
PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 1

PACS Photometric Check : MADmap vs Photproject

Nicolas BILLOT & Babar ALI
NHSC

nbillot@ipac.caltech.edu

Résumé

This document presents a comparison of point source photometric measurements car-
ried out on maps generated by MADmap (1st and 3rd generation INVNTT files) and
Photproject. The aim is to characterize the photometric robustness of MADmap as a
mapmaker against the better tested Photproject/highpass-filtering combination.
It appears that MADmap absolute photometry is well within 5% of Photproject fluxes in
both channels. The different flavors of MADMap preprocessings do not alter point source
photometry. Yet, the third generation of MADMap Calibration files do change the photo-
metry by 10-25% with respect to the first generation of INVNTT files. Lastly, uncertainties
on MADmap measurements are on average systematically higher than Photprojects’ by
∼ 20−40% due to the very aggressive filter settings used in combination with Photproject.

1 Introduction

The photometric calibration of the PACS Photometer uses the highpass-filtering/Photproject
combination. Highpass filtering is used to filter out the long timescale variations from the data
cube that may originate from the detectors 1/f noise, or from the actual extended emission
present in the sky when the observation involves telescope motion. If well parameterized, the
output of the highpass-filtering/Photproject data reduction is a flat-background map, devoid
of any extended emission or stripping, containing contrasted compact sources.
There are several mapmakers capable of filtering out instrumental low-frequency noise while
leaving the celestial extended emission unaltered. MADmap is one of them, and it is the official
PACS pipeline mapmaker for extended emission. As such, we need to characterize the photo-
metric quality of this algorithm as far as point sources are concerned.
As of today, MADmap shows strong cross-like artifacts arounds bright sources, which prevents
us from doing any reliable point-source photometry on bright sources. It was therefore decided
to use observations of faint extragalactic sources to ensure point sources are not affected by
this artifact. I chose three deep fields of galaxy clusters to ensure many faint sources are in the
field.

Here are the OBSIDs of the observations :

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 2

– [1342189941, 1342189942] for PEP - GOODS-S scan and cross-scan observations at 70 and
160 microns.

– [1342189151, 1342189152] for the Herschel Lensing Survey (HLS) scan and cross-scan obser-
vations on Abell 383 at 100 and 160 microns.

– [1342188464, 1342188465] for LoCuSS scan and cross-scan observations of Abell 1914 at 100
and 160 microns.

2 The data reduction

The aim of this report is to compare the photometric quality of two mapmaking approaches.
Maps are therefore created from the same calibrated level 1 data cube so that any differences
in the final maps would originate from the mapmakers only . Each OBSID is reduced to level1,
scan and cross-scan OBSIDs are concatenated, and maps are created with the two different
mapmakers. The data reduction was carried out with HIPE 5.0 975.

2.1 Pre-processing

The script toLevel1.py (see section B.1 in the appendix) that takes the data from level0 to level1
contains all the steps of the standard pipeline, including the MMT deglitching of the timelines
and the second order deglitching of the map index. In addition, I removed pixel-to-pixel offsets
as well as the global drift of the whole focal plane as part of the pre-processing 1 necessary for
the MADmap algorithm (baseline removal is required to mitigate correlated thermal noise in
the focal plane).

I tried different flavors of the baseline removal preprocessing :
– Default pre-processing - The median signal of the whole focal plane, as a function of time,

is fitted with a second order polynomial. This polynomial is then subtracted from each pixel
timelines. This is done by the module photGlobalDriftCorrection which is distributed with
the MADMap tar ball, thus the default pre-processing.

– Segmented pre-processing - In certain cases, especially right after a cryocooler recycling,
the beginning of an observation may exhibit strong drifts. We therefore wrote a routine
to segment an observation, and apply a linear fit to the individual segments. The length
of the segments is always an integer number of scan legs so that the break between two
consecutive segments, which would introduce discontinuities in the drift-corrected timelines,
occurs outside of the map. This type of pre-processing is quite efficient at correcting the
relatively steep signal drifts after cooler recycling.

– Smooth pre-processing - In the present case, assuming there is no extended emission in
the chosen deep fields, any slow drift in the signal comes solely from the electronics. I used
a BoxCarFilter of width 10000 to obtain a smoothed version of the median timeline, and I
subtracted it from each pixel timelines. This approach is only possible because there is no
extended emission in the fields considered for this analysis. The smooth pre-processing is also

1. Note that this pre-processing will not impair the highpass-filtering/Photproject reduction since the high-
pass filtering is in fact a lot more aggressive, in terms of filtering spatial scales, than the global baseline removal.

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 3

Figure 1 – Maps obtained in the green band (100 µm) from LoCuSS observations 0.6 × 0.6
deg2 (P.I. G. Smith). MADmap and HPF/Photproject reductions are on the left and right
respectively. The MADMap reduction was obtained with a smooth pre-processing and version 1
of the INVNTT files.

very close to the high-pass filtering, but with a quite larger filter width. It is certainly the
most accurate baseline removal approach in this case.

