsaveQut put to Trueto saveproducts. Notethat it isnot possibleto overwrite previous Siced-
Products saved to a pool: if you run this script twice with saveQut put set to True, then during
the second running it will stop when it is asked to write out a SlicedProduct to a pool that already
exigts. Either delete the directory on your disk, or change the name of the pool to save to, e.g. add
acounter to it

counter =1
nanmeBasis = str(obsid)+"_"+target+"_"+od+"_H pe_"+hi peVersi on+\
" _cal Set _"+cal Set+"_": q+camera+"_rsrf"+"_"+str(counter)

4.2.3. The first pipeline tasks

>>>>>> 5 |nstrunental and satellite corrections

sl i cedFranes = specFl agSat ur ati onFranes(slicedFranes, rawRanp = sl i cedRawRanp, \
cal Tree=cal Tree, copy=1)
sl i cedFr anes specConvDi gi t 2Vol t sPer SecFr anes(sl i cedFranes, cal Tree=cal Tree)
sl i cedFr anes det ect Cal i brati onBl ock(sl i cedFranes)
sl i cedFr anes addUt c(sl i cedFranes, obs.auxiliary.timeCorrelation)
sl i cedFranes = specAddl nst ant Poi nti ng(slicedFranes, obs.auxiliary.pointing,)\
cal Tree = cal Tree, orbitEphem = obs. auxiliary. orbitEpheneris, \
hori zonsProduct = obs. auxiliary. hori zons)
if (isSolarSystenOhject(obs))
slicedFranes = correct RaDec4Sso (slicedFranes, tinmeOfset=0, \
or bi t Ephen¥obs. auxi | i ary. or bi t Epheneri s, horizonsProduct=obs. auxiliary. horizons, \
I'i near =0)
sl i cedFranes
sl i cedFranmes
sl i cedFranes

specExt endSt at us(sl i cedFranmes, cal Tree=cal Tr ee)
convert Chopper 2Angl e(sl i cedFranmes, cal Tree=cal Tr ee)
specAssi gnRaDec(sl i cedFranes, cal Tree=cal Tr ee)

These are the first pipeline tasks. For noneisinteraction required from the user.

» specFlagSaturationFrames: flag for saturation, creating the masks SATURATION and
RAWSATURATION.

The SATURATION mask: datapointswhich exceed acertain signal limit will havetheflag=1 (bad)
set in the relevant mask. The limit has been determined from in-flight tests on raw-ramps data and
isheld in acalibration file.

The RAWSATURATION mask: indicates where saturation has occurred in the most responsive
pixel of the central module (spaxel). Why? The Frames Level 0 data that you work on are not
actually the raw data, as the data underwent some processing before they were down-linked from
Herschel. For these data it is not possible to be 100% certain of saturation (although to be honest,
the task does do a very good job). So, for one pixel of the central spaxel (that with the strongest
response and where the astronomical source is most likely to be located) we do get the raw data.
specFlagSaturationFrames looks at these data, and if the signal is saturated, then for that time-point,
al the pixels of all the spaxels have their rawsaturation mask filled with a 1.

However, just because the most responsive pixel is saturated doesn't necessarily mean that all are,
sincethe other pixelsarelessresponsive and may not be sitting on the brightest part of the source. In
the pipeline scriptsthismask is "activated" by default, along with most of the other masks, and you
may want to check that thisis not flagging out data unnecessarily. This checking and deactivating
can be done at the Level 1—2 part of the pipeline.

37

The pipdine: the first and the last steps Build 15.0.3262

| Note

If you want to include RAWSATURATION datapoints, it is particularly important to
not activate it when activateMasks is called before and after the flatfielding.

Tip

How to inspect the data for a particular mask: the fastest way is to use the PACS Prod-
uct Viewer (PPV: Section 10.8), which plots your signals vs. time for each pixel of the
detector and for which masks can be over-plotted. Y ou can chose the RAWSATURA-
TION mask from the drop-down menu, and check whether any of these datalook to be
saturated, and if so, whether other pixels appear to be saturated at that same point in
time (at the same x-position). The sign of a saturated line is a flattening to the pesk.

O (g

However, since the PPV plots data along the time-line, it can be difficult to see spectral
details. You can also wait until the first cube of the pipeline has been created—the
PacsCubes, called slicedPacsCubes—and inspect those with the Spectrum Explorer
(see Section 10.5). The data masked as bad within all the masks can be plotted with
thistool.

The parameter copy=1 is necessary to decouple the slicedFrames produced by this task from the
dlicedFrames put into thetask, whichisthe sameslicedFramesinlevel O (both objectscalled "dliced-
Frames' are only linksto the actual datafile). If you do not do this, then the slicedFramesin level O
isalso changed by the task.

» specConvDigit2VoltsPer SecFrames: convert the unitsto V/s.

» detectCalibrationBlock: add to the Status table the location of the calibration block in the data
time-line (see Section 10.12 for information on the Status table).

» addUtc: convert from spacecraft timeto UTC. Adds "Utc" to the Status table.

» specAddlnstantPointing: add the pointing and position angle of the central detector pixel to the
Status table. Adds RaArray, DecArray and a number of other columnsto the Status table.

 correctRaDec4Sso: for Solar System Objects, moving the target to afixed position in the sky.

» specExtendStatus: update the Status table with chopper and grating position information, and
whether the datapoints are from on-source or off-source.

 convertChopper 2Angle: convert the chopper positions to sky positions.

» specAssignRaDec: calculate the pointing for every pixel (which is not just a set offset from the
central pixel, but depends on the chopper position seen by each pixel). This adds the datasets "ra"
and "dec" to the Frames dlices (see the PPE in PACS Products Explained for information on the
datasets of the Frames).

>>>>>> 6 Pipeline hel per tasks

if verbose: ppoint = slicedPl ot Pointing(slicedFranes)

A pipeline helper task that plots the full pointing track of PACS during your observation. For an
explanation of this task, see Section 10.2.

4.2.4. Flagging; adding the wavelengths

>>>>>> 7 Fl aggi ng and wavel engt hs

sl i cedFranes = waveCal c(slicedFranmes, cal Tree=cal Tree)
slicedFrames = specCorrect Herschel Vel oci ty(slicedFranes,
obs. auxiliary. orbi t Epheneri s, \
obs. auxiliary.pointing, obs.auxiliary.tinmeCorrelation, obs.auxiliary.horizons)
slicedFranes = findBl ocks(slicedFranes, cal Tree = cal Tree)

38

The pipdine: the first and the last steps Build 15.0.3262

4.2.5.

sl i cedFranes = specFl agBadPi xel sFranes(sl i cedFranes, cal Tree=cal Tree)

if verbose: slicedSummary(slicedFramnes)

More tasks that the user need not interact with. At the end you have masks for bad pixels and for
data taken while the chopper and grating are moving, and you can inspect these masks with the PPV :
Section 10.8.

» waveCalc: calculate the wavelengths, adding a "wave" array to the Frames dlices. It also adds the
mask OUTOFBAND that flags as 1 (bad) any data that fall outside of the filter bands: this may
occur if the observation was defined on a e.g. blue wavelength such that the red wavelength falls
out of itsfilter band. This mask will be activated when the Level 2 cubes are created.

» specCorrectHerschelVelocity: correct the wavel engths for Herschel's velocity, adding the correc-
tion to the Status. Velocities are in the LSR frame.

« findBlocks: figure out the organisation of the data blocks (per line/band observed, per raster posi-
tion, per nod....). Add this information to a BlockTable for each Frames and a MasterBlockTable
for the slicedFrames: see Section 10.12 for an explanation of BlockTables.

 specFlagBadPixelsFrames: flag for bad and noisy pixels. The masks created are BADPIXEL Sand
NOISYPIXELS and they contain the flag values of 1 for bad data (is flagged) and O for good data.

Tip

@ You can inspect masked data using the PACS Product Viewer (PPV: Section 10.8),
which plots your signals vs time for each pixel of the detector and for which masks
can be over-plotted.

Slicing, more flagging

>>>>>> 8 Slicing

sl i cedFranes, additional QutContexts =\
pacsSl i ceCont ext (sl i cedFranes, [sl i cedDncHead] , r enoveUndef i ned=Tr ue, \
removeMasked=Tr ue)
sl i cedDntHead = addi ti onal Qut Cont ext s[0]

if verbose: slicedSummary(slicedFranes)

sl i cedFranes = fl agChopMveFranmes(sli cedFranes, dntHead=sl i cedDntHead, \
cal Tree=cal Tree)

slicedFranes = fl agG at MoveFr ames(sl i cedFr anmes, dntHead=sl i cedDntHead, \
cal Tree=cal Tree)

For the Unchopped or the Split on-off pipelines:
On-Of pipeline
sl i cedFranes = specAddG ati ngCycl eSt at us(sl i cedFranes)

Thefinal tasks at thislevel of the pipeline. Again, no interaction on the part of the user is required.

» pacsSliceContext: dlices the data according to a defined astronomical—observational logic:
wavelength range (Lineld, Band), pointing (RasterLine|ColumnNum, NoddingPosition and IsOut-
OfField) and repetition (NodCycleNum). To read more about the dlicing rules, look up the task in
the URM. The parametersr enovedUndef i ned and r enoveMasked do acleaning up.

There are two outputs from the task: slicedFrames and additional OutContexts. The second output
parametersisthe"DMC header" which is extracted with the subsequent command, thisisused later
in the pipeline.

 flagGratM oveFrames, flagChopM oveFrames: flag for amoving chopper and grating. PACS data
was taken continuously, even while parts of the instrument were moving, but using such data is
undesirable. The masks created are GRATMOVE and UNCLEANCHOP and they contain the flag
values of 1 for bad data (is flagged) and O for good data.

39

The pipdine: the first and the last steps Build 15.0.3262

e specAddGratingCycleStatus: isatask youwill run only if you are using the pipeline on unchopped
data or the Split On-Off pipeline. It adds information to the Status table that will allow one to
distinguish on- from off-chop data: in the chopNod pipeline this information is added in a later
pipeline task. The URM entry for this task gives more information.

Thisisthe end of the Level 0to 0.5 part of the pipeline. Now you go to Chapter 5 if working
with chopNod observations, and Chapter 6 if working with unchopped or wavelength switching
observations. After that, you will return to this chapter, to the next section.

4.3. The final part of the pipeline: post-pro-
cessing

4.3.1.

There are a number of steps that can or must be performed when you get to the end of the pipeline:
Level 2 (chopNod, unchopped line) or Level 2.5 (unchopped range). These post-processing steps are
included in the pipeline scripts, but not all steps are appropriate for all pipelines. Here we explain al
of the possible post-pipeline tasks, and you can find out from the pipeline script itself whether atask
is appropriate for your observation.

The particular post-pipeline tasks provided are for: mapping observations (using specProject, specin-
terpolate, or drizzl€), single pointing observations, point sources, and slightly-extended sources. The
final cubes of the pipeline are called slicedFinal Cubes (chopNod and unchopped line pipeline scripts)
or dicedDiffCubes (unchopped range scripts, after the off-source has been subtracted from the on-
source) and most of these post-processing tasks start from these.

For more detail on these tasks we refer you to Chapter 8 for point and dlightly extended sources, and
Chapter 9 for extended sources and mapping observations. Here we show you only how to run the
tasks.

Extended sources

For all observations of extended sources, whatever type of mapping pattern (or indeed whether pointed
or mapping), the reader should be aware of the fact that the illumination of the PACS IFU was not
even, effectively one can say that there are gaps between the spaxels. The affects the accuracy of the
reconstruction of the flux levels of an observed source in any type of PACS cube. See Section 8.7
(point and small sources) and Section 9.5 (extended sources) for more information.

4.3.1.1. Extended sources: Nyquist or oversampled mapping ob-
servations

For Nyquist or spatially oversampled range scan and line scan observations, i.e. raster observations
with very small step sizes so that the PACS beam is fully sampled, the pipeline does not end with
the creation of the dlicedFinal Cubes. you can perform achoice of final steps to combine the separate
pointings of the raster into a single cube. At the same time you can change the spaxd size of your
new cube to asmaller value.

The spatial sampling of PACS observations important because the native spaxel size (9.4 arcsec) is
almost as large as the FWHM of the PACS beam, and so to fully sample the beam a mapping pattern
when observing must have been adopted. Thisis explained in the PACS Observer's Manual and the
AQT release notes, both to be found on the PACS documentation page hosted on the Herschel site:
currently at here. How to know whether your observation is spatially oversampled, Nyquist sampled,
or undersampled is explained in Section 3.3.

The mapping tasks that will combine the pointings of a Nyquist or oversampled observation into a
mosaic are specProject and drizzle.

e Thetask drizzle will work on line scans and very short range scans. To create drizzle cubes using
the "Telescope normalisation” method (the recommended method for chop-nod AOTYS), it is neces-
sary to use a drizzle-specific pipeline ("Telescope normalisation drizzle maps'), see the advice in

40

http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb?template=viewprint

The pipdine: the first and the last steps Build 15.0.3262

Section 3.4.2.4 to learn more. This pipeline script is explained in Section 5.3. For the "Calibration
source and RSRF" pipeline (for unchopped AOTs. and an alternative pipeline for chop-nod AOTS),
the drizzled cubes are created within that same script. The actual process of creating the drizzle
cubes, i.e. running the pipeline tasks, is the same in both pipeline scripts and is explained here.

The description of how drizzle works—the algorithms for doing the spectral and spatial regrid-
ding—can befound in Section 7.9, and thereit isalso explained why it is used for short wavelength
ranges only. Y ou can also consult its PACS URM entry.

e The task specProject works on all wavelength ranges (but for the shorter ranges drizzle is the
recommended task). SpecProject is offered in all the pipeline scripts. SpecProject does a "spectral
projection”: the spectrum of each output spaxel is a weighted combination of the spectra of the
input spaxels, and the weighting takes care of (i) the smaller sizes of the output spaxelsand (ii) any
overlaps in spaxels from different pointings. In doing so it creates a new, regular spatia grid that
coversthe field of view of the raster sequence, and combines al the input cubes into asingle one.
The combining is done along the spectral dimension, as well as the spatial. To learn more about
how it works you can consult its PACS URM entry and Section 7.10.

Running specProject

Thistask runswith asingle command, after which you can inspect the resultsin the Spectrum Explorer.
As with all other tasks of the pipeline, this task will work no matter how many cubes, of how many
spectral of spatia ranges, are contained within the input slicedFinal Cubes.

To run the task:

sl i cedProj ect edCubes = specProj ect (sl icedFi nal Cubes, out put Pi xel si ze=3. 0)

if verbose:
slice =0
oneProj ectedSlice = slicedProjectedCubes.refs[slice].product
openVari abl e(" oneProj ect edSl i ce", "Spectrum Explorer")

The spaxel size is set with the parameter out put Pi xel si ze (the default value is 3 arcsec). The
task works by projecting the input spaxel positions on to the output spaxel positions and averaging
together, per wavelength point, when more than one cube's spaxel falls on the same output spaxel
position. This task propagates the stddev dataset of the input PacsRebinnedCubes. The output of the
task isaListContext of Spectral S mpleCubes, one per wavelength range found in the input, each cube
being a mosaic of the input cubes.

To compare the results of specProject and drizzle, run drizzlefirst and useit as an input to specProject
so that you obtain adrizzled and a projected cube with the same WCS (the cubes can then be compared
spaxel-by-spaxel). Setting the appropriate parameter in the task specProject will do this.

sl i cedProj ect edCubes =
specProj ect (sl i cedFi nal Cubes, cubeW t hQut put Gri d=sl i cedDri zzl edCubes)

Running drizzle

Drizzle requires a set of tasks to run. It starts with the Level 1 slicedPacsCubes, rather than sliced-
PacsRebinnedCubes of Level 2. Thetask resamples the datain the PacsCubes spectrally and spatially
following a spectral and aspatial grid you giveit, these grid both having been created with prior tasks.

