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1 Introduction

In light of the investigation on our possible discrepancy regarding extended source fluxes with other instruments
operating at the same wavelengths, I investigate how we back-project our data into the sky. First I call projection
the operation that consists in going from the sky to the observation, and back-projection the reverse operation,
i.e. making the map from the detector samples. This is rather non-standard for observers, but in the perspective
of mapmaking, we first have to model the signal acquisition phase, and then try to invert it. Therefore in that
perspective, it makes sense to call this first operation “the projection”. Furthermore it is also only in that
direction that the mathematics of the operation can be written straight-forwardly. This document thus first
puts in writing what I understand about the issues of projecting and back-projecting. With the help of many
in the ICC, I have also looked at how back-projection is handled in the different codes that we use.
To summarize my conclusions (some of which are evident to you already):

1. Implementation of the back-projection cannot be blamed for a photometric discrepancy with other instru-
ment.

2. photProject unnecessarily, and with no mathematical justification, introduces an extra-correction factor,
called the active pixel fraction, fact or the Okumura-Gastaud constant, in the back-projection equation
that has the potential to create photometric catastrophes.

3. Such catastrophes do no occur yet because (1) we calibrate our reponsivity using maps made with
photProject and thus introduce fact in the response, which implies that level 1 data are expressed in
Jy per ideal detector pixel (3.2 or 6.4 arcsec), and (2) alternate map-making softwares have so far ig-
nored the geometry of our pixels as described in the calibration files either because they bypass the
back-projection (MadMap) or do not have access to the files (Scanamorphos). This is likely a temporary
situation.

In my opinion, the last two points require that we take action, either by removing fact from our calibration
and map-making scheme (which I would prefer) or by identifying how we can make sure that this information
is extremely visible to our future users.
In a second part of this note, I investigate the consequences of a wrong assumption on the geometry of our
detector (essentially a wrong assumption on the detector pixel size), to find that interestingly there are none
because we have used a flux-conserving sky map estimation algorithm rather than a surface brightness conserving
one. This part may be of interest to the reader who wants to know more about the inner workings of the map
estimation algorithm.

2 Projection and back-projection: the art of map-making

In order to write down some equations, mapmakers usually resort to matrices representations. In these repre-
sentations, maps and cubes are vectorialized (i.e. the pixels or samples are re-organized into 1D objects), and
in the equations below they are represented by boldface characters. In this representation, if we call x the sky,
and y the cube, they are related with:

y = Px + n, (1)

where n is the noise, considered as additive and that I will ignore throughout this note, and P is the key
element, namely the projection matrix. Figure 1 lets you visualize this equation. The very important point is
that to compute the elements of P we must have an accurate description of the detector effective geometry (i.e.
the geometry of the detector pixels). This point is where some confusion may first be introduced, or where I’m
most confused, thus I will dwell on it slightly.
We have a relatively good description of the physical geometry of our detectors (If we pretend to be able
to make silicon grids of a few µm wide we’d better). We know that the full width of a pixel (including its
walls) is 750µm, while its inner width is 640µm. The angular size of 3.2” that we quote for the blue pixels
corresponds to the full width of the pixels. The ratio of the inner to the full surface of our pixel is what we
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Figure 1: A sketch illustrating the relation between the sky and the detector timelines. The sky is represented
by a fully sampled regular grid map, and I overlay the location of some of the detector pixel at a given sampling
time t. I may have vastly exaggerated the optical distortion as well as the spacing between the detector pixels.
In principle, the equations presented in this document are valid even if the detector pixels were undistorted
and fully covered the sky. I’ve also placed myself in the more favorable (and recommended) situation where the
sky map pixels are smaller than the detector pixels. In this figure I have numbered the sky pixels from 1 to 48
and the detector pixels from a to f . The solid angle in yellow is the overlap solid angle between pixel b of the
detector and pixel 20 of the map at time t. The yellow solid angle is thus Pb,20.