2.2 MapMaking

For both MADMap and HPF/photproject approaches, the final map pixel size is set to be the
native bolometer pixel size (3.2” and 6.4” for the blue and red channel, respectively).
In the case of Photproject, a first map is created from which a 3D mask is derived with thre-
sholds of 0.008 and 0.0025 in the BL and R filters, respectively (see script makeMaps.py in
section B.2 of the appendix). This mask is collapsed to a 2D map to check that point sources
only have been properly thresholded, and that a reasonable fraction of the final map is mas-
ked for the subsequent highpass filtering. The extendedMasking = True keyword is used in
the photReadMaskFromImage module. Filter widths of 20 and 30 frames are used for the BL
and R datasets, respectively. As for MADmap, a maximum relative error of 10−5 is set as the
convergence criterion, and the version 1 and 3 of the calibration files (InvNTT noise filters)
were tested. Figure 1 presents typical maps obtained for the LOCUSS field in the 100 µm band.

It takes about 7 hours to run MADMap or HPF/photproject (including 2 passes for masking
purposes + 2D mask creation) to create maps for the 3 fields in the two bands when allocating
64Gb of memory on our big compute machine nhsccmp4.

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 4

3 The photometry

I exported the generated maps, and carried out aperture photometry in IDL using the centroid
(CNTRD.pro) to center the aperture, and APER.pro to measure the flux within 5” and 9”
apertures in the Blue and Red channels, respectively. I therefore applied aperture corrections
of 1.558, 1.680 and 1.524 in the Blue, Green and Red filters according to the information pu-
blished on the HSC website in the release note 2.

Over the 3 fields, I measured a total of 37 sources in both bands, in both mapmaking styles with
the 3 types of pre-processing mentioned in section 2.1. The results for a smooth pre-processing
and version 1 of the INVNTT files are presented in figure 2 and in table 1 in the appendix.
We find a tight correlation, over almost two orders of magnitudes, between the fluxes measured
on MADmaped and Photprojected maps (left column on the figure). The figure also shows the
histogram and statistics of the flux ratios between MADmap and Photproject fluxes by filter.
The standard deviation of this ratio is ∼2% (5%) in the Blue (Red) channel. The median flux
ratio in the Red filter is 1.07, which might indicate a slight systematic overestimation of the
fluxes in MADmaps.

I have repeated this analysis for 3 different apertures (5”->10”->20” / 9”->15”->25” in the
blue/red channel), and it shows that the correlation stays very tight. However larger apertures
tends to increase the photometric uncertainty as more noisy pixels are added to the total flux.
The final fluxes also tend to slightly increase with larger apertures, but this is possibly due to
inappropriate aperture correction factors (the aperture correction I use was derived on a PSF
scan at slow speed, i.e narrower core).

In addition, the measurement uncertainties (right column on figure 2) are systematically larger
in the case of MADmap. This is primarily due to the INVNTT files correlation lengths being
longer than the width of the highpass-filter, so that a significant fraction of the middle-frequency
noise is left in the maps created with MADMap while it is rejected with the HPF/photproject
combination. Highpass filter widths of 20 and 30 in the blue and red channels are indeed pretty
aggressive settings. For the settings used in this analysis, MADmap uncertainties are typically
about 20-40% higher than Photproject uncertainties.

Furthermore, I have checked that the photometry is not altered by the type of pre-processing
applied to the data cube (see section 4.1 for details).

Lastly, I have compared the photometry for maps created from MADmap with the first and
third generation of calibration files, or INVNTT files. Figure 3 shows that the two versions of
the INVNTT files do not give consistent results. It turns out that the photometry from 3rd
generation maps is systematically lower than 1st generation maps by 10-25%. This results was
unexpected and is still under investigation.

2. http ://herschel.esac.esa.int/Docs/AOTsReleaseStatus/PACS_ScanMap_ReleaseNote_23Feb2010.pdf

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 5

Figure 2 – Fluxes and corresponding uncertainties measured in the three fields for the two
mapmaking approaches. The two lines on the left plot are linear fits to the data per filter, the fit
parameters are shown on the graph. The two black lines on the right plot have slopes of 1 and
2 for comparison purposes. MADMap reductions were obtained with a smooth pre-processing
and version 1 of the calibration files.

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 6

Figure 3 – Correlation between the photometry derived from maps obtained with MADMap
calibration files version 1 and 3. The third generation of INVNTT files appears to change the
photometry by 10-25%. Symbols and colors are coded as in figure 2.

4 Impact of pre-processing

4.1 On the photometry

The baseline removal in the data cube only affects large time scales, equivalently large spatial
scale in the projected maps. So we expect the photometry of point sources, highest spatial
frequencies in the image, to be unaffected by the different flavors of the pre-processing. Indeed,
we derived maps for the three pre-processing methods enumerated in section 2.1, and we find
that the photometry is consistent within 1% as shown in figure 4.