The drizzle code-block:

for the unchopped |ine scan pipeline script, begin wth:
slicedD ffCubes = specSubtract O f Posi ti on(sCubesOn, slicedRebi nnedCubesOfif,\
al gori t hn=" AVERAGE")

for other line scan scripts, continue with

over sanpl eWave 2

upsanpl eWave 4

3 is nentioned in the pipeline scripts, but 4 is used by the SPG and for creating
all other cubes

41

The pipdine: the first and the last steps Build 15.0.3262

waveG i d = wavel engt hGi d(sl i cedCubes, oversanpl e=over sanpl eVve, \
upsanpl e=upsanpl eWave, cal Tree = cal Tree)
over sanpl eSpace 3
upsanpl eSpace 2
pi xFrac 0.3 # for oversanpl ed mappi ng observations, 0.6 for the Nyqui st
spaceGid spati al &Gid(slicedCubes, wavel engthGid=waveGid, \
over sanpl e=over sanpl eSpace, \
upsanpl e=upsanpl eSpace, pi xfrac=pi xFrac, cal Tree=cal Tree)

slicedDrizzl edCubes = drizzl e(slicedCubes, wavel engthGid=waveGid, \
spati al Gi d=spaceGi d)[0]

i f saveQut put:
name = nanmeBasi s+"_slicedDri zzl edCubes”
saveSl i cedCopy(slicedDri zzl edCubes, nane, pool Locati on=out putDir)

1. ChopNod and unchopped scripts

» wavelengthGrid isatask also run earlier in the pipeline (Level 1to 2). It creates a set of wave-
length grids, one per wavelength range in the slicedCubes. The grid is based on the wavelength
coverage of the data, with a sampling that is set by upsanpl e and over sanpl e. These pa-
rameters are explained in the PACS URM entry for wavelengthGrid, and the effect of different
choices of parameters on the resulting spectrais explained in Section 7.2.

» gpatialGrid createsthe spatia grid to map on to, viathe spatial over sanpl e andupsanpl e
parameters (these carry the same meaning as those parameters in the wavel engthGrid task). The
overall size of the field-of-view is taken from the data themselves.

Thepi xFr ac parameter isexplained inthe PACSURM entry for spatial Grid and in Section 7.9.
The SPG scripts use avalue of 0.6 for oversampled rasters and 0.3 for Nyquist sampled rasters
(see Section 3.3 and Section 1.3).

» Thenyou run the drizzle task itself.
2. Unchopped script only
Thereis one precursor task to run before continuing with the tasks explained above

» specSubtractOffPosition subtract the off-source data from the on-source data (i.e. to remove
the telescope+sky background). Unlike its earlier use in the pipeline, where the input are the on-
and off-source rebinned cubes (called "slicedRebinnedCubesAll" in the pipeline script), herethe
on-source cubes of class PacsCube (called "'sCubesOn') and the rebinned off-source cubes (class
PacsRebinnedCube, called "dlicedRebinnedCubesOff") are used. Thisis necessary because the
subsequent input to drizzle (and hence output from specSubtractOff Position) must be of class
PacsCube.

Tip
@ If your off-source pointings are significantly less deep than the on-source pointings,
you may prefer to subtract asmoothed version of the off-source data. For this, recre-
ate those cubes but with a smaller value of over sanpl e in the wavelengthGrid
task, e.g.

oversanple = 1
upsanpl e =2
waveQG i d=wavel engt hGri d(sCubesCOf f, over sanpl e=over sanpl e,
upsanpl e=upsanpl e, \
cal Tree = cal Tree)
sl i cedRebi nnedCubesOf f = specWaveRebi n(sCubesOf f, waveG i d)

and then carry on with specSubtractOffPosition.

There are anumber of al gori t hns in specSubtractOff Position for the subtraction of the off-
source spectra: those closest in time to each on-source pointing, the average of al off-source
pointings, or atime-weighted interpolation. Thisisimportant for observationswith morethan one

42

The pipdine: the first and the last steps Build 15.0.3262

off-source pointing taken between a long on-source observation. The algorithms are explained
in their PACSURM entry, but see also advice given in Section 7.5.

3. Drizzle can also do adeglitching, usingitsdet ect Qut | i er andcl i pLevel parameters—see
its PACSURM entry to learn more. By default the sigma clipping is done.

As mentioned previoudly, the task is recommended only for short wavelength ranges, a single line
scan or arangeScan of less than afew microns. Thisiswhy the task is not included in the rangeScan
pipeline scripts.

4.3.1.2. Extended sources: spatially undersampled mapping ob-
servations

4.3.2.

4.3.3.

For tiling observations, with large steps between the pointings in the raster, the task speclnterpolate
is recommended for creating the mosaic. This task is explained in its PACS URM entry and aso in
Section 7.10. The task is flux conserving, and works by first creating a spatial grid via Delaunay
triangulation from the input grid(s), and then interpolating the fluxes from the old grid(s) to the new
one.

out put Pi xel size = 3.0
sl i cedl nt er pol at edCubes = specl nt er pol at e(sl i cedFi nal Cubes, \
out put Pi xel si ze=out put Pi xel si ze, conserveFl ux=Tr ue)

i f saveQutput:
name = naneBasi s+"_sl i cedl nt er pol at edCubes”
saveSl i cedCopy(slicedl nterpol at edCubes, nane, pool Locati on=outputDir)

The default spaxel size is 3.0 arcsec for this task in HIPE 14 (it was 4.7 arcsec in HIPE 13). You
can try other values: spaxels too small will create artificial radiating shapes in the resulting source
morphology (atypical effect of over-interpolating), and spaxels too large will result in rather small
fields-of -view (because specl nterpol ate does not extrapol ate beyond the edge of the original footprint,
and large spaxels may get "cut off").

Note that the resulting cube will be more of an approximation of the true source morphology than
spatially oversampled observations can give. Large raster step sizes between pointings means that the
PACSbeamisnot fully sampled. Since the observed flux isaconvolution of the beam with the source,
by missing parts of the beam you are a'so missing parts of the source. Hence the results should be
considered more indicative than real.

Pointed observations of extended sources

For single pointing observations of extended sources we offer the same advice as for spatially under-
sampled mapping observations (see above). The task speclnterpolate can be used on these datato cre-
ate acubewith aregular spatial grid, which is easier to visualise than the rebinned cubes are, although
the science measurements are better made on the rebinned cubes. An, although less recommended,
alternative to using speclnterpolate is to run specProject with very small (0.5 arcsec) spaxel sizes, in
this way creating a cube with a regular spatial grid but with spaxels small enough that the original
footprint (the 9.4 arcsec spaxels and their slightly irregular distribution) can be seen.

Point sources

For point sources it is necessary to work from the final PacsRebinnedCubes (the slicedFinal Cubes or
dlicedDiffCubes). To extract the spectrum of the point source you must run one of two tasks: "extract-
Central Spaxel"; or "extractSpaxel Spectrum” followed by "pointSourcel ossCorrection” (and preceed-
ed by "undoExtendedSourceCorrection"). The first uses the point source loss correction calibration
fileto correct the flux of the central spaxel for the point source losses, and can al so apply a secondary
correction for pointing jitter, this being based on the source data. Thistask also removes the extended
source correction factor which is applied to all PACS data by the pipeline. The second set of tasks
remove the extended source correction factor, extract the spectrum from any spaxel, and apply the

43

The pipdine: the first and the last steps Build 15.0.3262

basi c point source loss correction to it. These are to be used for point sources not located in the central
spaxel. It isimportant to note that a point source correction is necessary to produce a science-grade
result for point sources. Summing up the flux in the field of view is not sufficient.

Information about how these tasks work, and advice about when to apply these tasks and under what
conditions they will not return a scientifically-valid result, can be found in Section 8.5 (centred point
sources) and Section 8.4 (off-centred point sources).

4.3.3.1. Point source loss correction for sources located in the
central spaxel: extractCentralSpectrum

Thistask isfor point sources that are located in the central spaxel. There is a difference between line
and rangeScans since for the rangeScans one can apply a wavelength-dependent jitter correction to
the flux, for line scans a mean correction is used instead.

Apply the point source calibration and extraction for line scan AOTs
for slice in range(len(slicedFinal Cubes.refs)):
if verbose: print
cl,c9,c129 = extract Central Spectrun(slicedFi nal Cubes. get (slice), \
i sLi neScan=-1, cal Tree=cal Tree, verbose=verbose)
if saveQutput:
nane = naneBasis +
" _central Spaxel _Poi nt Sour ceCorrected_Correct ed3x3NO slice "
sinpl eFitsWiter(product=cl,file = outputDir + nane +
str(slice).zfill(2)+".fits")
name = naneBasis + "_central 9Spaxel s_Poi nt SourceCorrected_slice_"
sinpl eFi tsWiter(product=c9,file = outputDir + nane +
str(slice).zfill(2)+".fits")
nane = naneBasis +
" _central Spaxel _Poi nt Sour ceCorrected_Correct ed3x3YES_slice_ "
sinpl eFi tsWiter(product=c129,file = outputDir + name +
str(slice).zfill(2)+".fits")

Apply the point source calibration and extraction for rangeScan and SED AOTs

snmoot hi ng = ' wavel et
nLowFreq = 4

or

smoothing = "filter'
gaussi anFilterWdth = 50
medi anFil terWdth = 15

for slice in range(len(slicedFinal Cubes.refs)):
cl,c9,c129 = extract Central Spectrun(slicedFi nal Cubes. get (slice), \
snoot hi ng=snoot hi ng, wi dt h=gaussi anFi |t er Wdt h,
preFilterWdt h=nmedi anFi | t er Wdt h, \
nLowFr eq=nLowfr eq, cal Tree=cal Tree, verbose=verbose)
if saveQutput:
nane = naneBasis +
" _central Spaxel _Poi nt Sour ceCorrected_Correct ed3x3NO slice "
sinpl eFitsWiter(product=cl,file = outputDir + nane +
str(slice).zfill(2)+".fits")
name = naneBasis + "_central 9Spaxel s_Poi nt SourceCorrected_slice_"
sinpl eFi tsWiter(product=c9,file = outputDir + nane +
str(slice).zfill(2)+".fits")
nane = naneBasis +
" _central Spaxel _Poi nt Sour ceCorrected_Correct ed3x3YES_slice_ "
sinpl eFi tsWiter(product=c129,file = outputDir + name +
str(slice).zfill(2)+".fits")

ExtractCentral Spectrum. This task works on PacsRebinnedCubes, hence you are working on the
cubes in "slicedFinalCubes' or "dicedDiffCubes', not anything produced by specProject, specinter-
polate, or drizzle. This task first removes the extended source correction, then extracts the spectrum
from the cube, and applies one of 3 possible corrections, returning hence three spectra:

1. cl: Thecentra spaxel spectrum with the c1-to-total point-source correction applied; thisisfor cases
where the source spectrum is almost completely confined to the central spaxel, i.e. faint sources.

44

The pipdine: the first and the last steps Build 15.0.3262

Thisspectrum should never beused if you have processed the data through the" point source
background normalisation" pipeline script.

2. ¢9: The summed spectrum in the 3x3 central spaxel "box" with the c9-to-total point-source correc-
tion applied. This product should only be used if the source is bright enough to have noticeably
more signal in the 3x3 spaxel box than in the central one. It is more robust against slight pointing
offsets and jitter than is cl.

3. ¢129: A combination of the two: the flux level of c9 but the spectrum of c1. This is suitable for
bright sources if the SNR of c1 is better than that of c9 but there is till noticeable flux in c9. It
should never be used for unchopped mode observationsor if you have used the special RSRF
to calibrateline fluxeslongwar ds of 190um (e.g. Section 5.4). Thisis because the c129 spectrum
isscaled by the c9 flux level, and this scaling is based on the continuum level in ¢9, which cannot
be guaranteed to be correct for these two cases. (In addition, for these two cases you should only
trust the line fluxes, not also the continuum flux levels.)

4. For line and short rangeScans observations, we recommend a wavel ength-independent scaling,
i.e. snoot hi ng ='median’.

For long rangeScan observations you can apply awavel ength-dependent scaling, but try it without
first. For this case you will apply two filters to the correction "spectrum”, and you should play
with the filter types and their widths—wi dt h, pr eFi | t er W dt h and nLowFr eq—to find the
smoothest result that still reflects the global shape of the correction spectrum. Alternatively ask for
thewavel et filtering method instead of smoothing. Thefiltering/smoothing isdoneto the correction,
not to the actual extracted spectrum. Thisis asecond order correction: it will not improve the flux
accuracy any further, it will only (slightly) correct the spectral shape of the continuum.

More detail about how these three spectra are computed is given in Section 8.5, and the parameters
of the task are explained the PACS URM entry: they control the smoothing and whether the scaling
used to create ¢129 is per wavelength or one average value. The scaling curve/median is multiplied
into your spectrum.

This task will only produce a scientifically-correct result if the entire spectrum in the central spax-
el/central 3x3 isfrom the point source, and includes no contamination.

Thetask will return plots (if verbose=1) and some text.

1. The"Central9/Central" plot shows ablue and agreen curve overplotted on the datathey are created
from

e Theblueisthe ratio of the spectrum from the central spaxel ("s1") to the sum of the central 3x3
spaxel box ("s9"), compared to the ratio expected for a perfectly-pointed.In grey isthe spectrum
the blue curve is computed from. This comparison gives you an idea of how well pointed and/or
how point-like your source is. The mean value of this curve is printed to screen "(median)cor-
rection”, together with the relative error of the data the correction was calculated from (RMS/
sgrt(n), from the grey spectrum with n being the number of datapointsin the spectrum), and the
RMS in those data. If the printed correction is greater than 20-30%, this probably means
that your sour ceisslightly extended, too faint for a good cor rection calculation, or not well-
enough centred in the central spaxdl. If the RMS value are high, the correction is aso likely
to be uncertain.

e The green is the smoothed version of the thick black curve, which is the ratio of "s9" but now
point source corrected (i.e. "c9"), to the spectrum from the central spaxel ("s1").

2. A plot of all three spectra, c1, ¢9, and ¢c129.
Y ou can open the Spectrum Explorer (see the DAG chap. 6) on your final spectra, and you can also

savethemto disk asaFITSfile (right-click on the product in the Variables panel to accessthat option,
or use the simpleFitsWriter.

45

../../dag/html/Dag.Ch.CubeSpectralAnalysis.SEII.html

The pipdine: the first and the last steps Build 15.0.3262

4.3.3.2. Point source loss correction for sources not located in
the central spaxel

4.3.4.

If your sourceisnot located in the central spaxel then you can usean alternativetask to extract the point
source spectrum. Thetask can befound in the Scrips menu of HIPE (PACSuseful scripts#Spectroscopy
point sourceloss correction) and it isdescribed there, where you can test it out on apublic observation.
The two important tasks of the script are:

» undoExtendedSour ceCorrection: thefirst step isto remove the "extended source correction™ (this
is done automatically in extractCentral Spectrum, but not in extractSpaxel Spectrum).

 extractSpaxelSpectrum: a simple task that extracts the spectrum from any spaxel and returns a
spectrum in the SmpleSpectrum format.

» pointSourcel ossCorrection: this task takes the extracted spectrum and applies the point source
correction. This correction is based on a PSF model (including the wings), and has been verified at
the key wavelengths (see its PACS URM entry). This correction is contained in the calibration tree
(pointSourcel o0ss), and is the same correction as used in extractCentral Spectrum for "c1".

Y ou can open the Spectrum Explorer (see the DAG chap. 6) on the spectrum, and you can also save
it to disk asa FITSfile: right-click on the product in the Variables panel to access that option, or use
the simpleFitsWriter.

Note that the point-source correction factor of the task pointSourcel ossCorrection is based on the
beam of the central spaxel. However, it is known that the beams of other spaxels are not exactly the
same. Hence the correction will never be as good as that applied to centrally-located point sources,
although it is better than applying no correction at al.

Two alternatives exist, both of which require using HIPE.

» Usethe "Forward modelling tool", which will take a synthesised rebinned cube with a point-source
(located in whichever spaxel) as the input model (an input spectrum is also required) and produce
an output result from which a correction to the SPG product can be estimated. Section 8.7 for more
information on this tool.

* For offsetsof lessthan 10", you can use the POC pipeline script: Section 3.4.2.5. This pipeline script
can, in fact, be used even for centred point sources. since it performs a more direct correction for
pointing offsets, it can produce a cleaner spectrum than the SPG does.