call in the “active fraction” of the pixel (activeFraction in our projection code and in the metadata of the
subArrayArray calibration file)1, and is equal to 0.73 (important note: this is a ratio of surfaces). In our
calibrated description of the array geometry, the size of the pixels is their inner size, thus indeed they do not
project as jointed pixels on the sky.
Furthermore, we have the possibility to decide that the sensitive area of a pixel is not equal to its geometrical
area, which is what the drizzling technique implements. This is a choice, and using a much smaller area can be
interesting when one wants to minimize the amount of correlated noise between the pixels of the reconstructed
map. We refer to this as the “pixel fraction” (or pixFrac). Note that for unknown reason we consider that the
pixel fraction is the ratio of the width of the sensitive area to the width of the inner pixel, rather than a ratio
of surfaces.
The bottom line however is that we have to have a self-consistent description of the detector: we measure
the actual position of our pixels’ centers, then compute the actual dimensions for each pixel, making use of
the “active fraction” and the “pixel fraction”. These dimensions are used to build P . Thus adjusting our
projection equations to reflect a change in the value of the “active” or “pixel” fraction cannot simply be done
by applying some multiplicative factor on y. The complete matrix P also has to be recomputed. In our current
implementation of the projection scheme we adopt the geometry of the inner surface of the pixels (i.e. we have
included the notion of the “active fraction” in our description of the detector). Thus Figure 1 is a plausible
representation of our situation. By default, we also work with a pixel fraction of 1, but the code accepts other
values, and correctly handles their impact on the detector geometry and thus on P .
Of course when using equation (1), we have to make sure we get the units right. Although the unit of choice
for the PACS sky maps is Jy/pixel2, I will first reason with a sky map that has units of surface brightness in its
pixels, i.e. Jy/Ω (Ω being a solid angle), and I will examine the other case later. In the Jy/Ω case the elements of
the matrix P are the yellow areas of Figure 1 expressed as well in solid angle units, and equation (1) implies that

1familiarly the Okumura-Gastaud constant.
2which is simpler for photometry for instance, and can be seen as having deeper reasons.
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the unit in the cube is Jy in detector pixel (effectively the inner surface of the pixels times the square of the pixel
fraction). This is fortunate because we know that the bolometer signal is proportional to the incoming power,
which can be computed from the spectral flux density, the spectral convention, and the system transmission,
all these terms can be concatenated into the color correction, so in fact we can derive a responsivity factor to
convert Volts per detector pixel to Jy per detector pixel using the sky map and equation (1).
As an illustration based on Figure 1 we can write that the number of Jy falling into pixel b, that I will call yb

is given by:

yb(t) = Pb,11×x11 + Pb,12×x12 + Pb,13×x13 + Pb,19×x19 + Pb,20×x20 + Pb,21×x21 + Pb,28×x28, (2)

all the other Pb,n coefficients of the projection matrix being null. I recall that in this equation, xj is in surface
brightness units (Jy/Ω) and the Pi,j coefficients are solid angles.
Now the big issue is to actually reconstruct the map, i.e. invert equation (1). In general the matrix is not
inverted as it is a tremendous task and typically an approximate solution is built. Still using Figure 1 we can
follow the typical way of getting to that approximate solution. In fact the term “approximate solution” is
incorrect as in no way does the reconstructed map satisfies equation (1). It really is an estimate of the map.
We can use the flux density values that are recorded in the detector pixels to estimate the surface brightness
of each map pixel. For instance, the surface brightness in map pixel 20 can be estimated from the flux density
value recorded in detector pixel b at time t assuming that the surface brightness is constant on the area that
encompasses those two pixels:

xest
20 (t) = yb(t)/Sb (3)

where Sb is the solid angle subtended by detector pixel b, and the t in parenthesis on the left size simply
states that it is the estimate of pixel 20 that can be made from readout at time t. Obviously we have many
measurements in the y vector that will let us estimate the value of x20, and we want to use them all to get our
best estimate of x20. However it is quite clear that we should do a weighted average because not all the detector
pixels that intercept the map pixel of interest should be treated equally. Consider for instance in Figure 1 how
small the intercept of pixel b is with map pixel 28. One possible weighting scheme is to weight by the ratio of
the intercepted solid angle and the map pixel solid angle. In the example above, the weight would be Pb,20/S20