4.2 On the background

In general, the Photprojected maps exhibit a flat background, devoid of any large scale struc-
tures, as expected ; whereas MADmaps consistently present low-amplitude brightening/darkening
at some somewhat medium spatial scales. Those darkening/brightening of the background are
generally reduced when using the segmented or smoothed pre-processing compared to the de-
fault pre-processing (mostly because the modeled drifts get closer to the actual signal drifts).
Figure 5 shows the evolution of the background for various pre-processing approaches. Seg-
menting per scan legs or subtracting a smoothed version of the median timeline improves
considerably the flatness of the background. Now, figures 6 and 7 present histograms of the
background levels extracted from various maps obtained with HPF/photproject and MADMap.
The pixel-to-pixel dispersion is slightly larger for MADMap maps, which is expected conside-
ring the very tight filtering of the HPF/photproject approach. The smooth pre-processing gives
better results than the default pre-processing. Note that the signal offset between the different

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 7

Figure 4 – Correlation between the photometry derived from maps obtained with MADMap
and various pre-processing approaches. It appears that the choice of the pre-processing does
not change the photometry. Symbols and colors are coded as in figure 2.

maps is a known feature ; it means that the surface brightness of the maps is not absolutely
calibrated.

5 Conclusions

The absolute photometric calibration of MADmap is consistent with the highpass-filtering/Photproject
approach when using the first generation of calibration files. More work is required to fully vali-
date/calibrate the third generation of calibration files (possibly using the naive map to calibrate
the fluxes). The various pre-processing approaches tested in this report do not alter the pho-
tometry but give best satisfying results for the background when using a segmented or smooth
pre-processing. Finally, MADmap overall point source photometric quality is noticeably worst
than highpass-filtering/Photprojecting by ∼20-40% due to the stringent settings used in the
HPF/photproject approach.

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 8

Figure 5 – Maps obtained at 100 µm from the Locuss program with MADmap using 3 different
pre-processing approaches : default (left), segmented per scan legs (middle) and smooth pre-
processing (right).

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 9

Figure 6 – Histograms of the background level for the LOCUSS field in the two bands (100 µm
on the left and 160 µm on the right) for the HPF/photproject (top row) and MADMap (bottom
row) mapmaking approaches. The MADmap backgrounds were obtained with the smoothed
pre-processing and version 3 of the INVNTT files.

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 10

Figure 7 – As in figure 6, but with MADmap backgrounds obtained with the default pre-
processing and version 3 of the INVNTT files.

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 11

A The Photometry

Table 1: Photproject, MADmap and Scanamorphos photometry comparison.

Source # RA Dec Band Photproject MADmap Scanamorphos
[mJy] [mJy] [mJy]