Slightly extended sources

For sources that are slightly extended—Ilarger than a point but fitting within a diameter of about 15
arcsec and within the central 3x3 spaxels of the FoV of asingle pointing—it is recommended to use a
HIPE task to extract the correct integrated spectrum. First a point source spectrum must be extracted.
The recommendation is to use extractCentral Spectrum: using the central spaxel result ("c1") but only
for thefaint sources, or the more recommended 3x3 ("c129" or "c9") for all other sourcesand especially
for those not centred in the central spaxel (but still within the central 3x3). If the source do not cross
into the central spaxel at all, the point sourcetasksfor non-central sourcescan be used instead: thisisall
explained in more detail in Section 8.6. Then, apoint-to-extended correction isapplied, taking asinput
asurface brightness distribution model of the source. The task—specExtended T oPointCorr ection—
essentially modifies the point source correction for the specified source morphology. It usesan ellipse
asits default model, but the user can define other morphologies. As the point source extraction tasks
both take out the extended source correction that is applied to al product by the pipeline, the fluxes
will be correctly calibrated (assuming your model is correct).

46

../../dag/html/Dag.Ch.CubeSpectralAnalysis.SEII.html

Build 15.0.3262

Chapter 5. ChopNod pipelines

5.1. Introduction

5.1.1. The pipeline menu

The pipeline menuswereintroduced in Chapter 4. After having selected the pipeline script you want to
run, and carried out the Level 0 to 0.5 parts of the pipeline (Chapter 4) you can now read this chapter:
the Level 0.5 to Level 2 parts of the pipeline. The post-pipeline processing (the very end of Level 2)
isthen explained in Section 4.3.

The differences between the pipeline scriptsis not large, and we take you though all together. Y our
prime source of material for the pipeline should be the scripts (from the HI PE build) themselves, since
these may change slightly from what is presented here.

More information on testing out some of the pipeline tasksis given in Chapter 7 and information on
the post-pipeline tasks is given in Chapter 8 and Chapter 9. How to plot and inspect your pipeline
products can be found in Chapter 10.

5.2. The 0.5to 2 scripts for all pipelines

5.2.1.

The Level 0.5 to Level 2 part of the pipeline is almost the same for all of the chopNod scripts. Here
we take you through the scripts, indicating where code is for one or another pipeline script only. You
should in any case have the pipeline script already open in HIPE before carrying on.

If you want to begin from Level 0.5, i.e. not run that part of the pipeline yourself (especialy as this
isno longer necessary), the first command is

sl i cedFr anes
sl i cedFr anes

obs.l evel 0_5.blue.fitted. product # for the blue canera
obs.level 0_5.red.fitted. product # for the red canera

and it is still necessary to set up the general pipeline parameters. verbose, saveOutput, cal Tree and if
you do want to saveOutput, then also nameBasis (see Chapter 4).

Masking for glitches; convert the capacitance

>>>>>> 1 Masking for glitches; convert the capacitance

sl i cedFr anes
sl i cedFr anes
sl i cedFr anes
sl i cedFr anes

activat eMasks(slicedFranmes, Stringld([" "]), exclusive = True)
specFl agd@ i t chFranmesQrest (sl i cedFranes, copy=1) # for

activat eMasks(slicedFranes, slicedFranes. get(0).get MaskTypes())
convert Si gnal 2St andar dCap(sl i cedFranes, cal Tree=cal Tree)

 activateM asks: thistask activates (or deactivates) the indicated masks, so that the following task(s)
can (or not) take them into account. The parameter excl usi ve is say what to do with the not-
named masks. The first call to this task activates no masks, i.e. all are deactivated, and the second
activates all masks that are present in the slicedFrames. Consult the URM entry of activateMasks
to learn more.

» specFlagGlitchFramesQTest: flag the data for glitches (e.g. cosmic rays) using the Q statistical
test, creating amask called GLITCH. The deglitching task works on the time-line, and it identifies
and flags out the bad data (1=is bad, O=is not bad), it does not change them. The GLITCH mask
is automatically activated when it is created. There are parameters of this task that you could play
with (see its URM entry), but note that these have been much tested and the default settings are

47

ChopNod pipelines Build 15.0.3262

good for practically all cases. Thereisin any case a later outlier detection task, which will clean
up any left-over glitches.

The parameter copy=1 is necessary to decouple the slicedFrames produced by this task from the
dlicedFrames put into the task, since otherwise the input is changed along with the output.

convertSignal2Standar dCap: converts the signal to a value that would be if the observation had
been done at the lowest detector capacitance setting, if that were not the case. This is necessary
because the calibrations are for data taken at the lowest capacitance.

5.2.2. Compute the dark and the response: "Calibra-
tion source" scripts only

5.2.3.

#

>>>>>> 2 Conpute the dark and response

cal Bl ock = sel ectSlices(slicedFranes, scical ="cal").get(0)
csResponseAndDark = specDi ffCs(cal Bl ock, cal Tree = cal Tree)

selectSlices: to select the calibration dice out from slicedFrames. See selectSlices in the URM to
learn more.

specDiffCs: calculates the response and dark current. Briefly, specDiffCs uses a combination of
standard star observations (stars, asteroids, Neptune and Uranus) contained in the caibration file
ObservedResponse, and the signal from the calibration block observed during the observation com-
pared to the calibration block absolute fluxes contained in the calibration file cal SourceFlux. From
these data the response of the instrument and the dark current during the observation is cal culated,
and this is placed in the product "csResponseAndDark". This dark current is not used since it is
subtracted in the subsequent task specDiffChop.

Compute the differential signal

H* H H

#

#

>>>>>> 3 For Calibration source pipelines: subtract the off-chop
>S>>>>> fromthe on-chop data,
>>>>>> For Tel escope normalisation pipelines: conpute their ratio
For the "Calibration source" scripts:
sl i cedFranes = specDi ff Chop(slicedFrames, scical = "sci", keepall = False, \
nor nal i ze=Fal se)
For the "Tel escope nornmalisation" scripts:
sl i cedFranes = specDi ff Chop(slicedFrames, scical = "sci", keepall = False, \

nor el i ze=Tr ue)

if verbose:

sl i cedSummar y(sl i cedFr anes)
pbasi c = pl ot Si gnal Basi c(slicedFranmes, slice=0, titleText="plotSignal Basic")

specDiffChop for thescriptsusing the Calibration sour ce method: computesthe pairwise differ-
ence, A-B, being (on-source chops) - (off-source chops), to remove the telescopetsky background
and the dark current. Masks are propagated—the bad data are still subtracted but the result isflagged
as bad. This procedure will change the number of readouts in each Frames slice and it will remove
the calibration slice from the slicedFrames input. See the URM entry to learn more.

specDiffChop for the Telescope normalisation scripts: computes the pairwise difference-ratio,
2*(A-B)/(A+B), because nor mal i ze has been set to True. After this, the flux can be considered
to bein units of "telescope background”. The mask INVALID isadded, where data of value 0 in the
denominator (i.e. on+off=0.0) are flagged as bad, so they do not later cause divide-by-0 problems.

slicedSummary and plotSignalBasic: see Section 10.2 for an explanation of these tasks. sliced-
Summary prints a summary of the slices held in slicedFrames, and plotSignalBasic is a basic plot
of the signal of the central pixel in the central module of the instrument. To plot a different pixel
or module, specify the pixel and module to plot.

48

ChopNod pipelines Build 15.0.3262

Tip
@ The PACS spectrometer detector array has a size of 18,25 (pixels,modules), with sci-
ence data being contained in pixels 1 to and including 16 only, for the first dimension.

After running specDiff Chop you can plot the signal with plotSignalBasic. To compare the before and
after result, you can do any of the following:

1. Run plotSignalBasic on the slicedFrames before running specDiffChop and then again on the
dicedFrames after the task: but note that the first slice in the slicedFrames before running this task
has now been removed, so slice 0 from before is slice 1 from after.

2. Use PlotXY to plot these data together on the same plot; information to do this is provided in
Section 10.4.2.

3. Run the helper script Split On-Off (Section 5.5). That scripts runs the pipeline to this point, and
then rather than subtracting the of f- from the on-chop data, it separates the two and produces a cube
for each at the end of the pipeline: you can then compare the sourcet+telescope background+dark
+sky cubes to the tel escope background+dark+sky cubes. Y ou will then need to run one of the full
pipeline scripts to reduce your data.

5.2.4. Absolute flux calibration: "Calibration source"
scripts only

>>>>>> 4 Absolute flux calibration

slicedFrames = rsrfCal (slicedFranes, cal Tree=cal Tree)
sl i cedFranes = specRespCal (slicedFranes, csResponseAndDark = csResponseAndDar k,
cal Tree=cal Tree)

» rsrfCal: apply therelative spectral response function. The RSRF is taken from the calibration tree.
See the URM entry for this task to learn more.

For spectral lines at wavelengths longer than 190um, see Section 5.4. For these cases you need to
use a particular version of the RSRF for band R1. Note that only the Calibration source pipeline
scripts will calibrate these ranges correctly.

» specRespCal: apply the absolute response correction, using the response that was calculated from
the calibration block. The flux unit is now Jy.

Y ou can save to disk before the next tasks are run:

if saveQut put:
name=naneBasi s+"_sl i cedFr anmes_B4FF"

try:

saveSl i cedCopy(sl i cedFranes, nanme, pool Locati on=out put Dir)
except:

print "Exception raised: ",sys.exc_info()
print "You may have to renove: ", outputDir+'/'+nane

5.2.5. Pointing offset correction: "Pointing offset cor-
rection” scripts only

The calculation of the pointing correction for centred, bright point sources, is done here. It isamul-
ti-step procedure, and we recommend you read the instructions before doing any processing. We also
recommend that you if experiment with the parameters of this task, use "saveSlicedCopy" to copy
"dicedFrames’ to disk before beginning to experiment, so you aways have a "clean” copy to start
again from (using readSliced).

49

ChopNod pipelines Build 15.0.3262

The pointing offset tasks are explained in more detail in Section 7.12. Here we explain how to use
the tasks in the scripts.

>>>>>> 4 Pointing offset correction

sl i cedFranes, background = specRespCal ToTel escope(slicedFranes, obs.auxiliary.hk, \
cal Tree = cal Tree, reduceNoi se = 1)

if verbose:
pBack = Pl ot XY(background. refs[0]. product.wavel engt hs, \
background. refs[0] . product. fluxJy, xtitle="Wavelength [μni", \
ytitle="Flux [Jy]", titleText="Tel escope Background")
for slice in range(1,Ien(background.refs)):
pBack. addLayer (Layer XY(backgr ound. ref s[sl i ce] . product . wavel engt hs, \
background. refs[slice].product.fluxJy))

slicedFranes = activat eMasks(slicedFrames, \
Stringld([" SATURATI ON', " RAWBATURATI ON', " NO SYPI XELS", " BADPI XELS", " UNCLEANCHOP" , \
"GRATMOVE", "GLI TCH']), excl usive = True)

usePoi nti ngProduct = 1

spaxel s = Int1d([6,7,8,11,12,13,16,17,18])
rules = [SlicingRule("ScanDir", 1)]
sl i cedFranes = pacsSliceContext(slicedFranes, slicingRules = rules, \
removeUndef i ned=1) [0]
if verbose: slicedSummary(slicedFranes)
if saveQutput: saveSlicedCopy(slicedFranmes, nanmeBasis+"_slicedFranmes_prePCC', \
pool Locat i on=out put Di r)

specRespCal ToT elescope: this task computes the telescope background flux from the off-source
datain the observation, and normalises the on-source data by this. It takes the tel escope background
that has been created from numerous calibration observations, scales it by the temperature during
your observation (taken from the housekeeping, "hk", in the ObservationContext), and then uses
that to performs the flux unit conversion, from "telescope backgrounds' to Jy. The task uses the
"offRatio" calibration product. The stddev dataset is propagated by this task. See the URM entry
for thistask to learn more about how it works.

A plot showing the background spectrum is created. The Masks are then activated, in preparation
for the next task, with activateM asks.

Masks are activated. As discussed in Section 4.2.3 you may want to not include the RAWSATU-
RATION mask in thiscall.

There are two choices for computing the pointing offset correct, and which you use is determined
by the value of usePointingProduct.

1. usePointingProduct = 1 (the default): the POC has two components, and this option requests that
both are used: the absolute offset and the pointing jitter, as computed from the pointing products
in the observation.

2. usePointingProduct = 0: compute only the first component.

Some set-up: isolate the central 3x3 spaxel box where the source must be located (otherwise this
script will not work). Then the dataare sliced, to reduce the memory-reguirements of the subsequent
tasks. Next you are offered the choice to save the product before any corrections are applied.

>>>>>> 4 Pointing offset correction

over sanpl eBeam = 11 # for line scan, 5 for range scan

smoot hFactorl = 4 # for |line scan, 10 for range scan

chi Sgr = specDet er mi neChi Squar e(sl i cedFranes, cal Tree = cal Tree, \
spaxel s = spaxel s, oversanple = oversanpl eBeam snoothFactor = snoot hFactorl, \
per Nod = usePoi nti ngProduct)

if verbose:

50

ChopNod pipelines Build 15.0.3262

d = Display(chiSqgr.refs[0].product["chi_square"].data[:,:,0])
d.setCol ortabl e("Real ", "Log", "logarithmc")

poi nti ngOf f set = specDet er mi nePoi nti ngOf f set (sl i cedFrames, chi Sqr, \
spaxel s=spaxel s, chi Threshold = 1.2, smoothWdth = 0, sigmadip = 2.5, \
sear chMax=1, useMedi anPoi nti ngl nLeak=1)

i f usePoi ntingProduct:
snmoot hFactor2 = 3
poi nti ngOf f set = specDet er m nePreCal cul at edPoi nti ng(slicedFranes,\
poi nt O f set =poi nti ngxf f set, over sanpl e = over sanpl eBeam
snoot hFact or =snoot hFact or 2)

i f usePoi ntingProduct:
poi ntingOf f set =
specDet er mi nePoi nti ngCf f set FronPr eCal cul at edPoi nti ng(sli cedFrames, \
poi nti ngOf f set, cal Tree=cal Tree, spaxel s=spaxel s)

if verbose: pjitter = plotPointingXfset(pointingCfset, cal Tree=cal Tree)

» specDetermineChiSquar e: the first step in the calculation of the POC: comparing the source flux
distribution to that of the PACS beam, producing an array of Chi-squared values as outpuit.

See the URM entry for this task to learn more, for this and all the tasks.

» gpecDeter minePointingOffset: uses the chiSgr to determine the pointing offsets that caused the
measured flux offsets. The two parameters you can play with are the threshold of the chi Sgr to work
with (chi Thr eshol d), and the width of the median box in which to smooth the signal along the
timeline according to the bin sizes of the chiSquare product (srmoot hW dt h).

» specDeterminePreCalculatedPointing: is executed if usePointingProduct is 1. The "gyro-propa
gated" pointing products are used to compute jitter pointing-offset values. The previous two steps
produce an absolute POC, and this step the jitter POC.

 specDeter minePointingOffsetFromPreCalculatedPointing: is executed if usePointingProduct is
1. It again cal culatesthe flux corrections arising from the pointing offsets determined in the previous
steps, and adds the flux correction factors to the pointingOffset product.

 plotPointingOffset: plots the pointing offsets (of the measured centre of the point source with
respect to the centre of the central spaxel) computed for your observation.

>>>>>> 4 Pointing offset correction

sl i cedFranes = specAppl yPoi ntingCorrection(slicedFranmes, pointingOfset, \
spaxel s = spaxel s)

if cal Tree.version < 61 or cal Tree.version > 64:
sl i cedFranes, tel BackCor = specCorrect Tel escopeBackground(sli cedFranes, \
cal Tree = cal Tree)

sl i cedFranes = pacsSliceContext (slicedFranes)[O0]
point, chi = reSlicePointingProducts(slicedFranmes, pointingOfset)
del (chi Sgr, chi)

if verbose: slicedSummary(slicedFranes)

» specApplyPointingCorrection: applies the flux correction computed from the pointing offset cor-
rections. This correction is applied only to the central 9 spaxels, as the outer spaxels are no longer
useful.

» specCorrectTelescopeBackground: applies atime- and wavelength-dependent flux correction to
the telescope background, based on calibrations determined by the PACS team. This changes the
signal in the slicedFrames by afew percent.

 Finally, the data are re-sliced back to what they were before this set of taskswas run, in preparation
for the rest of the pipeline.

51

ChopNod pipelines Build 15.0.3262

5.2.6. Spectral flatfielding: all line+short range scan
pipeline scripts
For long range scan (#about 5 microns) and SED pipelines, go to the next section.

Spectral linesexisting on top of medium or high-flux continuashould benefit from refining the spectral
flat fielding, and any other type of spectrashould also be at least dlightly improved. It isrecommended
to compare spectra obtained with and without spectral flat fielding, and to also check on the results
of the flatfielding as you do it. This particularly so for spectrawith weak continua.