(S20 is the map pixel solid angle, i.e the weight is 1 when the map pixel is fully covered).
Trying to write that in an equation would give:

xest
20 =

∑
i,i∩206=0

(Pi,20/S20)× yi/Si∑
i,i∩206=0

(Pi,20/S20)
, (4)

where the summation is on the detector pixels that have a non-zero intersection with the map pixel. We see
that the surface of the sky map pixel disappears and we can rewrite this equation as:

xest
20 =

∑
i,i∩206=0

(Pi,20 × yi)/Si∑
i,i∩206=0

(Pi,20)
, (5)

Now given that detector pixels that have a null intersection with the map pixel of interest have a corresponding
component in the projection matrix equal to 0, the summation can be extended to all detector pixels:

xest
20 =

∑
i

(Pi,20 × yi)/Si∑
i

(Pi,20)
, (6)

which leads to the more condensed representation:

xPhP =
P T (y/SDetPix)

P T 1
, (7)
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where the label PhP refers to the PACS IA task photProject as I assume it is performing its estimation of
the map in a very similar way (see section 3.1), and the division of vectors y/SDetPix is supposed to be made
element per element. In equation (7) SDetPix is not a constant: it is the actual solid angle of each of the detector
pixels. This is known because it is the same surface that was used to compute the component of matrix P .
Finally one can check that equation (7) is homogenous: y is in Jy, P and SDetPix are solid angles, and xPhP

is in Jy per solid angle.
I now look at the alternative where we want to express the map in Jy/pixel. In that case I don’t want to change
the unit of y because in the detector space we essentially do not know what the pixels are and we should treat
them simply as detectors, i.e. use units of Jy per detector. In that case we have:

y = P ′x′ + n, (8)

where the prime is there to remind me of the change in sky map units. In that case the coefficients of P ′ are
no longer the solid angle subtended by the the intersection between detector pixels and sky map pixels, but the
ratio of this solid angle to the map pixel solid angle. Therefore:

P ′i,j = Pi,j/Sj , (9)

where the i index runs in the detector space and the j index runs in the sky map space, and actually Sj = SSky

since the sky map should have regular pixels3.
The same method can be then used to estimate the sky map from the detector samples. We make the same
assumption, namely that the sky brightness is locally constant on an area encompassing the considered detector
and sky pixels. In that case each detector pixel that has a non-zero intersection with the map pixel of interest
provides an estimation of the flux in the map pixel as:

x′est
j (t) = yi(t)×

SSky

Si
, (10)

where t is simply there to state that at time t pixel i of the y vector has an overlap with pixel j of the x′ sky
map. Again we can average all the measurements that provide an estimation of x′j using a weighted scheme. The
weight can obviously be related to how well the map pixel is covered by the detector pixel, which is completely
captured by the corresponding coefficient of the projection matrix P ′. Thus in that case our estimation of a
map pixel becomes:

x′est
j =

∑
i

P ′i,j × yi ×
SSky

Si∑
i

(P ′i,j)
. (11)

Summation can indeed be extended to all indices i of vector y as P ′i,j is zero when the intersection between the
detector pixel and the map pixel is null. Thus we can condense this in matrix form as:

x′PhP = SSky ×
P T ′(y/SDetPix)

P T ′1
(12)

Since the sky pixel solid angle is essentially constant and appears at the denominator of every coefficient of P ′,
we can factorize it and express x′PhP as a function of projection matrix P . This gives:

x′PhP = SSky ×
P T (y/SDetPix)

P T 1
= SSky × xPhP , (13)

Which is indeed expected.

3 Code checks

With the help of Hervé and Michael, we have looked into the code that is implemented to create maps from
level 1 products.