Field : GOODS-S

1 53.083 -27.690 BS 16.51 ± 1.26 14.11 ± 1.56
R 20.16 ± 3.80 12.63 ± 3.60

2 53.146 -27.925 BS 69.01 ± 1.20 60.59 ± 1.30
R 249.8 ± 2.56 199.3 ± 3.77

3 53.163 -27.899 BS 15.74 ± 0.89 13.10 ± 1.23
R 22.12 ± 2.78 24.11 ± 2.35

4 53.185 -27.861 BS 82.86 ± 1.14 74.00 ± 1.41
R 91.47 ± 2.39 72.09 ± 3.27

5 53.075 -27.850 BS 14.93 ± 1.20 15.95 ± 1.33
R 70.73 ± 2.83 65.88 ± 2.98

6 53.117 -27.778 BS 16.19 ± 1.16 16.10 ± 1.32
R 33.37 ± 2.27 30.03 ± 3.28

7 53.055 -27.711 BS 13.83 ± 1.16 9.593 ± 1.25
R 27.59 ± 2.45 20.19 ± 3.20

8 53.125 -27.740 BS 100.7 ± 1.65 92.92 ± 1.62
R 203.7 ± 3.28 171.5 ± 3.27

Field : locuss_abell1914

1 216.70 37.8584 BL 44.56 ± 1.22 47.58 ± 1.82
R 59.05 ± 3.52 66.76 ± 4.65

2 216.54 37.9564 BL 36.94 ± 1.38 31.59 ± 1.79
R 46.42 ± 3.75 22.98 ± 4.04

3 216.48 37.9536 BL 118.5 ± 1.46 118.7 ± 1.98
R 146.6 ± 3.03 118.3 ± 3.56

4 216.50 37.8971 BL 51.00 ± 1.30 53.63 ± 1.77
R 34.70 ± 3.74 35.61 ± 6.15

5 216.65 37.9856 BL 26.89 ± 1.43 32.00 ± 1.83
R 51.90 ± 3.48 43.40 ± 5.18

6 216.74 37.9894 BL 44.03 ± 1.32 42.70 ± 2.08
R 60.81 ± 3.87 56.98 ± 5.04

7 216.53 37.8176 BL 36.60 ± 1.56 36.22 ± 1.92
R 43.29 ± 3.92 32.71 ± 4.48

8 216.48 37.8294 BL 52.22 ± 1.50 51.65 ± 2.12
R 84.10 ± 3.49 67.73 ± 3.54

9 216.45 37.9427 BL 28.84 ± 1.29 26.48 ± 1.92
R 41.21 ± 2.49 41.28 ± 3.34

10 216.32 37.9875 BL 70.11 ± 1.59 65.35 ± 1.82
R 77.88 ± 4.65 64.81 ± 5.53

11 216.28 37.8504 BL 297.9 ± 1.67 277.2 ± 1.77
R 324.8 ± 3.49 243.1 ± 3.82

12 216.26 37.8976 BL 63.55 ± 2.18 53.26 ± 2.24
R 99.42 ± 5.44 76.36 ± 5.95

13 216.39 37.7989 BL 79.88 ± 1.53 80.77 ± 1.73
R 125.2 ± 3.18 87.51 ± 3.72

14 216.37 37.7878 BL 60.34 ± 1.60 57.22 ± 1.89
R 96.94 ± 4.14 98.57 ± 4.26

15 216.31 37.7856 BL 72.05 ± 1.69 73.08 ± 1.91
R 73.39 ± 4.10 70.82 ± 4.04

16 216.44 37.8000 BL 94.21 ± 1.40 84.61 ± 1.80
R 127.9 ± 3.96 112.8 ± 3.13

17 216.47 37.8018 BL 295.8 ± 1.58 264.8 ± 1.90
R 277.5 ± 4.33 238.5 ± 5.08

18 216.51 37.7862 BL 44.09 ± 1.34 46.83 ± 1.63

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 12

Source # RA Dec Band Photproject MADmap Scanamorphos
[mJy] [mJy] [mJy]

R 59.55 ± 3.00 53.68 ± 4.36

19 216.45 37.7094 BL 43.49 ± 1.53 39.34 ± 1.86
R 68.34 ± 4.24 59.74 ± 5.44

20 216.49 37.6216 BL 42.37 ± 1.99 41.08 ± 2.48
R 62.54 ± 2.52 61.41 ± 7.06

21 216.62 37.7901 BL 37.55 ± 1.40 32.05 ± 2.00
R 50.55 ± 3.50 38.29 ± 3.33

22 216.70 37.6655 BL 61.58 ± 1.60 63.16 ± 2.33
R 69.04 ± 4.16 61.14 ± 5.29

Field : HLS_abell383

1 41.998 -3.5421 BL 31.33 ± 0.39 30.90 ± 0.69
R 51.49 ± 1.01 31.73 ± 1.52

2 42.010 -3.5475 BL 30.58 ± 0.48 30.45 ± 0.57
R 41.04 ± 1.50 33.19 ± 1.66

3 42.031 -3.5873 BL 41.83 ± 1.01 51.20 ± 2.38
R 71.94 ± 2.68 59.71 ± 5.89

4 42.020 -3.5713 BL 19.96 ± 1.28 28.16 ± 1.06
R 39.31 ± 2.15 31.34 ± 3.04

5 42.005 -3.5318 BL 23.84 ± 0.59 21.56 ± 0.56
R 42.60 ± 1.49 33.58 ± 1.70

6 42.050 -3.4908 BL 137.5 ± 1.22 110.4 ± 3.04
R 169.5 ± 5.05 131.3 ± 6.64

7 41.976 -3.5398 BL 9.992 ± 0.86 11.80 ± 1.17
R 25.58 ± 1.37 28.58 ± 2.90

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 13

B Scripts

B.1 toLevel1.py

This script processes the data up to level-1, that is right before the mapmaking processing.
We reduce GOODS-S data and build maps with Photproject and MADmap to compare the photometry in the two schemes.
GOODS-S was chosen because sources are faint, hence no point source artefact with MADmap,
but enough sources to do many aperture photometry to have statistics.

from java.util import Date
print ""
print "Start Processing at :" , Date()
print ""

from herschel.ia.numeric.toolbox.basic import Sigclip
from herschel.pacs.spg.phot import IIndLevelDeglitchTask

verbose = 0
preprocess=0
secondOrderDeglitch=0

execfile("photMarkSegments.py")
#execfile("PhotGlobalDriftCorrectionTask.py")
execfile("photMarkScanLegs.py")
execfile("my_globalDriftCor.py")

fa=FitsArchive()

calTree=getCalTree()

field = [’GOODS-S’, ’locuss_abell1914’, ’HLS_Egami_abell383’]
field = [’GOODS-S’]
nField = len(field)

for iField in range(nField):
print ’’
print "Reducing Field: "+ field[iField]
if preprocess == 1:

outdir ="/herscheldata/pacs/nbillot/FluxCal/MADmap_Photproject/"+field[iField]+’/reprocess_segmented_per_scanleg/’
if preprocess == 2:

outdir ="/herscheldata/pacs/nbillot/FluxCal/MADmap_Photproject/"+field[iField]+’/reprocess_segmented/’
elif preprocess == 3:

outdir ="/herscheldata/pacs/nbillot/FluxCal/MADmap_Photproject/"+field[iField]+’/reprocess_smooth/’