Before doing the flatfielding, you can chose to save the slicedFrames to pool. Then the data are con-
verted to the first of the cubes produced in the pipeline.

if saveQutput:
name=naneBasi s+"_sl i cedFr anes_B4FF"

try:
saveSl i cedCopy(sl i cedFranes, nanme, pool Locati on=out put Dir)
except:
print "Exception raised: ",sys.exc_info()
print "You may have to renove the directory: ", outputDir+'/'+name

sl i cedCubes = specFranes2PacsCube(sl i cedFranes)
if verbose: slicedSummary(slicedCubes)

» specFrames2PacsCube: turn the individual Framesin the slicedFrames into PacsCubes held in a
SicedPacsCubes product. Thisreally isonly arearrangement of the data. These cubes have aspatial
arrangement of 5x5 spaxels (created from the 25 modules), and aong the wavelength dimension
are all the spectra from the 16 pixels of each module, all packed together one after the other.

The flatfielding is a multi-step process for these short wavelength range data. Spectral flatfielding is
to correct for the differencesin the response of the 16 pixels of each of the 25 modul es/spaxels, with
respect to their 25 mean values. This should improve the SNR in the continuum of the subsequently
combined spectrum in each spaxel (combining is the next stage in the pipeline), and will correct for a
"spiking" effect in the final spectrathat can result if one scan in apixel is discrepant. The flatfielding
isperformed in afew steps: (i) outliers are masked out, (ii) spectral linesareidentified (so they can be
ignored), (iii) the mean continuum level of each pixel isthen determined, and each isnormalised to the
overall mean of the spaxel they belong to, and (iv) then masks and intermediate results are cleaned up.

>>>>>> 5 Spectral Flat Fielding

1. Flag outliers and rebin

upsanple = 4

3 is nentioned in the pipeline scripts, but 4 is used in the SPG and el sewhere

waveG i d=wavel engt hGi d(sl i cedCubes, oversanpl e=2, upsanpl e=upsanpl e

cal Tree=cal Tree)

sl i cedCubes = activateMasks(slicedCubes, Stringld(["GLI TCH', " UNCLEANCHOP", \
"NO SYPI XELS", " RAWSATURATI ON', " SATURATI ON', " GRATMOVE", "BADPI XELS"]), \
exclusive = True)

sl i cedCubes = specFl agQutliers(slicedCubes, waveGid, nSigma=5, nlter=1)

sl i cedCubes = activateMasks(slicedCubes, Stringld(["GLI TCH', " UNCLEANCHOP", \
"NO SYPI XELS", " RAWSATURATI ON', " SATURATI ON', " GRATMOVE", " QUTLI ERS", \
"BADPI XELS"]), exclusive = True)

sl i cedRebi nnedCubes = specWaveRebi n(slicedCubes, waveGi d)

2. Mask the spectral lines

w dt hDetect = 2.5 # default val ue
t hreshol d = 10. # default value
wi dt hMask = 2.5 # default value
i neLi st =[]

sl i cedCubesMask = slicedMaskLi nes(sli cedCubes, sl i cedRebi nnedCubes, \
l'ineList=[],w dt hDet ect =wi dt hDet ect, wi dt hMask=wi dt hMask, t hreshol d=t hreshol d, \
copy=1, verbose=verbose, maskType="INLI NE', cal Tree=cal Tr ee)

3. Actual spectral flatfielding
sl opel nCont i nuum = 1
sl i cedCubes = specFl at Fi el dLi ne(sl i cedCubesMask, scal i ng=1, copy=1, \

52

ChopNod pipelines Build 15.0.3262

#
#
S
S

maxr ange=[55., 230.], sl opel nConti nuun¥sl opel nConti nuum nmaxScal i ng=2., \
maskType="QOUTLI ERS_FF", offset=0, cal Tree=cal Tree, verbose=verbose) # see text for
maxRange advi ce

4. Rename mask OUTLI ERS to OUTLI ERS _B4FF (specFl agQutliers will refuse
to overwite OUTLI ERS) & deactivate mask | NLI NE
I i cedCubes. renameMask(" OQUTLI ERS", " OUTLI ERS_B4FF")
i cedCubes = deacti vat eMasks(slicedCubes, Stringld(["INLINE", "OUTLI ERS_B4FF"]))

if verbose: maskSunmary(slicedCubes, slice=0)

#
d

5. Renove internediate results
el waveGid, slicedRebi nnedCubes, slicedCubesMask

Masks are activated. As discussed in Section 4.2.3 you may want to not include the RAWSATU-
RATION mask in thiscall.

(1) Flag outliersand rebin. This: (A) masks outliers so they are not included when the flatfielding
task calculates its correction, and then (B) automatically identifies spectral lines so they are not
included when the flatfielding is computed. For theseit is necessary to run afew tasksthat you will
also later encounter in the pipeline (and they will be more fully explained at this later point).

(A) wavelengthGrid creates a wavelength grid that is common to all spaxels. specFlagOutliers
runs with that wavelength grid, identifying outliers within the new wavelength grid bins, creating
amask called OUTLIERS.

(B) specWaveRebin spectrally re-grids the PacsCubes with the wavelength grid, to make PacsRe-
binnedCubes, and where the task activateM asks ensures that the identified bad data are not includ-
ed. Asdiscussed in Section 4.2.3 you may want to not includethe RAWSATURATION mask inthis
call (although at this point it does not matter). The rebinned cubes created by this task are not used
for anything except line identification by the subsequent task slicedMaskLines; they are deleted at
the end of theflatfielding process. Y ou can aso create alist of spectral linesfor slicedMaskLinesto
use, mainly useful if the automatic identification does not find al the lines, or the absorption lines,
in the spectra. In this case you do not need to do the first step (#1 in the script snippet).

(2) Mask the spectral lineswith slicedM askL ines, adding them to the new mask INLINE. Seeits
URM entry (whichis called "maskLines") for afull parameter list, but briefly:

« You can either specify alinelist (alist of central wavelengths) or opt for an automatic detection
of aspectral lines. If you have multiple, blended or absorption lines you want to flag out for the
continuum fitting part of the flatfielding, you should specify their wavelengthsin a linelist.

* If you specify alinelist then do not include "slicedRebinnedCubes" in the call to thetask, instead
fill in the parameter | i neLi st . (If you specify alinelist and ask for automatic identification,
theline list will take precedent.) Thelinelist is specified with the parameter | i neLi st andis
aPyList of wavelengths: eg. | i nel i st =[52.4, 78.9, 124.4]

e The automatic line detection is done on the PacsRebinnedCubes created previously. The task
looks in the central spaxel and identifies emission lines as local maxima in the rebinned cube
(flux>calculated_local_rms*t hr eshol d). Thiswavelength region isthen excluded, for al pix-
els, in the subsequent continuum work. wi dt hDet ect sets the width of the box within which
the"local maxima" are checked for: thewidthisamultiplewi dt hDet ect of the FWHM (where
the FWHM s taken from a calibration file). If you have blended or wide lines but still use the
auto-identification, you may want to increase the width factors.

« Note: slicedMaskLines will not work if the parameter wi dt hDet ect isset too small.

The line centres that are found, or given, are then extended such that the masked-out region width
is defined by agiven multiplewi dt hivask, of the FWHM around the line-peak.

Set verbose=1 for plots showing the position of the lines automatically identified. A dot will appear
above the lines (the plot taken from the central spaxel, for each dice) and the line wavelength is
printed to the Console.

53

ChopNod pipelines Build 15.0.3262

 (3) specFlatFieldL ine does the flatfielding.

The working of this task and its parametersis explained in Section 7.4. It first creates a reference
spectrum from the data of the entire spaxel, for each spaxel, and then compares the spectrum of
different populations to the reference, for each spaxel. Offsets are removed by correcting the pop-
ulation-spectra by the ratio to the reference spectrum. The mean spectrum then created will have
abetter SNR than the mean from before.

If ver bose=1, this task will produce a plot showing, for the central spaxel of each dlice, the
before and after spectrum taken from the PacsCubes (plotted as dots) and a rebinned version of
each (plotted as aline and much easier to see).

The sl opel nCont i nuumel isfor spectrawith lines on a continuum with some slope, it effec-
tively "weights" the ratios taken by the task to account for the slope. While this should allow for
a better result for each pixel, note that if the slope is slightly different from pixel to pixel then the
flatfielding can become slightly pixel-dependent.

maxScal i ng setsalimit to the scaling factors that the task calculates: limiting the scaling factor
protects against abnormally large scaling factors that can result when working with spectra with
flux levelscloseto 0. The mask called OUTLIERS_FF marksthe datapointsthat are outliers before
the flatfielding is applied: it is an information mask and is not activated later in the pipeline.

The parameter maxRange is used to mask out spectral ranges that fall in the light-leak regions.
If using a " Telescope normalisation™ pipeline script it is necessary to exclude the region 55 to 190
microns, because outside of these regions the flux calibration is, and always will be, invalid. If us-
ing a"Calibration source" pipeline script, the spectral range redwards of 190 micronsis, in SPG/
HIPE 14.2 and 15, correctly calibrated (when using the latest calibration tree, with version 5 of file
RsrfR1), however you have to be careful of your analysis: this is explained in Section 5.4. In the
pipeline scripts the maxRange blue limit is 50 microns, but in fact the value of 55 microns should
be used: due to a combination of light leak and band edge, the flux calibration is very uncertain
between 50 and 55 microns. For more information on the band edges and light leak, see herschel.e-
sac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb?templ ate=viewprint).

The parameter maxRange can also be used to focus the flatfielding effort on a particular range
(e.g. asingleline) in your data. The flatfielding will be done only in that range: no out of range data
is cut out, so be aware that the "out" regions will probably ook odd.

* (4) and (5) are cleaning up: renaming the masks and removing redundant necessary products, and
deactivating the masks that are not wanted later in the pipeline.

Y ou could save slicedCubes before running the flatfiel ding task, to compare the before and after (using
the examplesin Section 10.4.2).

Tip
@ It can be helpful to plot the data before and then after the flatfielding, to see the effect
that it has had on your data, using the task plotPixel. See Section 10.2 to learn more about
this task.

Y ou can also open any one of the dicesin slicedCubesin the Spectrum Explorer, which
isatool for inspecting spectra from any number of Spectrum productsin HIPE. Y ou can
inspect masked data and different grating scansin the SE. For ageneral description of the
SE, see DAG chap. 6, but to know how to use in on the PacsCubes, see Section 10.5.

5.2.7. Spectral flatfielding: all long range scan and
SED pipeline scripts

Spectral linesexisting on top of medium or high-flux continuashould benefit from refining the spectral
flat fielding, and any other type of spectrashould also be at least dightly improved. It isrecommended
to compar e spectra obtained with and without spectral flat fielding, and to also check on the results

http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb?template=viewprint
http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb?template=viewprint
../../dag/html/Dag.Ch.CubeSpectralAnalysis.SEII.html

ChopNod pipelines Build 15.0.3262

of the flatfielding as you do it. This particularly so for spectra with weak continua. The range scan
flatfielding tasks should be used on all ranges longer than about 5 microns. For shorter ranges, the
data should be reduced with the line scan pipelines.

>>>>>> 5 Spectral Flat Fielding for range scans

useSpl i nesvbdel = True
excl udeLeaks = True
sl i cedFranes = specFl at Fi el dRange(sl i cedFranmes, pol yOrder=3, verbose=verbose, \

excl udeLeaks=excl udeLeaks, sel ect edRange=None, useSpli nesMbdel =useSpl i neshbde)

sl i cedCubes = specFranes2PacsCube(sli cedFranes)

» specFlatFieldRange. The flat fielding task that normalises the response of all pixels within each
module to the same reference level.

The working of this task is explained in Section 7.4. First a reference spectrum—the mean of the
entire spaxel (excluding bad data)—is created. The spectrafrom each spaxel are then split into pop-
ulations and the spectrafrom each popul ation are compared to the reference spectrum, so computing
a scaling. Once the scaling is applied, this brings spectra with excessively high values down and
those with excessively low values up, while maintaining the mean. The mean spectrum then created
will have a better SNR than the mean from before.

SpecFlatFieldRangefitseither apolynomial function over the available wavelength range asit com-
putes the scaling factors, or—new to HIPE 14—a spline. The spline is recommended for longer
ranges and where the spectra are "bendy". For straight and shorter spectra, the splines and polyno-
mial give similar results. The shorter the wavelength range, the lower you should set the order of
the polynomial, otherwise you can introduce artificial S-curves in the final spectra. The spline is
the recommended function to use in HIPE 14.

SpecFlatFieldRange will work on any range, but, especially in case of SEDs, it will deliver even
better results if you exclude the leak regions from your data beforehand (excl udeLeaks=True).
Thisis particularly true if using the polynomial function, which cannot handle large and fast vari-
ations of the continuum flux. The spline function works better, but it still sometimes struggles in
the red light-leak region.

Before SPG/HIPE 14.2 (and 15) it was also the case that thered light |eak spectral regions (redwards
of 190 microns) were badly calibrated, but the RSRF has been updated (version 5 of the calibration
file RsrfR1) and thisis no longer the case. The "Telescope normalisation™ pipeline does not use the
RSRF, and the leak regions will always be incorrectly calibrated. To recover spectra redwards of
190 microns, it is necessary to use the "Calibration source" pipeline script, but you still need to be
careful about your analysis. More adviceisgiven in Section 5.4. See the Observer's Manual to learn
about these leak regions (you can find it here: herschel .esac.esa.int/twiki/bin/view/Public/PacsCal -
ibrationWeb?template=viewprint).

The parameter sel ect edRange can be used to specifically select a range of the data to flat-
field, useful if you are interested only in a certain spectral region. The format of the parameter is
[waveMin, waveMax].

To change the box size for the sigma-clipping, set maxbi nsi ze to avalue in microns (2 is the
default). To see plots of the fits set doPl ot =1. These plots will allow you to assess the quality
of thefitting.

specFrames2PacsCube: turn the individual Frames in the slicedFrames into PacsCubes held in a
SicedPacsCubes product. Thisreally isonly arearrangement of the data. These cubes have aspatial
arrangement of 5x5 spaxels (created from the 25 modules), and along the wavelength dimension
are the spectra from the 16 pixels al packed together one after the other. The spectra from these
16 spaxels may themselves be multiples, if the AOR asked for repeats on the wavelength range. At
aminimum each pixel holds a spectrum from a grating scan up and one from a grating scan down
(i.e. one spectral range sampled twice).

55

http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb?template=viewprint
http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb?template=viewprint

ChopNod pipelines Build 15.0.3262

You could save slicedFrames before running the flatfielding task, to compare the before and after
(using the examplesin Section 10.4.2 or the example in the pipeline script).

Tip
@ It can be helpful to plot the data before and then after the flatfielding, to see the effect that
it has had on your data, using the task plotPixel. See Section 10.2 to learn more about this
task (note: it does also work on slicedFrames).

Y ou can a'so open any one of the slicesin slicedCubes in the Spectrum Explorer, which
isatool for inspecting spectra from any number of Spectrum products in HIPE. Y ou can
inspect masked data and different grating scansin the SE. For ageneral description of the
SE, see DAG chap. 6, but to know how to use in on the Frames of PACS Leve 0, 0.5
and 1, see Section 10.5.

5.2.8. Wavelength grid and outlier flagging

The spectrain each spaxel of each PacsCube are the spectra of the 16 pixels of each module of the
input Frames, where each pixel had two or more spectra that covered very nearly, but not exactly,
the same wavelength range and wavelength sampling. This throng of wavelength datasets need to be
regularised, one wavelength grid for all spaxels of the cube. It is on this new grid that the spectra
will be later spectrally resampled to create a single spectrum per spaxel per cube. The bins of the
new grid are large enough to include severa input data-points (and hence to improve the SNR in the
result), but small enough to still alow for at least a Nyquist sampling of the spectral resolution at
every wavelength.