3Strictly speaking, we cannot assume Sj = SSky : on a 10 square degree map, a relative variation of 10−3 is expected in the
solid angle of sky pixels for the tangential projection we are using.



PACS
Herschel

Document: SAp-PACS-MS-0717-11
Date: January 14, 2011
Version: 1.0

What I understand, or don’t, about back-projection Page 6

3.1 photProject

Reconstructing the algorithms used from the code shows first that the construction of matrix P ′ is fully
consistent with the calibrated description of the detector geometry (position of pixel centers, location of pixel
corners assuming their size is the inner pixel size) and with the chosen value of the pixel fraction. In other
words, P ′ is built from the measured position of the pixel centers, using 640µm as their effective with, and if
necessary adapting that width with the value of the pixel fraction pixFrac4.
However, the map estimation method does not implement equation (12) but a slightly modified one:

x′PhP = SSky × fact ×
P T ′(y/SDetPix)

P T ′1
, (14)

where fact is the active fraction or the Okumura-Gastaud constant. Essentially, this is wrong, or, to put it
more diplomatically, there is no justification for this in the mathematics of projection. This error cancels out
only because we have used the same code (photProject) to create maps in Volts from which we derive our
responsivity. So in effect, we have introduced in our responsivity factor a term which is linked to the geometry
of the pixel. I am not comfortable with this idea. If, for some reason we start deriving our responsivity from
something else than the maps (e.g. the pixel timelines), there’s a good chance we will get a different value for
the responsivity and then have maps with wrong fluxes.
Also we have a unit inconsistency: at level 1, the data is in units of Jy/pixel, but the pixel are not those
described in the calibration file, rather they are Jy per hypothetical camera pixel (3.2 or 6.4 arcsec in width
depending on the channel). At level 2 the data is in units of Jy/pixel but this time these pixels are really those
described by the map astrometry. Furthermore, the value in level 1 pixels is not the actual number of Jy we
would measure in 3.2 or 6.4 arcsec-wide pixels, but an estimation of this, knowing that we measure flux in
smaller pixels instead and assuming that the surface brightness is constant over the larger ideal camera pixels.
One can argue that it is not an issue as long as the whole system (our calibration scheme, the code we use to
make maps, and our values of responsivity) stays self consistent (and most calibration are like that, they rely
on some internal consistency). I would reply that given that the introduction of fact in the map estimation has
no justification from the mathematics of the projection, we are creating a serious weak point in our system.
The only justification for keeping it this way can be found in section 5.

3.2 MadMap

Actually MadMap has almost fallen through that trap. We have checked that the MadMap code completely
ignores the existence of fact. This is not too surprising given that the current implementation of the code does
not properly handles the projection but rather introduces a one-to-one link between sky pixels and detector
pixels by applying a nearest neighbor algorithm to the pixels’ centers (i.e. the P or P ′ matrices are simply
filled of 0’s and 1’s). At first this seemed to be exactly a recipe for photometric catastrophe given the units
inconsistency noted above, but we were troubled by the surprising photometric agreement between MadMap
and photProject (see RD1).
It turns out that MadMap, in order to allow reconstruction of maps with any pixel size, applies a renormalization
to the flux it finds in the level 1 pixels. When making the time-ordered data, i.e. in the MakeTodArray.java
code, a flux correction factor is applied to the level 1 data (i.e. the level 1 data are divided by this flux correction
factor). This factor is the inverse of the square of the scale parameter that is provided to the task, which in
turn is the ratio of the map pixel width to the ideal detector pixel width (e.g. 3.2 or 6.4 arcsec depending on
the channel).
In essence what this means is that to build its ToD, MadMap assumes that what it finds in level 1 data are Jy
per ideal detector pixel, and uses these values to estimate a flux in the associate map pixels by assuming that
the surface brightness is constant on the detector pixels’ areas so that the number of Jy scales with the ratio
of surfaces. It turns out that because we have introduced fact in our responsivity factor, what is in the level 1