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 14

else:
outdir ="/herscheldata/pacs/nbillot/FluxCal/MADmap_Photproject/"+field[iField]+’/’

datadir="/herscheldata/pacs/nbillot/FluxCal/MADmap_Photproject/pool/"

if field[iField] == ’GOODS-S’:
data from GOODS (BL/R)
obsids=[1342189939,1342189940] # this one has a dark trail in it....!
obsids=[1342189941,1342189942]

elif field[iField] == ’HLS_Egami_abell383’:
data from E. Egami program: Abell 383 on OD 242 (BL/R)
obsids=[1342189151,1342189152]

elif field[iField] == ’locuss_abell1914’:
data from Locuss program: Abell 1914 (BL/R)
obsids=[1342188464,1342188465]

else:
obsids=0

outprefix = [’scan’,’xscan’]

skip=1000

channels = ["red", "blue"]
channels = ["blue"]
for iCh in range(len(channels)):

channel=channels[iCh]
print ’ Reducing ’+channel+’ channel’

Processing starts here.

first=True
i=0
for iobsid in obsids:

print ’ Reducing ’+outprefix[i]
obs = getObservation(iobsid,poolLocation=datadir)
pp = obs.auxiliary.pointing
if channels[iCh]==’blue’:

tmp_frames=obs.level0.refs["HPPAVGB"].product.refs[0].product
fix the ’Status’ in case it is erroneous
wpr = tmp_frames.getStatus("WPR")
bands = tmp_frames.getStatus("BAND")
idGreen = wpr.where(wpr == 0)
idBlue = wpr.where(wpr == 1)
if idGreen.length()>0:

if bands[idGreen][0]==’BS’:
print ’ WARNING for Green filter : WPR =0 was erroneously assigned BS now reset to BL ’

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 15

bands[idGreen] = String(’BL’)
band = ’BL’

if idBlue.length() > 0:
if bands[idBlue][0] == ’BL’:

print ’ WARNING for Blue filter : WPR =1 was erroneously assigned BL now reset to BS ’
bands[idBlue] = String(’BS’)
band = ’BS’

tmp_frames.setStatus("BAND",bands)
#
tmp_frames = obs.level0.refs["HPPAVGB"].product.refs[0].product
band=’BL’

elif channels[iCh]==’red’:
tmp_frames=obs.level0.refs["HPPAVGR"].product.refs[0].product # to get the red frames
band=’R’

oep = obs.auxiliary.orbitEphemeris
horizons = None
isSso = False
if (obs.meta.containsKey("naifid")) :

if (obs.meta["naifid"].value != 0):
isSso = True

timeCorr = obs.auxiliary.timeCorrelation
photHK=obs.level0.refs["HPPHK"].product.refs[0].product["HPPHKS"]
tmp_frames = findBlocks(tmp_frames, calTree=calTree)
tmp_frames = detectCalibrationBlock(tmp_frames)
tmp_frames = removeCalBlocks(tmp_frames)
tmp_frames = tmp_frames.select(Int1d.range(tmp_frames.signal.dimensions[2]-1-skip)+skip)
tmp_frames = photFlagBadPixels(tmp_frames, calTree=calTree)
if (channel == ’blue’):

blue_badpix=calTree.photometer.badPixelMask.blue
blue_badpix[2,30]=1
tmp_frames.setMask("BADPIXELS",blue_badpix)

tmp_frames = photFlagSaturation(tmp_frames, calTree=calTree, hkdata=photHK)
tmp_frames = photConvDigit2Volts(tmp_frames, calTree=calTree)
tmp_frames = convertChopper2Angle(tmp_frames, calTree=calTree)
tmp_frames = photMMTDeglitching(tmp_frames, incr_fact=2,mmt_mode=’multiply’, scales=4, nsigma=5)
if verbose:

MMTMask = tmp_frames.getMask(’MMT_Glitchmask’)
print ’MMT deglitching has flagged ’+ str(MMTMask.where(MMTMask==True).length()/tmp_frames.signal.dimensions[2])+" pixels per frame"

tmp_frames = photRespFlatfieldCorrection(tmp_frames, calTree = calTree)
frames = photDriftCorrection(frames, calTree=calTree)
tmp_frames = photAddInstantPointing(tmp_frames,pp,orbitEphem = oep)
tmp_frames = photAssignRaDec(tmp_frames, calTree=calTree)
Subtract pixel-to-pixel offsets
if preprocess == 1:

tmp_frames=photOffsetCorr(tmp_frames)

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 16

Define segments to apply segmented fit to the obsid
segments = photMarkSegments(tmp_frames,binsize=300000) # per entire number of scan legs close to binsize
#segments = photMarkScanLegs(tmp_frames) # per scan leg
nSeg = int(MAX(segments))
if verbose:

print "The data stream is segmented into "+str(nSeg)+" pieces"
for iblk in range(1,nSeg+1):

q = segments==iblk
sel = q.where(q)
new_frames = tmp_frames.select(sel)
my_binsize=1000
make sure there are enough points in the segment to fit the model
if sel.length() > my_binsize:

photModuleDriftCorrection(new_frames,doPlot=0,q1=-100., q2=100., \
datadir=outdir,outprefix=outprefix[i]+’segment’+str(iblk))

photGlobalDriftCorrection(new_frames,model=1,verbose=verbose,doPlot=0,binsize=my_binsize,\
datadir=outdir,outprefix=outprefix[i]+’segment’+str(iblk),order=1)