>>>>>> 6 Wavel ength grid and outlier flagging

if ((not |ocals().has_key('multiGbs')) or (not mnultiGbhs)):
oversanple = 2
upsanpl e =4
waveG i d=wavel engt hGi d(sl i cedCubes, oversanpl e=oversanpl e, upsanpl e=upsanple, \
cal Tree = cal Tree)

in line scan pipeline and also if you used the line scan flatfielding for
range scans
sl i cedCubes = activat eMasks(slicedCubes, \
Stringld([str(i) for i in slicedCubes.get(0).mskTypes if i not in\
["I'NLINE", "OQUTLI ERS_B4FF"]]), exclusive = True)
in range scan pipeline
sl i cedCubes = activateMasks(slicedCubes, slicedCubes.get(0).naskTypes, \
excl usive = True)

sl i cedCubes = specFl agQutliers(slicedCubes, waveGid, nSigma=5, nlter=1)

If you want to test out several grids, it is useful to save "dicedCubes” to disk first, to always have a
clean copy to work with (using saveSlicedCopy and readSliced to save and reload). See Section 10.4.2
for some examples using PlotXY to plot before- and after-task spectra. Note that the best product to
check the effect of the wavelengthGrid is that produced by the subsequent task specWaveRebin (next
section).

» wavelengthGrid: creates the wavelength grids. This task creates a mask called OUTOFBAND.
Thisidentifies spectral regions that have fallen out of the range of the PACS filters, something that
can happen if you request arange in one camerathat resultsin an "illegal" range in the other camera.
Thisis provided to avoid that the user works on data that are invalid.

The upsanpl e and over sanpl e parameters are explained in the PACS URM entry for wave-
lengthGrid, and the effect of different choices of parametersis explained further in Section 7.2.

» specFlagOutliers: flag for outliers, i.e. asecond level glitch-detection task, creating a mask called
OUTLIERS. It will ignore all data that are masked as bad in al active masks. This task works by
first rebinning the data according to the specified wavelength grid, and then looking for all outliers
by searching the datapoints that fall in the new grid, going bin by bin. It only uses the waveGrid to

56

../../dag/html/Dag.Ch.CubeSpectralAnalysis.SEII.html

ChopNod pipelines Build 15.0.3262

find the outliers, it does not also change the wavelength grid of the input cubes. nl t er controls
the number of iterations you do (1 means two runs of detection are done), and nSi grra controlsthe
sigmalevel you clip at. The parameter nSi gna hasthe largest effect of the two on the performance
of thistask.

To look at the OUTLIERS in the PacsCubes use the task plotCubes (Section 10.2), the examples
givenin Section 10.4.4, or use the Spectrum Explorer (Section 10.5).

Notethat the previous deglitching task, specFlagGlitchFramesQTest, works on thetime-line, where-
as this task works with the wavelengths. Neither task tries to fix the glitches, they only mask them.

As discussed in Section 4.2.3 you may want to not activate the RAWSATURATION mask in the
task activateMasks here. To do that, include this mask together with "["INLINE", "OUTLIER-
S B4FF']" from the call in the line scan pipeline, and copy over that expression to the call in the
range scan pipeline.

5.2.9. Spectral rebinning

>>>>>> 7 Spectral ly rebinning the cubes

in line scan pipelines

sl i ccedCubes = activat eMasks(slicedCubes, \
Stringld([str(i) for i in slicedCubes.get(0).maskTypes if i not in \
["I'NLINE", "OQUTLI ERS B4FF"]]), exclusive = True)

in range scan pipelines

sl i cedCubes = activateMasks(slicedCubes, slicedCubes.get(0).naskTypes, \
exclusive = True)

sl i cedRebi nnedCubes = specWaveRebi n(sl i cedCubes, waveGi d)

if verbose:
sl i cedSummar y(sl i cedRebi nnedCubes)
overlay = None
p9 = pl ot CubesRaDec(sl i cedRebi nnedCubes, overlay = overl ay)

Here you do the spectral rebinning that combines the spectraheld in each spaxel of the PacsCubesinto
one spectrum (per spaxel), improving the SNR and regularising the wavelength grid. This processwill
only include data not flagged as bad in the masked activated before the task isrun. Hence, if you have
saturated data then the saturated data-points may not be found in the resulting cubes: the saturated
regions may become blank. More specifically, any wavelength bin that is masked as saturated in the
input cube will have, in the output cube, either have aNaN valueif all the datapoints that fed that bin
are saturated, or will have an actual valueif only some of the datapoints that fed that bin are saturated.

Some examples of checking on the masked data are given in Section 10.4.4. See Section 7.6 for more
information about the effect of the saturation and glitch masks on the rebinned of the PacsCubes by
specWaveRehin.

Note

@ Thewavelength grid increaseswith resolution, i.e. with wavelength: the wavelength range
of the PACS spectrograph is so long that to achieve at least Nyquist sampling at all wave-
lengths, it isnecessary that the bin sizes scalewith wavelength. Thiswavelength grid isnot
held in aWorld Coordinate System (WCS, specifically axis 3), but rather in an "Imageln-
dex" dataset of the cubes. For more information, see the PPE chps 3 in PACS Products
Explained and 5 in PACS Products Explained.

» specWaveRebin: takes the input wavelength grid and rebins the spectra (via an averaging) from
theinput cubes and places them in the output cubes. It does this separately for each cube held in the
input "slicedCubes’, so the differences between the cubes—raster pointing, wavelength range, nod
(A and B), nod cycle—are maintained. What are combined, per spaxel, are the spectrafrom the 16
pixelsfor all the repetitions on the grating scan—and what are not combined are the repetitions on
nod cycle, as different nods are held as separate slices. The output is a set of PacsRebinnedCubes
held in a SicedPacsRebinnedCube.

57

ChopNod pipelines Build 15.0.3262

It is important to activate all masks containing bad data you do not want included in your final
cubes: including the not flatfielded data, the bad chops and grating movement data, glitches, outliers,
saturation, noisy and bad pixels, out of band data. The pipeline activates all masks by default (in
activate masks run before thistask). As discussed in Section 4.2.3 you may want to not activate the
RAWSATURATION mask in the task activateMasks here. To do that, include this mask together
with "["INLINE", "OUTLIERS B4FF"]" from the call in the line scan pipeline, and copy over that
expression to the call in the range scan pipeline.

Note

@ For data obtained in Nyquist sampling mode before OD 305, it is normal to find emp-
ty bins (NaNs in the rebinned cube) even when rebinned with oversample=2. Thisis
intrinsic to these data, and there is no way to correct for this.

Noise/Errors: This task creates an standard deviation dataset ("stddev"), which is explained in
Section 7.7, and you can also check the URM entry for this task to learn more about this. Y ou will
be given a chance to plot the error curve in the next code block, and this plot is also explained in
Section 7.7.

 plotCubesRaDec Plots the Raand Dec coverage of the cube(s), i.e. the sky footprint of the obser-
vation, with the option of over-plotting this footprint on an image. See Section 10.2 to learn more
about this task.

5.2.10. Combine the nods

>>>>>> 8 Conbi ne nod A and B
sl i cedFi nal Cubes = specAddNodCubes(sl i cedRebi nnedCubes)

if working with the Calibration source and RSRF script, continue, otherw se
see the next section
if verbose:
X,y = 2,2
pfinal = pl ot Cubes(slicedFi nal Cubes, x=x, y=y,stroke=1,title="plotCubes - \
"+str(obsid)+" "+canmera, \
subtitle="Final Rebinned Spectrum Spaxel ["+str(x)+","+str(y)+\
"].\n No point source correction applied")
pstd = pl ot CubesSt ddev(sl i cedFi nal Cubes, pl ot LowExp=1, pl ot Dev=0, nsigma=3,
i slineScan=-1, \
spaxel X=x, spaxel Y=y, verbose=verbose, cal Tree=cal Tree, wr anges=None)
pstd.titleText, pstd.subtitleText="plotCubesStddev - "+str(obsid)+" "+canera, \
"Fi nal Rebi nned Spectrum & uncertainties. Spaxel ["+str(x)+",\
"+str(y)+"].\n No point source correction applied"
slice =0
p55 = pl ot Cube5x5(sl i cedFi nal Cubes. get (slice), franeTitl e="pl ot Cube5x5 - "\
+str(obsid)+" "+canera+" slice "+str(slice))

if saveQutput:
nane = naneBasi s+"_sl i cedCubes"
saveSl i cedCopy(sli cedCubes, name, pool Locati on=out putDir)
nane = naneBasi s+"_sl i cedRebi nnedCubes"
saveSl i cedCopy(sli cedRebi nnedCubes, nane, pool Locati on=out put Dir)
nane = naneBasi s+"_sl i cedFi nal Cubes"
saveSl i cedCopy(sl i cedFi nal Cubes, nane, pool Locati on=outputDbDir)

» The PacsRebinnedCubes are now combined on nod. All the nod A and B are average-combined,
by specAddNodCubes, so slicedSummary run on slicedRebinnedCube and slicedFinal Cubes will
show different numbers of slices. Note that differencesin raster pointing and wavelength are hon-
oured by thistask.

The stddev arrays are propagated by thistask. This can then betakento betheerrorsfor therebinned
cubes. For more information, see Section 7.7.

58

ChopNod pipelines Build 15.0.3262

 plotCubes, plotCubebx5, and plotCubesStddev. See Section 10.2 for details. These plot the spec-
train the input cubesin different ways: of asingle spaxel, of the 5x5 spaxelsin the rebinned cube,
or of asingle spaxel with the standard deviation and continuum RM S datasets overplotted. For the
task plotCubesStddev, the parameter i sl i neScan determines whether the task is used in away
appropriate for line scans (1), range scans (0), or either (the task determines this itself by looking
at the Meta data to find out what whether the observation is line or range).

 Spectrum Explorer: you can open the slicedCubes and the slicedRebinnedCubes in the SE, which
isatool for inspecting single or cube spectra. For ageneral description of the SE, see DAG chap. 6.

« If you chose to save output to disk, these sliced cubes of Level 2 are saved with saveSlicedCopy,
to a pool on disk in the directory called "outputDir" and with a pool name (sub-directory name)
"name". To recover the sliced cubes, use the same pool Locat i on and pool Nane in the task
"readSliced". See their PACSURM entry to learn more about saving and loading.

5.2.11. Flux calibration for "Telescope normalisation"
scripts only

The final flux calibration for the telescope normalisation pipeline scripts, taking the spectra from
"telescopes’ to Jy, isdone after the nods have been combined. Then the same plotting asin the section
above can be done.

For the Tel escope nornulisation pipeline script only

(but not that for point sources)

sl i cedFi nal Cubes, background = specRespCal ToTel escope(slicedFi nal Cubes, \
obs. auxiliary. hk, cal Tree = cal Tree)

i f verbose:

X,y = 2,2

pfinal = plotCubes(slicedFinal Cubes, x=x, y=y,stroke=1,title="plotCubes - \
"+str(obsid)+" "+canera, \
subtitle="Final Rebinned Spectrum Spaxel ["+str(x)+","+str(y)+\
"].\n No point source correction applied")

pstd = pl ot CubesSt ddev(sl i cedFi nal Cubes, plotLowExp=1, plotDev=0, nsigma=3,

i slineScan=-1, \

spaxel X=x, spaxel Y=y, verbose=verbose, cal Tree=cal Tree, w anges=None)

pstd.titleText, pstd.subtitleText="plotCubesStddev - "+str(obsid)+" "+canera, \
"Final Rebinned Spectrum & uncertainties. Spaxel ["+str(x)+",\
"+str(y)+"].\n No point source correction applied"

slice =0

p55 = pl ot Cube5x5(sl i cedFi nal Cubes. get (slice), frameTitle="pl ot Cube5x5 - "\
+str(obsid)+" "+canmera+" slice "+str(slice))

if saveQutput:
name = naneBasi s+"_sli cedCubes"
saveSl i cedCopy(sl i cedCubes, nane, pool Locati on=outputDir)
name = naneBasi s+"_sl i cedRebi nnedCubes"
saveSl i cedCopy(sl i cedRebi nnedCubes, nane, pool Locati on=outputDir)
name = naneBasi s+"_sli cedFi nal Cubes"
saveSl i cedCopy(sli cedFi nal Cubes, nane, pool Locati on=outputDir)

» specRespCal ToTelescopeisthetask that computesthetel escope background spectrum in the back-
ground normalisation pipeline script. Its details are explained in its URM entry, but briefly: it takes
the telescope background that has been created from numerous calibration observations, scales it
by the temperature during the observation (taken from the housekeeping from the ObservationCon-
text), and then usesthat to performsthe "flux" unit conversion for the slicedFinal Cubes, from "tele-
scope backgrounds' to Jy.

The stddev dataset is propagated by this task.

 plotCubes, plotCubebx5, and plotCubesStddev. See Section 10.2 for details. These plot the spec-
train the input cubesin different ways: of asingle spaxel, of the 5x5 spaxelsin the rebinned cube,
or of asingle spaxel with the standard deviation and continuum RM S datasets overplotted. For the

59

../../dag/html/Dag.Ch.CubeSpectralAnalysis.SEII.html

ChopNod pipelines Build 15.0.3262

task plotCubesStddev, the parameter i sl i neScan determines whether the task is used in away
appropriate for line scans (1), range scans (0), or either (the task determines this itself by looking
at the Meta data to find out what whether the observation is line or range).

 Spectrum Explorer: you can open the slicedCubes and the slicedRebinnedCubes in the SE, which
isatool for inspecting single or cube spectra. For ageneral description of the SE, see DAG chap. 6.

« If you chose to save output to disk, these sliced cubes of Level 2 are saved with saveSlicedCopy,
to a pool on disk in the directory called "outputDir" and with a pool name (sub-directory name)
"name". To recover the sliced cubes, use the same pool Locat i on and pool Nane in the task
"readSliced". See their PACSURM entry to learn more about saving and loading.

5.2.12. Post-processing

The steps to perform now are very similar for al pipeline scripts and are explained in Section 4.3.

The science end-product of the pipeline scripts depends on the observation. For point sources, and
in particular for the output of the Telescope normalisation point source script, the end result is an ex-
tracted, point source flux-loss corrected, spectrum. This means you must run one of the tasks provided
to extract and calibration the point source spectrum, asis explained in Section 4.3. For mapping ob-
servations you can mosai ¢ together the cubesin the raster to create asingle cube, asis also explained
in Section 4.3. For single pointing observations of extended sources, the rebinned cubes are those the
science measurements should be made on, but see Section 4.3 for some extras.

5.3. "Telescope normalisation drizzle maps"
pipeline

New to HIPE 14 and higher: because of an oversight that lead to incorrection calibration of driz-
Zle cubes created by HIPE version 13 (see herschel.esac.esa.int/twiki/bin/view/Public/DpKnownls-
sues and herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb), when using the " Tele-
scopenormalisation” pipelinescript it isnow necessary to calibratethe datawhen creating driz-
Zlecubesdlightly differently to when calibrating any other type of cube. The drizzle cubesrequire
a calibration applied to the Level 1 PacsCubes, for which one particular calibration file has to be
used. All other cubes (rebinned, projected, and interpolated) require a calibration applied to the final
PacsRebinnedCubes of Level 2, for which a dlighty different calibration file is necessary. The two
calibrationsdiffer only very dlightly: thenoiselevel isvery dlightly higher for the"drizzle calibraiton”,
but the overall flux levels, line fluxes, and continuum slopes, are the same. However, this means that
line scan chopNod observations reduced with the "Telescope normalisation™ pipeline script, and for
which mosaic drizzle cubes are desired (i.e. Nyquist and oversampled mapping AOTS), need to be
reduced with their own pipeline script.

However, the actual running of the drizzle tasks has not changed at al, and the use of the drizzle tasks
themselves are till explained (for al pipeline scripts) in Section , and this is not repeated here. The
running of the rest of the pipeline, from Level O to the end, is, with the exception of one task, the
same asin the "Telescope normalisation” pipeline script for line scans. These parts of the pipeline are
therefore not repeated here: the previous sections explains this.

The one different task is specRespCal ToTelescope:

sl i cedFranes, background = specRespCal ToTel escope(slicedFranes, obs.auxiliary.hk, \
cal Tree = cal Tree, reduceNoi se = 1)

which in the "Telescope normalisation” pipeline is done at the end of Level 2 (after specAddNod-
Cubes), but in this "drizzle pipeline" it is done after the task specDiffChop, just before "dicedPac-
sCubes’ is created from "dlicedFrames’ with the specFrames2PacsCube task.

At the end of the pipeline, you are shown how to create projected and interpolated cubes with the
same WCS as the drizzled cubes have, which allow for a direct comparison of the different cubes.