4pixFrac also rightfully appears as a renormalization factor applied on the level 1 flux as pixFrac effectively changes the detector
pixels’ size and hence the power they should have collected
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data can indeed be considered as Jy per ideal detector pixel. If MadMap were to use the actual description of
the pixels that can be found in the calibration file, the maps would immediately be in the wrong scale.
Note of importance: the code in MakeTodArray.java only correctly handles the case of scale < 1. Whether
or not it makes sense to make map with larger pixels, as of today the resulting maps would have an incorrect
flux scale (see problem report HCSS-12056, fixed for version 6 of hipe).

3.3 Scanamorphos

Scanamorphos is a map-making code written and supported by H. Roussel (RD2) that implements 1/f noise
filtering and second-level deglitching among other things, all in IDL. It is completely stand-alone and detached
from Hipe. Thus it does not have access to our calibration files, and requires that level 1 data be prepared for
it. This preparation simply consists in reshaping the masks, and adding the pixel coordinates to the level 1
data, something that is usually done on-the-fly by the Hipe map-makers.
Therefore, we have another map-making code that ignores the existence of fact and yet produces maps that
are photometrically consistent with the Hipe map-makers. Why is that so? Once again the maps are saved
by the fact that we have introduced fact in our responsivity and that scanamorphos cannot access the actual
geometry of the pixels and therefore assumes that they are the ideal detector pixels (of 3.2/6.4 arcsec width
for the blue/red channels). Scanamorphos estimates its maps by attributing the detector pixel a circular area
slightly smaller than that of the ideal pixel. This works as well because our calibration scheme gives fluxes at
level 1 as we would get them if the pixels where indeed the ideal detector pixels.

4 Conclusions, so far...

I believe this note now presents the mathematics of projection and back-projection in a way that is short yet
consistent with better descriptions of the problem available in the literature. I also think that it clearly describes
what information is stored in our calibration files and how this information is used (or not) by the different
routes we use to perform map-making.
I also believe that it clearly highlights (1) the modification we have made to the standard algorithm used
for back-projection, namely the introduction of the active fraction fact in the back-projection equation of
photProject, (2) that this modification is mathematically incorrect, and (3) that it opens the door to major
inconsistencies with other map reconstruction methods using the same level 1 data. We are only saved from
the consequences of this choice by the fact that (1) we are compensating for it in our responsivity, and (2) all
other alternative map-makers consistently ignore the geometrical description of the arrays that we have in our
calibration files (except for the position of pixels’ centers), a situation that may/will not last forever.
Therefore, given that we are bound to revise our photometric calibration soon, I will argue here that it is
time to re-consider whether the fact term should stay in the photProject back-projection equation. I would
strongly favor a scheme where we remove it, consider that units in level 1 data are Jy/detector with the detector
geometry described in the calibration files. This scheme is in my opinion one that has a good chance of resisting
the passing of time, and the associated dilution of knowledge. Right now we are only saved by the fact that our
responsivity scale is established on maps made with a certain software, and that other softwares ignore part of
the calibration information we have on our instrument. I do not consider that safe.

5 What if the projection model is wrong?

This section originates in a comment/question of N. Billot, remarking that it is hard to reconcile the observation
that the absorption efficiency of the detector can reach very high values (close to 100%) and the assumption
that the geometry of our detector is such that only the central 640µm of the 750µm-wide pixels are sensitive
to light. Yet this assumption is central in our reference projection model.
I thus now investigate whether the possibility that this assumption is wrong is really of no consequence on our
ability to restore photometrically correct maps, knowing that at first is seems rather counter-intuitive.
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I will specifically address the question: what if our pixels really are 750µm wide?
This means that the projection equation is now really:

y = P ′′x + n. (15)

Compared to equation (1) it is really only the projection matrix that changes: the map is still the same map
(expressed in surface brightness units, Jy/Ω, and of course unknown) and the measured signal vector is still the
same vector (expressed in Jy/detector pixel, it is unchanged because it is our data!). What I am trying to say
here is that the sky can obviously not be affected by my assumptions on the detector geometry and the signal
is measured once and for all. Of course when I now use my previous example to see how the values of y are
built up from the map, the expression is going to change, as can be visualized on Figure 2.