tmp_frames["Signal"].data[:,:,sel.toInt1d()[0]:sel.toInt1d()[-1]+1] = new_frames.signal[:,:,:]
del(new_frames)
#

if preprocess == 2:
tmp_frames=photOffsetCorr(tmp_frames)
my_binsize=1000
#photModuleDriftCorrection(tmp_frames,doPlot=0,q1=-100., q2=100., \
datadir=outdir,outprefix=outprefix[i]+’segment’+str(iblk))
photGlobalDriftCorrection(tmp_frames,model=1,verbose=verbose,doPlot=0,binsize=my_binsize,\

datadir=outdir,outprefix=outprefix[i],order=2)
if preprocess == 3:

tmp_frames=photOffsetCorr(tmp_frames)
binsize = 10000
tmp_frames = my_globalDriftCor(tmp_frames, binsize)

System.gc()
if secondOrderDeglitch:

photProject(tmp_frames, deglitch = True, slimindex=True)
index = photProject.getValue("index")
deg = IIndLevelDeglitchTask()
s = Sigclip(10,7, outliers = "both")
img = deg(index, tmp_frames, mask = True, map = False, algo = s)
del(index, img)

if verbose:
IIndMask = tmp_frames.getMask(’2nd level glitchmask’)
print ’IInd level deglitching has flagged ’+ str(IIndMask.where(IIndMask==True).length()/tmp_frames.signal.dimensions[2])+" pixels per frame"

fa.save(outdir+"Frames_Level1_"+iobsid.toString()+"_"+channel+".fits",tmp_frames)
if first:

frames=tmp_frames.copy()

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 17

first=False
else:

frames.join(tmp_frames)
i=i+1
System.gc()

del(tmp_frames)
print "done with pre processing"

fa.save(outdir+’frames_’+band+’_’+(obsids[0]).toString()+’+1_preMapMaking.fits’,frames)

print ""
print "End processing at :" , Date()
print ""

B.2 makeMaps.py

Build the maps from the same level-1 data cube
MADmap first
then Photproject

from java.util import Date
print ""
print "Start Processing at :" , Date()
print ""

fa=FitsArchive()
fa_SR = FitsArchive(reader=FitsArchive.STANDARD_READER)

calTree=getCalTree()

field = [’GOODS-S’, ’locuss_abell1914’, ’HLS_Egami_abell383’]
field = [’GOODS-S’]
nField = len(field)

invntt_version = ’old’
#invntt_version = ’old’from herschel.spire.ia.pipeline.scripts.POF5.POF5_tasks import *
madmap_process = 0
photproj_process = 1
mask_threshold = 1

for iField in range(nField):
print ’’

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 18

print ’Processing field: ’+ field[iField]
if field[iField] == ’GOODS-S’:

data from GOODS (BS/R)
obsids=[1342189939,1342189940] # this one has a dark trail in it....!
obsids=[1342189941,1342189942]
bandBlue = ’BS’
rastar_deg = Double1d([53.085035, 53.102421, 53.041072, 53.083373, 53.188267, 53.197423, 53.146507, 53.163902, 53.185341, 53.07461, 53.115778, 53.187622, 53.071202, 53.054994, 53.12447])
decstar_deg = Double1d([-27.8739, -27.91286, -27.744713, -27.689888, -27.9108, -27.712945, -27.926188, -27.900044, -27.861595, -27.850831, -27.779594, -27.790347, -27.7191, -27.712429, -27.741153])

elif field[iField] == ’HLS_Egami_abell383’:
data from E. Egami program: Abell 383 on OD 242 (BL/R)
obsids=[1342189151,1342189152]
bandBlue = ’BL’
rastar_deg = Double1d([41.998211, 42.010878, 42.032196, 42.020764, 42.005317, 42.051039, 41.976585])
decstar_deg = Double1d([-3.5421264, -3.5473686, -3.5877629, -3.5717286, -3.5319508, -3.490939, -3.5402756])

elif field[iField] == ’locuss_abell1914’:
data from Locuss program: Abell 1914 (BL/R)
obsids=[1342188464,1342188465]
bandBlue = ’BL’
rastar_deg = Double1d([216.70035, 216.54417, 216.48013, 216.50575, 216.65858, 216.74065, 216.53924, 216.48476, 216.45697, 216.32404, 216.28572, 216.26729, 216.39779, 216.37681, 216.31019, 216.44952, 216.47295, 216.50946, 216.45628, 216.48974, 216.62324, 216.70932])
decstar_deg = Double1d([37.858461, 37.956703, 37.953817, 37.897559, 37.985951, 37.989909, 37.817732, 37.829512, 37.942748, 37.987505, 37.85063, 37.897478, 37.799164, 37.788563, 37.785822, 37.800165, 37.801859, 37.786958, 37.710245, 37.621777, 37.790208, 37.665311])

else:
obsids=0

#
channels = ["red", "blue"]
channels = ["blue"]
for iCh in range(len(channels)):

channel=channels[iCh]
if channel == "red":

band=’R’
outpixsz=6.4
hpfwidth=30 # high pass filtering width
#hpfwidth=50
threshold = 0.0025
distFilter = 35.0

else:
band=bandBlue
outpixsz=3.2
hpfwidth=20 # high pass filtering width for green filter in non-GOODS-S data
#hpfwidth=30 # high pass filtering width for blue filter in GOODS-S data
#hpfwidth=40
threshold = 0.0008
distFilter = 30.0