60

../../dag/html/Dag.Ch.CubeSpectralAnalysis.SEII.html
http://herschel.esac.esa.int/twiki/bin/view/Public/DpKnownIssues
http://herschel.esac.esa.int/twiki/bin/view/Public/DpKnownIssues
http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb?template=viewprint

ChopNod pipelines Build 15.0.3262

(Although we note that creating interpolated cubes with the very small spaxel sizes of drizzled cubes
is not recommended.)

5.4. Pipeline steps for spectral lines in the
light leak regions (mainly longer than 190um)

An update to the calibration tree for SPG/HIPE 14.2 and 15 means that the RSRF in the red region
(band R1: calibration file RsrfR1) now calibrates the spectral lines reasonably well. The continuum
will be wrong, but the spectral line fluxes can be recovered. The pipeline scripts "Calibration source
and RSRF" (line and range scans) must be used to work in this spectral range, because the "Telescope
normalisation” scripts do not use the RSRF and will always be incorrectly calibrated in the light leak
regions. This being the case, the SPG data (that which you obtain from the HSA) will be incorrectly
calibrated below 55 microns and above 190 microns. hence these ranges are masked out and will not
be available in the ObservationContexts.

Torecover thered-leak spectral region (190 micronsand upwards), you can to reduce the datain HIPE
yourself using one of the "Calibration source" scripts. The only change with respect to the script in
HIPE and as described in this chapter is at the flatfielding stage:

* Range scans. set excl udeLeaks=False. In addition, and especialy if dealing with SEDs (long
ranges), it will improveresultsif you limit the region included in the flatfiel ding to around your line.
The parameter sel ect edRange can be used. Alternatively you can use the line scan flatfielding
task and set the parameter naxRange to include your line only. See Section 5.2.7 to learn about
using the line scan flatfielding task while running the range scan pipeline script.

 Line and short range scans: for line scans it is probably not necessary to make any changes as the
spectral range is so short anyway, but for ranges of a few microns (and especialy if this includes
some spectral slope) you can use the parameter maxRange to limit the flatfielding to around your
red ling(s).

A consequence of limiting the range that is flatfielded is that the not-flatfielded parts of the spectrum
could look very strange. At the end of the pipeline these regionsare anyway cut out, sincethey havethe
mask NOTFFED and hence are excluded when the Level 2 rebinned cubes are created. But between
this part of the pipeline and the end, inspecting the cubes may be difficult due to strong curvature
induced by the partial flatfielding. To make subsequent inspection of such cubes easier, you could use
the following task to cut the unwanted regions out:

newSl i cedCubes = pacsExtract Spectral Range(sl i cedCubes, waveRanges=[[200, 205]])

Thistask creates a"newSlicedCubes" including only the data within the wavelength range specified.
The parameter waveRanges cantakealist of morethan one [min, max]—[[200,203],[203,204]] for
example—but if you want to select only one then adouble [[]] is still necessary. The task will work
for SicedPacsCube and SicedPacsRebinnedCube or any one PacsCube or PacsRebinnedCube.

It isimportant to note that since the continuum level for the red-leak calibrated spectral regions will
always be wrong, when using the task extractCentral Spectrum on point sour ces, only the result "c1"
or "c9" can be used, not also "c129" (since this latter spectrum computes a correction that is based
on the continuum level).

See the Observer's Manual and the PACS spectrometer calibration document to learn more (you can
obtain these from the HSC PACS web-page: herschel .esac.esa.int/twiki/bin/view/Public/PacsCalibra-
tionWeb2template=viewprint).

5.5. The Split On-Off 'testing' script

Level 0.5 to 2 of the chopNod Split On-Off script is not described in a much detail as the previous
scripts: the steps are exactly the same.

61

http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb?template=viewprint
http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb?template=viewprint

ChopNod pipelines Build 15.0.3262

Theaim of thishelper scriptisto produceaset of on-source cubesand off-source cubes, which canthen
be easily compared to each other (for example with the Spectrum Explorer) to see if there is obvious
contamination in the off-source pointings. Thisis not a pipeline script: you cannot do science on the
end-results. In fact, after setting the obsid and camera, you could run the script blindly, since playing
with the parameters will produce little difference to your comparison of the on-cube and off-cubes.

Tip
@ An easy way to compare the on- and off-spectra for the spaxels of your cubesis to load
theindividual on- and off-cubes into the Spectrum Explorer and "link" them (DAG chap.
6.5; and use the "linking" capability), to see together the on- and off-source spectra for
any spaxel.

Note that the Spectrum Explorer works with cubes, not the meanRebinnedCubesOn|Off
(which isa ListContext) that is the end product of the Split On-Off pipeline. Y ou need to
work on the individual cubesin the ListContext. This can be done by clicking on "mean-
RebinnedCubesOn (and Off)" in the Variables pane, and then from the Outline pane you
will see a cube listing: from there you can double-click to open the first cube with the
Spectrum Explorer, and then drag-and-drop the remaining cubes into the GUI.

7 Editor x\ ‘

 ChopNodBa...zation.py X ChopNodBa. .nR: (% obs) 1+ meanRebinn..}product x \ (=) ebinnedCuti
He AtomEB X600 NTEY ®@ | [i smoow

e Iherschel.pacs.sign
b

o & Histo

L L e
-1l 08 06 04 02 00 02 04 06 08 tlo ® L3NIROO)
© FHTITE

xis [-0.46 , -4.17) © 3:L5 NLR(O 0)

x Tbeson refs(0) product | X
“m\
v e e 51

i D

Yol ———1 T}

NONE | Link [Show Comparison Preview

Pl ennenta v

Figure 5.1. Loading cubes from a ListContext into the Spectrum Explorer
The only tasks we do describe here are those unique to this pipeline.

sl i cedFr anes
sl i cedFr anes

specSubt ract Dar k(sl i cedFranmes, cal Tree=cal Tr ee)
pacsSli ceCont ext (sl i cedFrames, splitOnOif=1)[0]

lineld
wavel engt h
rasterlLine
rast er Col
nodPosi ti on
nodCycl e
sci ca

band

sl i ceNunber

= r————
[S —

il

[]

onOf f = "ON'

sCubesOn = sel ect Slices(slicedCubes, |ineld=lineld, wavel engt h=wavel ength, \
rasterlLine=rasterLine, rasterCol=rasterCol, nodPosition=nodPosition, \
nodCycl e=nodCycl e, sci cal =sci cal ,\
band=band, sliceNunber=sliceNunber, onOf=onOff, verbose=verbose)

onOf f = "OFF"

sCubesO f = selectSlices(slicedCubes, |ineld=lineld, wavel ength=wavel ength, \
rasterlLine=rasterlLine, rasterCol=rasterCol, nodPosition=nodPosition, \
nodCycl e=nodCycl e, sci cal =sci cal ,\
band=band, sliceNunber=sliceNunber, onOf=onOff, verbose=verbose)

» specSubtractDark: subtracts the dark signal.
» pacsSliceContext: is used to split the on-source from the off-source data.

» selectSlices: isthen used to create an on-source and an off-source product.

62

../../dag/html/Dag.Sec.CubeSpectrumViewing.html#Dag.Sec.CubeComp
../../dag/html/Dag.Sec.CubeSpectrumViewing.html#Dag.Sec.CubeComp

ChopNod pipelines Build 15.0.3262

5.6. Wrapper script 'Combine observations
for a full SED'

5.6.1. Explanation

This helper script is for the long range and SED AQOTSs. It will run any chosen single-observation
pipeline script on your obsids, and then extract the point source spectra and combine them. The in-
tention is that this script is used on observations of SEDs, where you want to be able to see the en-
tire stretch of the spectrum within one product. Note that we do not merge the extracted point source
spectra, they are simply stored in a single product.

This script could aso be used as the basis for your own bulk-processing script, for the more advanced
users of the PACS pipeline. With a few tweaks it would alow you to reduce any number of obsids
and to save the results on disk.

It is necessary for you to (i) have reduced at least some data through the single-observation pipeline
script that you want to use on these data, so you know what you are doing and understand the instruc-
tions here, and (ii) make some edits to the single-observation pipeline script that you will run. Some
parameters are set in this combined-observation script (e.g. directory names) but others (e.g. verbose)
have to be set in the pipeline script itself.

The script will reduce each obsid and save to pool the Level 1 PacsCubes, the Level 2 PacsRebinned-
Cubes before being combined on nod, and the Level 2 PacsRebinnedCubes after being combined on
nod. Y ou can chose to save hone, any, or al of these by commenting in or out the appropriate linesin
the script. The output of the pipelineat all levelsisaListContext of the cubes. a SicedPacsCubes con-
taining the Level 1 PacsCubes, and a SicedPacsRebinnedCubes contain the Level 2 PacsRebinned-
Cubes. The number of cubes contained in each list depends on how many wavelength ranges/bands,
nod repeats, and pointings you have in your observations. The script will the run the point source
extraction task on all the cubes and join the resulting spectrainto a Spectrumld.

5.6.2. Running the script
5.6.2.1. Setup

First decide which pipeline script to run. If you want to change any of the parametersin the script you,
first copy it to a new name/location.

The parameters that you definitely have to set in your copied pipeline script are:
» verbose: to produced plots showing the results of pipeline tasks, or not; verbose=1 or 0

e useHsa; for the task getObservation; get the data directly from the HSA or from pool on disk);
useHsa=1or O

» poolName and/or poolLocation: for thetask getObservation/saveObservation; either where the data
are on disk, or to where to save them

Next, set up some parameters:

inmport os, time

1
multiCbs = 1
savel ndi vi dual Gbsids = 1

2
outputDir = Configuration.getProperty(“user.dir")
either

63

ChopNod pipelines Build 15.0.3262

HCSS_DI R = Confi guration. getProperty("var.hcss.dir")

scriptsDir = HCSS DIR + "/scripts/pacs/scripts/ipipelspec/”

script = scriptsDir + "ChopNodrangeScan. py"

or, if you have your own script to run:

script = "/Users/me/ nyscript. py"

or if the script is located in the directory you started H PE from
script = outputDir + "nyscript.py"

or

scriptDir = "/Users/ne/scripts"

script = scriptsDir + "ChopNodrangeScan. py"

3

Chose the obsids

obsids = {}

obsi ds[1342229701] = " SEDA"
obsi ds[1342229702] = " SEDB"

4

Rebi nni ng Paraneters

oversanple = 2

upsanpl e =2

strovup = "ov"+str(oversanpl e)+"_up"+str(upsanpl e)

5
For saving the results
outputDir = None

prefix=""
if outputDir: prefix = outputDir+"/"
bui | dNunmber = str(Configuration.getProjectlnfo().track) + '." +\

str(Configuration. getProjectlnfo().build)
trackfil ename = prefix+"ChopNodSEDMul ti CbsTracki ng. t xt"
trackfile = open(trackfil enane,'w)
trackfile.wite("START \n")
trackfile.cl ose()

6
final CubeList = []
starttime = tine.time()

These do the following:
* (1): Inthe pipeline scripts that reduced the individual observation ,you will see commands such as

if ((not locals().has_key('nmultiCbs')) or (not nmultiCbhs)):
obsid = 1342...... # enter your obsid here

Setting multiObs to True/1 means that the indicated parameter (obsid in the example above) will
be taken from the Combine Observation script rather than in the actual pipeline script itself.

* (1): savel ndividualObsids set to True/1 will tell the script to save al the final cubes and extracted
global spectrum.

* (2): Setting of the directory "HCSS DIR" and then "scriptsDir", which is where the interactive
pipeline scripts can be found: HCSS DIR is the location of the HIPE software, and scriptsDir is
the standard location for the PACS scriptsin the HIPE build. " ChopNodBackgroundNormalization-
Range.py" isthe name of the Telescope normalisation pipeline script; you will see the names of the
scripts when you load them into HIPE viathe Pipeline menu (the tab name is the file name). If you
want to change anything in the pipeline script, you need to save to a new location/name; we have
added a few lines of code that show you how to use this one instead of the default. "outputDir" is
where you started HIPE from or you can set it to anything else, using the same syntax as used for
scriptsDir. The script that you will use to reduce each single observation is set as "script”.

* (3): Then you define your obsids. Either you specify thisin afile on disk and then read it in, or
specify here.

* (4): Set the values for the wavelength grid upsample and oversample (hence over-ruling whatever
isin the script you later run).

ChopNod pipelines Build 15.0.3262

 (5): Information to create unique filename in the saved products.

 (6): Then you create the PyList that is alist that will contain your pipeline-produced products, and
note the starting time (not necessary, just nice to know).

5.6.2.2. Run the loop

Next follows a loop over al the obsids and cameras and the pipeline script is run on each, starting
from getting the ObservationContext into HIPE.

After the loop has run the slicedFinal Cubes, in each loop, are pushed into "finalCubeList" and then
savethat to disk. After the loop, these are then concatenated into a single product, which can be saved
to disk asapool:

al | Fi nal Cubes = concatenateSliced(final CubeLi st)
obj ect Nane = "NoObj ect Nane"

try:
obj ect Nane = obs. neta["object"].val ue.replace(" ","").\
repl ace("+","plus").replace(".","_")
obj ect Nane += "_"+str(obs. meta[" odNunber"] . val ue)
except:
pass

name = obj ect Name + "_ChopNodMuil ti Gbs_al | Fi nal Cubes"
saveSl i cedCopy(al | Fi nal Cubes , nane, pool Locati on=out putDir)

» concatenateSliced will take the individual cubes of finalCubelist, i.e. each cube in each Siced-
PacsRebinnedCubes in the final CubeList PyList, and create a new ListContext. So, if you pushed
two SicedPacsRebinnedCubes into finalCubelist, and each SicedPacsRebinnedCubes had two
PacsRebinnedCubesiin it, then all Final Cubes will have four PacsRebinnedCubesin it.

» Thetry-except will try to take the object name out of the header of the ObservationContext called
obs that you have in your HIPE session (the same "obs" that you extracted in your final loop of
pipeline processing above), but if it cannot succeed it will do nothing. Then your product is saved
to apool on disk with saveSlicedCopy.

Finally, have alook at the spectrain your cubes:

if verbose

sl i cedSumary(al | Fi nal Cubes)

X,y = 2,2

pfinal = plotCubes(allFinal Cubes,[], X=X, y=y)

Plot the spectra of the chosen spaxel using the pipeline helper task plotCubes. See Section 10.2 for
more detail.

5.6.2.3. Extract the point-source spectra

In the "Combine observations" script the we include the task that you must run if you are dealing with
point sources located in the centre of a pointed observation. See Chapter 8 to learn more about the
actual task, and Section 4.3, to learn more about running the task in the pipeline. The extrabitsin this
script are there to push the output point source spectrainto a single Spoectrumld, so you can view the
entire SED in one go, e.g. in the Spectrum Explorer.

Set up
full Spec = Spect rumld()
segnents = | nt1d()

ful | Spec9 = Spectrunld()
segnents9 = | nt1d()

ful | SpecCorr3x3 = Spectrumld()
segnent sCorr3x3 = | nt1d()

target = slicedFinal Cubes. neta["object"].value.replace(" ","_")

either these two

65

ChopNod pipelines Build 15.0.3262

snmoot hi ng = ' wavel et

nLowFr eq =4

or these three - the ones chosen in the exanple bel ow
smoothing = "filter'

gaussi anFilterWdth = 50

medi anFi | ter Wdth = 15

for slice in range(len(slicedFinal Cubes.refs)):
central 1, central 9, central 129 =\
extract Central Spectrun(slicedFi nal Cubes. get (slice), \
snoot hi ng=snoot hi ng, wi dt h=gaussi anFilterWdth, \
preFilterWdth=nmedi anFi | terWdth, \
nLowFr eqg=nLowfFr eq, cal Tree=cal Tr ee, ver bose=ver bose)
i f savel ndi vi dual Obsi ds:
name = "OBSI D "+str(obsid)+"_"+target+"_"+canera+\
" _central Spaxel _Poi nt Sour ceCorrect ed_Correct ed3x3NO sl ice_"
si npl eFi t sWiter(product=central 1,\
file = name+str(slice).zfill (2)+".fits")
name = "OBSI D "+str(obsid)+"_"+target+"_"+canera+\
" _central 9Spaxel s_Poi nt Sour ceCorrected_slice_"
si npl eFi t sWiter(product=central 9,\
file = name+str(slice).zfill (2)+".fits")
name = "OBSI D "+str(obsid)+"_"+target+"_"+canera+\
" _central Spaxel _Poi nt Sour ceCorrect ed_Correct ed3x3YES_slice_"
si npl eFi t sWiter(product=central 129, \
file = name+str(slice).zfill (2)+".fits")

if verbose:
central Spec = central 129. spect rumld
try:
openVari abl e("central Spec", "Spectrum Explorer")
except:

print "Spectrum Explorer only works within H PE"
Create the Spectrunild
spec = central 1. spectrunild
ful | Spec. concat enat e(spec)
segnent s. append(I nt 1d(spec. flux.length(), slice))
spec9 = central 9. spectrunld
ful | Spec9. concat enat e(spec9)
segnent s9. append(| nt 1d(spec9. fl ux.l ength(), slice))
specCorr3x3 = central 129. spect r umld
ful | SpecCorr 3x3. concat enat e(specCor r 3x3)
segnent sCor r 3x3. append(| nt 1d(specCorr3x3.flux.l ength(), slice))

» The point-source calibrated spectra from all the PacsRebinnedCube you loop on are saved into a
Spectrumld product called "spec*, "spec9”, "full SpecCorr3x3". The slice numbering is saved in
"segments’, a separate value for each slice (i.e. for each cube you run the loop on).