Figure 2: Same as figure 1, but this time assuming that the detector we are using has fully jointed pixels. Notice
that map pixel 20 is now fully covered by detector pixel b at time t, that all the overlap areas with neighboring
map pixels have increased and that pixel b at time t now also covers map pixel 27.

Indeed the relation between yb(t) and the map pixels is now:

yb(t) = P ′′b,11×x11 +P ′′b,12×x12 +P ′′b,13×x13 +P ′′b,19×x19 +P ′′b,20×x20 +P ′′b,21×x21 +P ′′b,27×x27 +P ′′b,28×x28, (16)

which helps us realize (comparing in addition Figure 1 to Figure 2) that the differences between matrix P ′′

and P are that (1) some matrix coefficients that were 0 in P are now non-zero in P ′′, and (2) all the non-zero
coefficients of P are now replaced by greater or equal values. How much greater? Given that pixels have
increased on their edges, there’s virtually no limit to the ratio P ′′i, j/P i, j, and the coefficients that increase
less are those that were close to being equal to the map pixel solid angle. So it must be clear that it is very
unlikely that we will find a couple of vectors y and x that would be simultaneously solution of equations (1)
and (15).
To exemplify this more clearly on the case shown on Figure 2, our problem will originate from the fact that the
relation between the recorded signal and the map is given by equation (16) when we assume it is:

yb(t) = Pb,11×x11 + Pb,12×x12 + Pb,13×x13 + Pb,19×x19 + Pb,20×x20 + Pb,21×x21 + Pb,28×x28. (17)

This actually let us see that our photometric error is not only created by a wrong assumption of the pixel size
(definition and computation of P and P ′′), which we could hope to correct using a clever calibration scheme,
but also depends on the actual distribution of sky surface brightness (multiplication by x)!
It also allows use to see how different brightness distribution may lead to different behavior of the photometric
errors.
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Let’s first start with the case of an absolutely flat map (xj = x = cte). In that case the actual surface brightness
of the map can be factored out and what remain are sums of the P or P ′′ coefficients for each detector sample.
These are simple to compute: they are the surface of the detector pixels, S′′b or Sb (note of some importance:
this is only true for detector pixels that fall on a fully covered area of the sky, i.e. on the edges of the map the
sum of the P or P ′′ coefficients for those detector pixels is less than their surface). Therefore the two equations
above differ only by a multiplicative factor on the left side, and since this factor is the ratio of detector pixel
surface (actual/assumed) we can reasonably hope that it will cancel out when we derive our response calibration
from the map. Let’s see whether it is the case.
Neglecting the edge-of-the-map effect mentioned above, all components of the y vector are equal to S′′i × x,
where i is the index running on the detector pixels. Therefore the equation used to estimate the map pixels
becomes:

xest
j =

∑
i,i∩j 6=0

(Pi,j × yi)/Si∑
i,i∩j 6=0

(Pi,j)
= x×

∑
i,i∩j 6=0

Pi,j × S′′i /Si∑
i,i∩j 6=0

(Pi,j)
, (18)

or, in matrix form:

xPhP = x× P T (S
′′

DetPix/SDetPix)
P T 1

. (19)

In our particular case where Si corresponds to the angular size of the inner 640µm-wide absorbing grid, and
S′′i is the angular size of the full 750µm-wide pixel, one can safely assume that S′′i /Si = cte = 1/fact and thus:

xPhP = x× 1/fact ×
P T 1
P T 1

= x/fact × 1 = x/fact. (20)

Therefore we indeed have reconstructed the exact sky map with a gain error, but this gain error is exactly 1/fact