#
The drift correction is now applied per obsid
#frames=photOffsetCorr(frames)

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 19

#photGlobalDriftCorrection(frames,model=1,verbose=verbose,doPlot=True,datadir=outdir)
#
if madmap_process:

#outdir ="/herscheldata/pacs/nbillot/FluxCal/MADmap_Photproject/"+field[iField]+’/reprocess_segmented_per_scanleg/’
outdir ="/herscheldata/pacs/nbillot/FluxCal/MADmap_Photproject/"+field[iField]+’/reprocess_segmented/’
#outdir ="/herscheldata/pacs/nbillot/FluxCal/MADmap_Photproject/"+field[iField]+’/reprocess_smooth/’
fileframe = outdir+’frames_’+band+’_’+(obsids[0]).toString()+’+1_preMapMaking.fits’
frames = fa.load(fileframe)
print ’ Restoring: ’+fileframe
print ’ Processing channel: ’+channel

print ’ Processing MADMap’
frames.setStatus("OnTarget",Bool1d(frames.signal.dimensions[2],False))
otf=frames.getStatus("OnTarget")
bbid=frames.getStatus("BBID")
q=(bbid==215131301)
sel=q.where(q)
otf[sel]=True
frames.setStatus("OnTarget",otf)

scale = 1.0
crota2 = 0.0
maxRelError = 1.e-6
maxIterations = 500

tod = makeTodArray(frames,scale,crota2)

naivemap = runMadMap(tod,calTree,maxRelError,maxIterations,True)
fa.save(outdir+"naivemap_"+band+".fits",naivemap)

use old Red invntt
print "MADmap with old invntt"
if channel=="red":
cprod = getCalProduct("Photometer","InvnttRed",1)
else:
if band=="BS":
cprod = getCalProduct("Photometer","InvnttBS",1)
else:
cprod = getCalProduct("Photometer","InvnttBL",1)
ct = getCalTree()
ct = setInvntt(cprod["Contents"].data,ct,band=band)

if invntt_version == ’old’:
print "MADmap with old invntt"
if channel=="red":

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 20

cprod = getCalProduct("Photometer","InvnttRed",1)
else:

if band=="BS":
cprod = getCalProduct("Photometer","InvnttBS",1)

else:
cprod = getCalProduct("Photometer","InvnttBL",1)

#calTree = getCalTree()
ct = setInvntt(cprod["Contents"].data,calTree,band=band)
madmap_outfile = outdir+"madmap_"+band+"_G1invntt.fits"

else:
print "MADmap with new invntt"
if channel == ’red’:

if invntt_version == ’v3_50’:
invntt_filename = ’/home/nbillot/iascripts/my_CalFiles/INVNTT/invntt_Red_v3_raw50.fits’
madmap_outfile = outdir+"madmap_"+band+"_G3invntt50.fits"

else:
invntt_filename = ’/home/nbillot/iascripts/my_CalFiles/INVNTT/invntt_Red_v3_raw2000.fits’
madmap_outfile = outdir+"madmap_"+band+"_G3invntt2000.fits"

else:
invntt_filename = ’/home/nbillot/iascripts/my_CalFiles/INVNTT/invntt_Blue_v3_raw100.fits’
madmap_outfile = outdir+"madmap_"+band+"_G3invntt100.fits"

print ’Presumably using ’+ invntt_filename
rawdat = Double2d(fa_SR.load(invntt_filename)["PrimaryImage"].data)
#calTree = getCalTree()
ct=setInvntt(rawdat,calTree,band=band)

dummy MADmap run -- buggy first try
dummy = runMadMap(tod,ct,1.e-2,maxIterations,False)
#fa.save(outdir+"madmap_dummy_"+band+"_G1invntt.fits",dummy)
madmap=runMadMap(tod,ct,maxRelError,maxIterations,False)
#
Display(madmap, title=’MADMap, ’+field[iField]+’, ’+channel)
fa.save(madmap_outfile,madmap)
del(tod,naivemap,madmap)

#
##
Photproject
import for masked high-pass
#from herschel.pacs.spg import PhotReadMaskFromImageTask
#
if photproj_process:

outdir ="/herscheldata/pacs/nbillot/FluxCal/MADmap_Photproject/"+field[iField]+’/’
#outdir ="/herscheldata/pacs/nbillot/FluxCal/MADmap_Photproject/"+field[iField]+’/reprocess_segmented_per_scanleg/’
#outdir ="/herscheldata/pacs/nbillot/FluxCal/MADmap_Photproject/"+field[iField]+’/reprocess_segmented/’
#outdir ="/herscheldata/pacs/nbillot/FluxCal/MADmap_Photproject/"+field[iField]+’/reprocess_smooth/’
fileframe = outdir+’frames_’+band+’_’+(obsids[0]).toString()+’+1_preMapMaking.fits’