See first Section 4.3.3.1, where a brief text on thistask is given. Then moveto Section 8.5 to learn
more about this task.

Include the colum segnent in the final Spectrunld & save to fits
ful | Spec. set Segnent (segnent s)
ful | Spec9. set Segnent (segnent s9)
ful | SpecCorr 3x3. set Segnent (segnment sCor r 3x3)
nane = obj ect Nane + \
" _ChopNodSEDMuI ti Obs_1d_cent ral Spaxel _correct 3x3_NO_Poi nt Sour ceCorrected. fits"
sinpl eFi tsWiter(Sinpl eSpectrun(full Spec), prefix+nane)
nane = obj ect Name + \
" _ChopNodSEDMuI ti Obs_1d_cent r al 9Spaxel s_Poi nt Sour ceCorrected. fits"
sinmpl eFi tsWiter(Sinpl eSpectrun(full Spec9), prefix+nane)
nane = obj ect Nane + \
" _ChopNodSEDMuI ti Obs_1d_cent ral Spaxel _correct 3x3_YES_Poi nt Sour ceCorrected. fits"
sinmpl eFi tsWiter(Sinpl eSpectrun(full SpecCorr3x3), prefix+nane)

i f verbose:
Display in spectrum expl orer
try:
openVari abl e("ful | Spec", "Spectrum Explorer")

openVari abl e("ful | Spec9", "Spectrum Explorer")
openVari abl e("ful | SpecCorr3x3", "Spectrum Explorer")
except :

66

ChopNod pipelines Build 15.0.3262

print "Info: openVariable could not open Spectrum Expl orer"

trackfile = open(trackfil enane,'a')

trackfile.wite("END Total Duration: "+ str("%.1f\n" %\
(tinme.time() - starttine)) +"\n")

trackfile.cl ose()

» After you have extracted the spectra and placed them into the Spectrumld, you add the segment
number array to them (theline"full Spec.setSegment(segments)”). Thisallowsyou to identify which
part of the Spectrumld comesfrom which slice: because its segment number will beitsslice number.
To learn more about Spectrumld you should read the SG chap. 3. The usefulness of saving these
spectrato a Spectrumld isthat you can then open it with the SpectrumExplorer (see the DAG chap.
6) and look at each and all the segments, and you can also save thefileto FITS.

 Finally you save the file, open it with the SpectrumExplorer, and write to and close the trackfile
again.

67

../../sg/html/um.html
../../dag/html/Dag.Ch.CubeSpectralAnalysis.SEII.html
../../dag/html/Dag.Ch.CubeSpectralAnalysis.SEII.html

Build 15.0.3262

Chapter 6. Unchopped and
Wavelength switching pipelines

6.1. Introduction

The unchopped pipeline menus were introduced in Chapter 4. After having selected the pipeline
script you want to run, and carried out the Level 0 to 0.5 parts of the pipeline (Chapter 4) you can
now read this chapter.

The differences between the pipeline scriptsis not large, so this chapter goes through each stage of al
scripts together. Y our prime source of materia for the pipeline should be the scripts (from the HIPE
build) themselves, since these may change slightly from what is presented here.

The difference between the line scan and range scan unchopped menusiis that for the line scan mode,
the on-source and off-source data are contained in the same observation, and for the range scan mode,
the on-source and off-source are separate observations which need to be reduced independently and
then subtracted. In the line scan and range scan menus there is one script that is the same as the SPG
script, and one that includes a new set of transient correction tasks that can be tested.

M oreinformation on testing out some of the pipelinetasksisgivenin Chapter 7 and information onthe
post-pipelinetasksisgiven in Chapter 8 and Chapter 9. How to plot and inspect your pipeline products
can be found in Chapter 10. In this chapter we also include the wavelength switching pipeline: thisis
an old mode that was little used, and the script is that for unchopped line scan, so read that section.

6.2. The 0.5to 2 scripts for all pipelines

6.2.1.

The Level 0.5 to Level 2 part of the pipeline is amost the same for the line scan and range scan
unchopped scripts. Here we take you through the scripts, indicating where code is for one or another
pipeline script only. You should in any case have the pipeline script already open in HIPE before
carrying on.

If you want to begin from Level 0.5, i.e. not run that part of the pipeline yourself (especialy as this
isno longer necessary), the first command is

sl i cedFr anes
sl i cedFr anes

obs.level 0_5.blue.fitted. product # for the blue canera
obs.level0_5.red.fitted. product # for the red canera

and it is still necessary to set up the general pipeline parameters. verbose, saveOutput, cal Tree and if
you do want to saveOutput, then also nameBasis (see Chapter 4).

Masking for glitches

>>>>>> 1 Masking for glitches; convert the capaticance

sl i cedFrames = activateMasks(slicedFranmes, Stringld([" "]), \
exclusive = True)

for the original pipeline script

slicedFrames = specFl agd itchFramesQrTest (sl icedFranes, copy=1)
for the new pipeline ("with transients") script
slicedFrames = specFl agd itchFramesMAD(sl i cedFranes, copy=1)

sl i cedFranes
sl i cedFranes

acti vat eMasks(slicedFranes, slicedFranes. get(0).getMaskTypes())
convert Si gnal 2St andar dCap(sl i cedFranes, cal Tree=cal Tree)

68

Unchopped and Wavel ength switching pipelines Build 15.0.3262

There is one pipeline task here—flagging for glitches—which is preceded by atask that de/activates
the masks,

activateM asks: thistask activates (or deactivates) the indicated masks, so that the foll owing task(s)
can (or not) take them into account. The parameter excl usi ve is say what to do with the not-
named masks. The first call to this task actives no masks, i.e. al are deactivated, and the second
activates all masks that are present in the slicedFrames. Consult the URM entry of activateMasks
to learn more about the parameters.

specFlagGlitchFramesQTest/M AD: these two do the same thing but with a different algorithm.
They flag the data for glitches (e.g. cosmic rays) using the (i) Q statistical test or (ii) the MAD
(median absolute deviation), creating a mask called GLITCH. The MAD algorith is used in the
transients correction pipeline asit isless agressive, and so lesslikely to also catch transients, which
need to be dealt with in a different way. The deglitching task works on the time-line as the X-
axis, and it identifies and flags out the bad data (1=is bad, O=is not bad), it does not change them.
The GLITCH mask is automatically activated when it is created. There are parameters of this task
that you could play with (see their URM entries), but note that these have been much tested and
the default parameter settings are good for practically all cases. Thereisin any case alater outlier
detection task run, which will clean up any left-over glitches.

The parameter copy=1 is necessary to decouple the slicedFrames produced by this task from the
slicedFrames put into the task, as was done previously in the Level 0—0.5 task specFlagSatura-
tionFrames.

convertSignal2StandardCap: converts the signal to a value that would be if the observation had
been done at the lowest detector capacitance setting. If thiswasthe case anyway, no changeis made.
This task is necessary because the subsequent calibration tasks have been designed to be used on
data taken at the lowest capacitance.

6.2.2. Compute the dark and the response; subtract
the dark

>>>>>> 2 Conpute the dark and response

cal Bl ock = sel ect Slices(slicedFranes, scical ="cal").get(0)
csResponseAndDar k = specDi ffCs(cal Bl ock, cal Tree = cal Tree)
sl i cedFranes = specSubtract Dark(slicedFranes, cal Tree=cal Tree)

For the original line scan pipeline only
gaps = specSi gnal Gap (sl i cedFranes)

selectSlices: to select the calibration slice out from slicedFrames. See selectSlices in the URM to
learn more.

specDiffCs: calculates the response and dark current. Briefly, specDiffCs uses a combination of
standard star observations (stars, asteroids, Neptune and Uranus) contained in the calibration file
ObservedResponse, and the signal from the calibration block observed during the observation com-
pared to the calibration block absolute fluxes contained in the calibration file cal SourceFlux. From
these data the response of the instrument and the dark current during your observation is cal cul ated,
and thisis placed in the product "csResponseAndDark". However, we still subtract the dark current
calculated from ground-tests than that this result from specDiffCs, since it still provides a more
reliable result.

specSubtractDark: this task subtract the dark current as a single value held in the calibration file
"spectrometer.darkCurrent”.

specSignalGap: is used only in the original line scan pipeline. Later in the pipeline the data will
be correction for transients. Before this, and also before applying the RSRF, it is necessary to do
some housework on the data: identify gaps between consecutive slicesin time order. See the URM
entry for thistask to learn more.

69

Unchopped and Wavel ength switching pipelines Build 15.0.3262

6.2.3. Flux calibration

>>>>>> 3 Flux calibration

slicedFranes = rsrfCal (slicedFrames, cal Tree=cal Tree)
sl i cedFranes = specRespCal (slicedFranmes, csResponseAndDark = csResponseAndDar k
cal Tree=cal Tree)

for the range scan original pipeline script, and for the range
and line scan new ("with transients") pipeline scripts
slicedFranes = sel ect Sli ces(slicedFranes, scical ="sci")

The pipeline hel per tasks slicedSummaryPlot and plotSignal Basic (here running on thefirst slice) have
been explained before, and they are also explained in Section 10.2.

» rorfCal: apply therelative spectral response function. The RSRF is taken from the calibration tree.
See the URM entry for this task to learn more.

For spectral lines at wavelengths longer than 190um, see Section 6.4. For these cases you need to
use a particular version of the RSRF for band R1.

» specRespCal: apply the absolute response correction, using the response that was calculated from
the calibration block. The flux unit is now Jy.

» selectSlices: has been used before. Here you effectively clip out the calibration block data. Thisis
in all pipeline scripts except the original line scan script, whereit isrun later.

After thistask you could again save slicedFrames, so you can compare the after product to the before
product. Y ou can also follow the examples given in Section 10.4.2 to compare using PlotXY.

if saveQutput:
name=naneBasi s+"_sl i cedFrames_B4Tr ansi ent Correcti on"

try:

saveSl i cedCopy(sli cedFranes, nanme, pool Locati on=out put Dir)
except:

print "Exception raised: ",sys.exc_info()
print "You may have to renove: ", outputDir+'/'+nane

For line scan AQTs, the first slice (after the calblock slice) should be on, and the second off, and so
on. The task slicedSummary lists the Framesin "dicedFrames” in the correct order.

6.2.4. Correct for transients: original line scan pipeline
script only

>>>>>> 4a Correct for transients

if verbose
sl i cedSummar y(sl i cedFr anes)
slice =1
nodul e = 12
ptrans = pl ot Transi ent (sl i cedFrames, slice=slice, nodul e=npdul e, \

col or=j ava. amt . Col or. bl ack, title="Transient Correction - Slice "\
+str(slice)+" Mdule = "+str(nmodul e))
ptrans. get Layer (ptrans. get Layer Count ()-1).set Name("Before [bl ack]")
ptrans. get Legend() . set Vi si bl e(1)

sl i cedFranes = specLongTer mlransi ent (sl i cedFrames, gaps=gaps)
if verbose
ptrans = pl ot Transi ent (sl i cedFrames, p=ptrans, slice=slice, \
nmodul e=nodul e, col or =j ava. awt . Col or. r ed)
ptrans. get Layer (ptrans. get Layer Count ()-1).set Name("After [red]")

slicedFranes = sel ect Sli ces(slicedFranes, scical ="sci")

70

Unchopped and Wavel ength switching pipelines Build 15.0.3262

if verbose: slicedSummary(slicedFranes)

i f saveQut put:
name=naneBasi s+" _sl i cedFr anmes_B4FF"
saveSl i cedCopy(sl i cedFranes, name, pool Locati on=out put Dir)

For information on what transients are and how they are corrected by the pipeline tasks, see Sec-
tion 7.13. Here we only explain the use of the tasks.

» specLongTermTransient: will remove the effect of the long-term transient that occurs the begin-
ning of an observation for the unchopped line mode. It detects and models these transients, sepa-
rately for each spaxel/module. This task can take along time to run.

 plotTransient: plotsthe data (black points) from the first science Frames (slice = 1) for the central
module of the IFU (module = 12) normalised to the signal level inthefinal grating scan data-chunk.
The various grating scans cover the same wavelength range as each other (and there are at least
two grating scansin any observation): since the effect of atransient isto increase the signal levels,
atransient will make the first spectral scan stand out from those of later in the observation. The
second call to thistask plots the corrected data as red points.

* Clip out the calibration slice with selectSlices.

6.2.5. Correct for transients: new ("with transients")
line scan pipeline script only

In the new line scan pipeline script there is a new set of tasks for detecting and correcting long-term
and short-term transients. The end result of thisisasignal stream that has been corrected for transients,
or masked out where correction was not possible, and the signal levels of the different populations of
data have been normalised to the mean, in thisway bringing down the scatter in the dataand improving
the SNR. This latter part is essentially the same as performed in the original line scan pipeline script
by the flatfielding task, which is why in this new script there is no subsequent flatfielding step.

For information on what transients are and how they are corrected by the pipeline tasks, see Sec-
tion 7.13. Here we only explain the use of the tasks.

Thefirst partisto plot thedatain such asway asto seethelong-termtransientstherein. Set "interactive"
to True (default is Fal se) at the beginning of the pipelineto seethe plots before applying the correction.

>>>>>> 4b Correct for long-termtransients

if interactive == True:
pta = pl ot LongTer nTr ansi ent Al | (sl i cedFr anes, obs, st ep=0, nodul e=12, \
cal Tree=cal Tree)
myAnswer = JOpti onPane. showConfi r nDi al og(None, \
"Conput e the whol e observation |ong-termtransient correction ?")

if myAnswer == O:

slicedFranes, fitResult = specLongTernilransi ent Al |l (slicedFranes,\

cal Tr ee=cal Tr ee, obs=0bs)
pt a=pl ot LongTer mlr ansi ent Al | (sl i cedFr anes, obs, pta=pta, fitResult=fitResult,\
st ep=1, nodul e=12, cal Tr ee=cal Tr ee)
myAnswer 2 = JOpti onPane. showConfi r nDi al og(None, \
"Apply the whol e observation long-termtransi ent correction ?")
if myAnswer2 == O:
sl i cedFranes=specAppl yLongTer niTr ansi ent (sl i cedFr anes, \
fitResult=fitResult, obs=obs)

elif myAnswer == 1:

print "Correction skipped"
el se:

print "Correction cancel ed"

el se:

if verbose == True:

pta = pl ot LongTernir ansi ent Al | (sl i cedFr anes, obs, st ep=0, nodul e=12, \\

cal Tree=cal Tree)
slicedFranes, fitResult = specLongTernilransi ent Al |l (slicedFranes,\
cal Tr ee=cal Tr ee, obs=0bs)

71

Unchopped and Wavel ength switching pipelines Build 15.0.3262

if verbose == True:
pt a=pl ot LongTer mlr ansi ent Al | (sl i cedFr anes, obs, pta=pta, fitResult=fitResult,\
st ep=1, nodul e=12, cal Tr ee=cal Tr ee)
sl i cedFr anes=specAppl yLongTer nr ansi ent (sl i cedFranes, fitResul t=fitResult,\
obs=obs)

» plotLongTermTransientAll: This task plots the data taken at the beginning of the observation
normalised to the expected background telescope flux. The on- and off-source data are plotted as
blue and green points. The second call to plotLongTermTransientAll plots the subsequently-detect-
ed long-term transient fit asared line.