(overestimation of the map) and it is likely that it is for this reason that the photProject code first multiplies
y by fact before performing the map estimation. If we substitute in equation (14) y by its expression in our
particular case, we obtain:

x′PhP = SSky × fact ×
P T ′(y/SDetPix)

P T ′1

= SSky × fact × x×
P T ′(S

′′

DetPix/SDetPix)
P T ′1

= SSky × fact × x× 1/fact ×
P T ′1
P T ′1

= SSky × x, (21)

which is first dimensionally correct because x is in Jy/Ω and x′PhP is in Jy per map pixel, and second is also
photometrically correct! Therefore if we were only observing absolutely flat skies, the unnecessary introduction
of the fact normalization in the photProject code corrects the error of using P as a projection matrix when
we should really be using P ′′. It is fascinating to realize that we have implemented a projection scheme and
added a correction factor in it as if we knew that our scheme was wrong!
But is it the end of the story? We’re obviously not observing flat skies (how happy would we be if there was
indeed a flat region of the sky to calibrate ourselves on..) so can we hope that a single normalization scalar can
solve a projection model error in all situations.
Let us examine now another extreme case where only one pixel in the map has a non-zero value. I fully agree that
it is a non-physical situation but it represents another mathematical extreme in which to test our approximate
method of back-projection. Assuming it is pixel 20 that is illuminated, equation (16), the only one to represent
the actual relation between the signal and the map, reduces to a single term, P ′′b,20×x20.
What happens when we try to estimate x20 in the back projection? Remembering that we estimate the map
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using projection model P while the signal has been obtained with projection model P ′′, we have:

xest
20 =

∑
i,i∩206=0

(Pi,20 × yi)/Si∑
i,i∩j 6=0

(Pi,20)
= x20 ×

∑
i,i∩206=0

(Pi,20 × P
′′

i,20)/Si∑
i,i∩206=0

(Pi,20)
. (22)

Can we evaluate the term left of x20 and in particular, does it lead to an overestimation of xest
20 ? What we have

is a weighted mean of the terms P
′′

i,20/Si. This mean is slightly particular in the sense that it is not realized
over all the cases where P

′′

i,20 6= 0 but only on those cases where Pi,20 6= 0, which are slightly less numerous
by construction. By construction as well, we have P

′′

i,20/Si ∈ ]0, Ssky/Si] since the area of overlap between a
detector pixel and a sky pixel varies between 0 and the surface of the sky pixel. Thus we have an upper limit
for the estimation at:

xest
20 < x20 × (Ssky/SDetPix), (23)

where I have assumed that to a first order all detector pixels have the same projected surface (an assumption
we actually make in the implementation of back-projection). Given that our weighting scheme is built to put
more weight on the estimations performed with detector pixels that fully cover the sky pixel, the actual value
should be closer to the limit than to 0.
Therefore our estimation of the pixel surface brightness is this time multiplied by a factor that depends on the
ratio between the sky pixel and the assumed detector pixel surface. Since one usually build maps with small
pixels, this can be smaller than 1 (i.e. underestimation). This could be worrying but it is not the end.
Indeed, what happens when we try to estimate sky pixels neighboring pixel 20? Any such pixel is mostly covered
by detector pixels that did not see sky pixel 20, i.e. detector pixels that have zero flux and thus provide a zero
estimate of the map surface brightness. However some of the detector pixels covering the map pixel of interest
also covered sky pixel 20 and thus have non-zero flux. Taking an example from Figure 2, we can make the
following estimate of the sky brightness in pixel 21:

xest
21 (t) = yb(t)/Sb = (P

′′

b,20 × x20)/Sb, (24)