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 21

frames = fa.load(fileframe)
print ’ Restoring: ’+fileframe
print ’ Processing channel: ’+channel

print ’ Processing Photproject’
if mask_threshold:

Need first pass to make the map from which the mask will be derived
#frames = fa.load(fileframe)
frames = highpassFilter(frames,hpfwidth)
frames = frames.select(frames.getStatus("BBID") == 215131301l)
map1 = photProject(frames, calTree=calTree,calibration=True,outputPixelsize=outpixsz)
#
#Display(map1)
fa.save(outdir+"map1_"+band+".fits",map1)
#
Second pass to apply the highpass filter while providing a mask
#threshold=STDDEV(map1.image[map1.image.where(ABS(map1.image) > 1e-6)]) # derive the standard deviation of the map where there is signal (good for mini scan maps)
print ’ Threshold : ’+str(threshold)
maskMap = map1
frames = fa.load(fileframe)
frames = photReadMaskFromImage(frames, maskMap, extendedMasking=True,maskname="HighpassMask", threshold=threshold,calTree = calTree)
frames = highpassFilter(frames,hpfwidth,maskname="HighpassMask")
frames = frames.select(frames.getStatus("BBID") == 215131301l)
map2 = photProject(frames, calibration=True,outputPixelsize=outpixsz,calTree=calTree)
#
Display(map2, title=’PhotProject + HPF, ’+field[iField]+’, ’+channel)
fa.save(outdir+"map2_"+band+".fits",map2)
del(map1,map2)
#
Check the 2D mask
#temp = frames.copy()
#temp["Signal"].data = Double3d(temp.mask["HighpassMask"].data)
#mask2d = photProject(temp, calibration=True,outputPixelsize=outpixsz,calTree=calTree)
#del(temp)
#Display(mask2d, title=’HPF Mask, ’+field[iField]+’, ’+channel)
#fa.save(outdir+"mask2D_"+band+".fits",mask2d)
#del(maskMap)

else:
Now define the ignore mask and fill it appropriately
The sense of the mask is
False = no star
True = Yes, star present
#
mask_restore = 0
if mask_restore == 0:

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 22

newmask = Bool3d(frames.dimensions[0],frames.dimensions[1],frames.dimensions[2])
frames.addMaskType(’STAR’,"Mask bright stars")
#
deg2rad = Math.PI / 180.
rastar = rastar_deg * deg2rad
decstar = decstar_deg * deg2rad
ra=frames["Ra"].data * deg2rad
dec=frames["Dec"].data * deg2rad
for istar in range(len(rastar)):

print ’ Masking star ’+str(istar)+’ out of ’+str(len(rastar))
#print istar, rastar[istar], decstar[istar]
inside = COS(ra -rastar[istar]) * COS(dec) * COS(decstar[istar]) + SIN(dec)*SIN(decstar[istar])
inside = ARCCOS(inside) / deg2rad * 3600
#inside2=inside.copy()
#sel = inside2.where(inside2<distFilter)
sel = inside.where(inside<distFilter)
while sel.hasNext():

newmask.setAt(sel.next(), True)
#save("/herscheldata/pacs/nbillot/FluxCal/MADmap_Photproject/"+field[iField]+’/’+"map3_mask3D_"+band+".fits","newmask")
save(outdir+"map3_mask3D_"+band+".fits","newmask")

else:
#newmask = fa.load(outdir+"map3_mask3D_"+band+".fits")
restore("/herscheldata/pacs/nbillot/FluxCal/MADmap_Photproject/"+field[iField]+’/’+"map3_mask3D_"+band+".fits")
frames.addMaskType(’STAR’,"Mask bright stars")

#
Now set the mask and delete temporary variable to release memory.
frames.setMask(’STAR’,newmask)
del(newmask)
System.gc()
high-pass filter
frames = highpassFilter(frames,hpfwidth,maskname=’STAR’,interpolateMaskedValues=True)
#
Check the 2D mask
temp = frames.copy()
temp["Signal"].data = Double3d(temp.mask["STAR"].data)
mask2d = photProject(temp, calibration=True,outputPixelsize=outpixsz,calTree=calTree)
del(temp)
Display(mask2d, title=’HPF Mask, ’+field[iField]+’, ’+channel)
fa.save(outdir+"map3_mask2D_"+band+".fits",mask2d)
del(mask2d)
#
Redefine the STAR mask
This will ensure that photProject will not interpret it as a bad pixel mask.
newmask = Bool3d(frames.dimensions[0],frames.dimensions[1],frames.dimensions[2],False)
frames.setMask(’STAR’,newmask)

PACS
Herschel

Document: PICC-NHSC-TR-028
Date: November 2010
Version: 2.0

page 23

del(newmask)
#
frames = frames.select(frames.getStatus("BBID") == 215131301l)
map3 = photProject(frames, calibration=True,outputPixelsize=outpixsz,calTree=calTree)
#
Display(map3, title=’PhotProject + HPF + maskPerPatch, ’+field[iField]+’, ’+channel)
fa.save(outdir+"map3_"+band+".fits",map3)
del(map3)

print ""
print "End processing at :" , Date()
print ""