Y ou can chose which module (0—24: these correspond to the spaxels: Section 10.6) to plot.
» specLongTermTransientAll: Thistask is used to detect the long-term transient in an observation.

» specApplyLongTermTransient: This task applies the correction computed by the task spec-
LongTermTransientAll.

The next step isto correct for transients that occur between dlices.

pbasi c = pl ot Si gnal Basi c(slicedFrames, slice=0, titleText="Start")
if verbose:
sl i cedSummar y(sl i cedFranes)

slice =0
modul e = 12
ptrans = pl ot Transi ent (slicedFrames, slice=slice, npdul e=npdul e, \

col or=java. amt . Col or. bl ack, title="Transient Correction - Slice "\
+str(slice)+" Mddule = "+str(nodul e))
ptrans. get Layer (ptrans. get Layer Count ()-1).set Name(" Normal i zed flux [black]")
ptrans. get Legend() . set Vi si bl e(1)

sl i cedFranes = specLongTermlransCorr (slicedFranes, cal Tree=cal Tr ee, \
ver bose=ver bose, appl yCorrection=1)
if verbose:
pars = slicedFranes.refs[slice].product[' MODELPARS']. data[nodul e, :]
n = slicedFranmes.refs[slice].product.signal[0,0,:].]ength()
t = slicedFranes.refs[slice].product.status["FINETIME']. data/1l.e6
t -=1t[0]
x = Doubl eld(range(n))
nmodel = pars[0] +par s[1] * EXP(par s[2] *x) +par s[3] *EXP(par s[4] *x) +\
par s[5] *EXP(par s[6] *x)
ptrans. addLayer (Layer XY(t, nodel , col or=j ava. awt . Col or. red, stroke=1.5))
ptrans. get Layer (ptrans. get Layer Count ()-1).set Name(" Model [red]")

pbasi c = pl ot Si gnal Basi c(slicedFranmes, slice=0, titleText="Post LTT")

» plotTransient: plotsthe data (black points) from the first science Frames (slice = 1) for the central
module of the IFU (module = 12) normalised to the signal level inthefinal grating scan data-chunk.
The various grating scans cover the same wavelength range as each other (and there are at least
two grating scansin any observation): since the effect of atransient isto increase the signal levels,
atransient will make the first spectral scan stand out from those of later in the observation. The
second call to thistask plots the corrected data as red points.

» specLongTermTransCorr: Sudden differences in flux between two adjacent slices cause long-
term transients in the detector response. This task fits a transient model to the signal normalised to
the last wavelength scan, and applies the correction to the data.

* plotSignalBasic: is apipeline helper plot and is explained in Section 10.2. It produces a basic plot
of the signal of the central pixel in the central module of the instrument. To plot a different pixel
or module, specify the pixel and module to plot.

Thefina step isto clean up the short-term transients.

sl i cedFranes
sl i cedFr anes

specMedi anSpect run{ sl i cedFr anes, cal Tr ee=cal Tr ee)
specTransCorr (sl i cedFranes, cal Tree=cal Tr ee)

72

Unchopped and Wavel ength switching pipelines Build 15.0.3262

6.2.6.

pbasi c = pl ot Si gnal Basi c(slicedFrames, slice=0, titleText="Post TC")

i f saveQut put:
name=naneBasi s+" _sl i cedFrames_B4Tr ansi ent Correcti on"

try:

saveSl i cedCopy(sl i cedFranes, name, pool Locati on=out put Dir)
except:

print "Exception raised: ",sys.exc_info()

print "You may have to renove: ", outputDir+'/'+nane

To restore the data:
slicedFrames = readSliced(name, pool Locati on=pool Locati on)

» specM edianSpectrum: Thistask computes afirst guess of the spectrum for each spatial module of
the Frames ("modules’ later become "spaxels") using the median value of the flux (per wavelength)
from the 16 pixels that feed each module. The median spectrum is used to normalise the signal by
the next task, specTransCorr, to compute the transient correction.

» specTransCorr: Thistask identifies the discontinuitiesin the signal caused by cosmic ray hits, fits
the subsequent transients, and then correctsthe signal for these. Any signal which istoo damaged to
be corrected is instead flagged in a new mask: UNCORRECTED. To see these data, you can open
the Frames in slicedFrames in the Spectrum Explorer (Section 10.5).

 plotSignalBasic: the sametask as used previoudy (see explanation above).

» saveSlicedCopy: an optional save of the products just created.

Correct for transients: new ("with transients")

range scan pipeline script only

In the new range scan pipeline script there is a set of tasks for detecting and correcting the long- and
short-term transients. The end result of thisisasignal stream that has been corrected for transients, or
masked out where correction was not possible, and the signal levels of the different populations of data
have been normalised to the mean, in this way bringing down the scatter in the data and improving
the SNR. This latter part is essentially the same as performed in the original line scan pipeline script
by the flatfielding task, which is why in this new script there is no subsequent flatfielding step.

The first part isto plot a spectrum, then correct the long-term transients, and then over-plot the cor-
rected spectrum.

>>>>>> 4c Correct for transients

pbasi c = pl ot Si gnal Basi c(slicedFrames, slice=0, titleText="Start")
if verbose:
sl i cedSumary(sl i cedFranes)

slice =0
modul e = 12
ptrans = pl ot Transi ent (slicedFranmes, slice=slice, updown=1, nodul e=nodul e, \

col or=java. amt . Col or. bl ack, title="Transient Correction - Slice "\
+str(slice)+" Mddule = "+str(nodul e))
ptrans. get Layer (ptrans. get Layer Count ()-1).set Name(" Normal i zed flux [black]")
ptrans. get Legend() . set Vi si bl e(1)

sl i cedFranes = specLongTermiransCorr (sli cedFranes, cal Tree=cal Tree, \
ver bose=ver bose, appl yCorrecti on=1)

if verbose:
pars = slicedFranes.refs[slice].product[' MODELPARS']. data[nodul e, :]
n slicedFranes.refs[slice].product.signal[0,0,:].length()
t slicedFranes.refs[slice].product.status["FINETIME']. data/1l.e6
t -=1t[0]
X Doubl eld(range(n))
nmodel = pars[0] +par s[1] * EXP(par s[2] *x) +par s[3] *EXP(par s[4] *x) +par s[5]\
*EXP(par s[6] *x)
ptrans. addLayer (Layer XY(t, nodel , col or=j ava. awt . Col or. red, stroke=1.5))
ptrans. get Layer (ptrans. get Layer Count ()-1).set Name(" Model [red]")

73

Unchopped and Wavel ength switching pipelines Build 15.0.3262

 plotSignalBasic: is apipeline helper plot and is explained in Section 10.2. It produces a basic plot
of the signal of the central pixel in the central module of the instrument. To plot a different pixel
or module, specify the pixel and module to plot.

Tip
@ The PACS spectrometer detector array has a size of 18,25 (pixels,modules), with sci-
ence data being contained in pixels 1 to and including 16 only, for the first dimension.

» plotTransient: plotsthe data (black points) from the first science Frames (dlice = 1) for the central
module of the IFU (module = 12) normalised to the signal level in thefinal grating scan data-chunk.
The various grating scans cover the same wavelength range as each other (and there are at least
two grating scansin any observation): since the effect of atransient isto increase the signal levels,
atransient will make the first spectral scan stand out from those of later in the observation. The
second call to thistask plots the corrected data as red points.

» specLongTermTransCorr: Sudden differences in flux between two adjacent slices cause long-
term transients in the detector response. This task fits a transient model to the signal normalised to
the last wavelength scan, and applies the correction to the data.

The next step isto tackle the short-term transients.

pbasi ¢ = pl ot Si gnal Basi c(sl i cedFranmes, slice=0, titleText="Post LTT")
sl i cedFranmes = specUpDownTr ansi ent (sl i cedFr anes, cal Tree=cal Tr ee, ver bose=0)
pbasi ¢ = pl ot Si gnal Basi c(sl i cedFranmes, slice=0, titleText="Post UpDown")

sl i cedFranmes = specMedi anSpect run(sli cedFranes, cal Tree=cal Tr ee)
slicedFrames = specTransCorr (slicedFranes, cal Tree=cal Tree)
pbasi ¢ = pl ot Si gnal Basi c(sl i cedFranmes, slice=0, titleText="Post TC")

» plotSignalBasic: see above.

» specUpDownTransient: Thistask corrects transients while treating the up-scans and down-scans
separately, median-correcting all the scans to the global mean. The correction applied is at the
halfway point between each up- and down-scan.

» specMedianSpectrum: This task computes a first guess of the spectrum for each spatial module
of the Frames using the median value of the flux (per wavelength) from the 16 pixels that feed
each module.

» specTransCorr: Thistask identifies the discontinuities in the signal caused by cosmic ray hits, fits
the subsequent transients, and then correctsthe signal for these. Any signal which istoo damaged to
be corrected isinstead flagged in a new mask: UNCORRECTED. To see these data, you can open
the Frames in slicedFrames in the Spectrum Explorer (Section 10.5).

6.2.7. Spectral flatfielding: original line scan pipeline
script only

Spectral lines existing on top of medium or high-flux continuashould benefit from refining the spectral
flat fielding, and any other type of spectrashould also be at least dightly improved. It isrecommended
to compar e spectra obtained with and without spectral flat fielding, and to also check on the results
of the flatfielding as you do it. This particularly so lines on weak continua.

The flatfielding tasks are not done in the new ("with transients") pipeline script.

Before doing the flatfielding, you can chose to save the slicedFrames to pool. Then the data are con-
verted to the first of the cubes produced in the pipeline.

if saveQutput:
name=naneBasi s+"_sl i cedFr anes_B4FF"
try:
saveSl i cedCopy(sl i cedFranes, nanme, pool Locati on=out put Dir)
except:

74

Unchopped and Wavel ength switching pipelines Build 15.0.3262

print "Exception raised: ",sys.exc_info()
print "You may have to renove the directory: ", outputDir+'/'+nane

sl i cedCubes = specFranes2PacsCube(sl i cedFranes)
if verbose: slicedSummary(slicedCubes)

» specFrames2PacsCube: turn the individual Framesin the slicedFrames into PacsCubes heldin a
SicedPacsCubes product. Thisreally isonly arearrangement of the data. These cubes have aspatial
arrangement of 5x5 spaxels (created from the 25 modules), and aong the wavelength dimension
you will find the spectrafrom the 16 pixelsall packed together one after the other. The spectrafrom
these 16 spaxels may themselves be multiples, if the observer asked for repeats on the wavelength
range. At a minimum each pixel holds a spectrum from a grating scan up and one from a grating
scan down (i.e. one spectral range sampled twice).

The flatfielding is a multi-step process for these short wavelength range data. Spectral flatfielding is
to correct for the differences in the response of the 16 pixels of each of the 25 modul es/spaxels, with
respect to their 25 mean values. This should improve the SNR in the continuum of the subsequently
combined spectrum in each spaxel (combining is the next stage in the pipeline), and will correct for a
"spiking" effect in the final spectrathat can result if one scan in apixel isdiscrepant. The flatfielding
is performed in afew steps: (i) outliers are masked out, (ii) spectral lines are identified (so they can
be ignored), (iii) the mean continuum level of each pixel is then determined, and each is normalised
to the overall mean of the spaxel/module they belong to, and (iv) then masks and intermediate results
are cleaned up.

>>>>>> 5 Spectral Flat Fielding

1. Flag outliers and rebin

upsanple = 4

3 is nentioned in the pipeline scripts, but 4 is used in the SPG and el sewhere

waveG i d=wavel engt hGi d(sl i cedCubes, oversanpl e=2, upsanpl e=upsanpl e

cal Tree=cal Tree)

sl i cedCubes = activateMasks(slicedCubes, Stringld(["GLI TCH', " UNCLEANCHOP",\
"NO SYPI XELS", " RAWBATURATI ON', " SATURATI ON', " GRATMOVE", "BADPI XELS"]), \
excl usive = True)

sl i cedCubes specFl agQutliers(slicedCubes, waveGid, nSigma=5, nlter=1)

sl i cedCubes = activateMasks(slicedCubes, Stringld(["GLI TCH', " UNCLEANCHOP",\
"NO SYPI XELS", " RAWBATURATI ON', " SATURATI ON', " GRATMOVE", "QUTLI ERS", \
"BADPI XELS"]), exclusive = True)

sl i cedRebi nnedCubes = specWaveRebi n(sl i cedCubes, waveGi d)

2. Mask the spectral lines

wi dt hDetect = 2.5 # default val ue
t hreshol d = 10. # default val ue
wi dt hMask = 2.5 # default value
i neList=[]

sl i cedCubesMask = slicedMaskLi nes(slicedCubes, slicedRebi nnedCubes, \
l'ineList=[],w dt hDet ect =wi dt hDet ect, w dt hMask=wi dt hMask, threshol d=t hreshol d, \
copy=1, verbose=verbose, nmaskType="INLI NE', cal Tree=cal Tr ee)

3. Actual spectral flatfielding

sl opel nConti nuum = 1

sl i cedCubes = specFl at Fi el dLi ne(sl i cedCubesMask, scaling=1, copy=1, \
maxr ange=[55., 230.], sl opel nConti nuun¥sl opel nConti nuum naxScal i ng=2., \
maskType="OUTLI ERS_FF", offset=0, cal Tree=cal Tree, verbose=verbose) # see text for
maxRange advi ce

4. Renanme mask OUTLI ERS to QUTLI ERS B4FF (specFlagQutliers will refuse

to overwite OUTLI ERS) & deactivate mask | NLI NE

sl i cedCubes. renanmeMask(" QUTLI ERS", "QUTLI ERS_B4FF")

slicedCubes = deactivateMasks(slicedCubes, Stringld(["INLINE", "OUTLI ERS_B4FF"]))
if verbose: maskSummary(slicedCubes, slice=0)

5. Renobve internediate results
del waveGid, slicedRebi nnedCubes, slicedCubesMask

» Masks are activated. As discussed in Section 4.2.3 you may want to not include the RAWSATU-
RATION mask inthiscall (in all instances where it is caled).

75

Unchopped and Wavel ength switching pipelines Build 15.0.3262

e (1) Flag outliers and rebin. This: (A) masks outliers so they are not included when the flatfield-
ing task calculates its correction, and then (B) automatically identify spectral lines so they are not
included when the flatfielding is computed. For these it is necessary to run afew tasks that you will
also later encounter in the pipeline.

(A) wavelengthGrid creates a wavelength grid that is common to all spaxels. specFlagOutliers
runs with that wavelength grid, identifying outliers within the new wavelength grid bins, creating
amask called OUTLIERS.

(B) specWaveRebin spectrally re-grids the PacsCubes with the wavelength grid, to make PacsRe-
binnedCubes, and where the task activateM asks ensures that the identified bad data are not includ-
ed. The rebinned cubes created by this task are not used for anything except line identification by
the subsequent task slicedMaskLines; they are deleted at the end of the flatfielding process. You
can also create a list of spectra lines for slicedMaskLines to use, mainly useful if the automatic
identification does not find all the lines, or the absorption lines, in the spectra. In this case you do
not need to do the first step (#1 in the script snippet).

* (2) Mask thespectral lineswith slicedM askL ines, adding the spectral-line wavel engthsto the new
mask INLINE. SeeitsURM entry (whichiscalled "maskLines") for afull parameter list, but briefly:

* You can either specify alinelist (alist of central wavelengths) or opt for an automatic detection
of aspectral lines. If you have multiple, blended or absorption lines you want to flag out for the
continuum fitting part of the flatfielding, you should specify their wavelengthsin a linelist.

« If you specify alinelist then do not include " dlicedRebinnedCubes” in the call to the task, instead
fill in the parameter | i neLi st . (If you specify alinelist and ask for automatic identification,
the linelist will take precedent.) The line list is specified with the parameter | i neLi st andis
aPyList of wavelengths: e.g. | i nel i st =[52.4, 78.9, 124.4]

» The automatic line detection is done on the PacsRebinnedCubes created previously. The task
looks in the central spaxel and identifies emission lines as local maxima in the rebinned cube
(flux>calculated_local_rms*t hr eshol d). Thiswavelength region isthen excluded, for all pix-
els, in the subsequent continuum work. wi dt hDet ect sets the width of the box within which
the"local maxima' are checked for: thewidthisamultiplewi dt hDet ect of the FWHM (where
the FWHM is taken from a calibration file). If you have blended or wide lines but still use the
auto-identification, you may want to increase the width factors above the default.

« Note: slicedMaskLinesw