Essential steps of the pointing offset correction ipipe scripts for bright point sources

Product

Task

Applied calibration product or output product from precursor task

Task description

Level 0.5 Frames.

Normalization of chopped on-off signal

\[\text{norm} = \frac{2 \cdot (\text{on-off})}{(\text{on}+\text{off})} \]

specDiffChop (normalize = True)

Determine the absolute flux using the telescope background and OffRatio calibration product (\(\text{off}_{\text{NodA}}/\text{off}_{\text{NodB}} \)) which is calculated from dark sky calibration measurements (asymmetric chopping)

\[
\text{flux} = \frac{\text{telBack} \cdot (\text{offRatio} - 1 - \text{norm} \cdot (\text{offRatio} + 1))}{2 \cdot \text{offRatio} \cdot (\text{norm} - 1)}
\]

specRespCalToTelescope

Determine a time resolved \(\chi^2 \) map between the science signal and interpolated oversampled 25x25 neptune rasters (calibration product Beams)

specDetermineChiSquare
Level 0.5 Frames.

- **SpecPointingOffsetProduct**: Determines the jitter offsets using the gyro-propagated pointing product and the offset between the known object position and the position of the central spaxel.

- **specDeterminePreCalculatedPointing**: Determines the corresponding pointing correction factors.

- **SpecPointingOffsetProduct, Beams**

- **specDeterminePointingOffsetFromPreCalculatedPointing**: Determines a pointing offset product by searching for the best flatfield in the minimum area of the χ^2 map -> general offsets (at very low time resolution with perNode option).

- **SpecChiSquareProduct**

- **specApplyPointingCorrection**: Applies the pointing correction factors to correct the flux.

- **TelBackCor**

- **specCorrectTelescopeBackground**: Minor residual corrections of the telescope background model.