i.e. estimates of the surface brightness of pixel 21 that are made from detector pixels that also overlap with
pixel 20 provide a value that is not zero. This means that by construction of our estimator we distribute flux
over an area around pixel 20. Given the expression above it should be clear that the flux we distribute this way
is such that the surface brightness in estimated map pixels around pixel 20 is smaller than that estimated for
map pixel 20.
All these computations and reasoning point in fact to an essential feature of the method used to estimate the
sky map: it does not conserve surface brightness. By construction of the method, flux that was originally in a
given area of the input sky map will get distributed around that area in the estimated map, i.e. the surface
brightness spatial distribution has been modified. This raises immediately three questions: (1) what is the flux
amplitude of this effect (i.e. if we compare pixel to pixel an input map to its estimated version, what kind of
ratios can we observe) (2) how far does this spread-out effect reach and (3) is the total flux conserved (i.e. if
we integrate the flux in the estimated map, what do we get)?
The first question is answered by equation (23): the amplitude of the variations can be of the order of the ratio
between the sky pixel surface and the assumed detector pixel surface.
Can we then estimate the radius of the area on which we artificially distribute flux? In y, the signal, any detector
pixel that has an overlap with map pixel 20 has a non-zero value, i.e. any detector pixel which center falls
within ∼

(√
S′′DetPix/2 +

√
Ssky/2

)
of pixel 20’s center has a non-zero value. In turn when we back-project,

any sky pixel that is fully or partially covered by a detector pixel that has a non-zero value will get a non-zero
surface brightness. This means that any map pixel whose center falls within ∼

(√
SDetPix/2 +

√
Ssky/2

)
of

a non-zero detector pixel will have flux (note that here I’m using the wrong projector on purpose). Thus we
can estimate that any sky pixel with a center distant of ∼

(√
SDetPix/2 +

√
S′′DetPix/2 + 2

√
Ssky/2

)
will

receive flux by construction of the sky map estimation. Using for a numerical application a red case with sky
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pixels of 4′′ in side, and correct/assumed detector pixels of 6.4′′/5.5” (the implicit case in our implementation
of photProject), this is a distance of 14.1” from the center of the illuminated sky pixel, i.e. a size that is
significant w.r.t the sky map pixel size (and the PACS point spread function). This is shown on Figure 3 where
we display the estimated map corresponding to an input map with a single illuminated pixel.
Finally it is not possible to analytically answer the third question, however a number of observation simulators
exists and thanks to TAMASIS (provided by Pierre Chanial) we have simulated the case of a sky map with a
single illuminated pixel. We consider a sky map sampled with pixels of 4′′ in side, observed with a projector
P ′′ having pixels 6.4′′ in side (red band photometer) and reconstructed with a projector P having pixels 5.5”
in side (again the case implicitly implemented in our code). We then perform the total flux photometry in the
resulting map and find again that is is overestimated w.r.t. to the input total flux by a factor 1/fact. Thus as
far as total fluxes are concerned we are in the same situation as for the infinitely flat case, and the photProject
renormalization will take care of that. This could in fact have been expected from the linearity of the projection
and back-projection equations and the fact that a flat sky image is the sum of images having only one pixel
illuminated. Total flux conservation on the flat sky thus implies total flux conservation on the elements of the
sum of images making a flat sky.

Figure 3: The estimated map when the input map has a single illuminate pixel (the central one). In the present
case, the map pixel has a 4” side, the pixel in projector P ” has pixels 6.4” in side and the map is reconstructed
assuming projector P with pixels 5.5” in side (corresponding to fact = 0.73). The surface brightness in the
original illuminated pixel was 1, and that in the central pixel of the estimated map is 0.351, while the upper
limit estimated in equation (23) is 0.529 . The distance over which we predicted the spread-out effect to occur
is 14.1” or 3.5 pixel, which is what we observe.

6 Conclusions, take 2

Even-though the previous section dealt with the case of a wrong projector (i.e. wrong assumption on the pixel
size), there are a number of new elements that are valid for the ideal case (i.e. correct projector).

• The back-projection method we use to estimate the map does not preserve the surface brightness spatial
distribution, i.e. the surface brightness that can be measured on pixel scales in the sky map has essentially
no relation (or a very complex one) to the actual surface brightness in that area on the sky. This is because
the projection–back-projection phenomenon leads to a convolution of the sky by a pixel response function
that depends on the sampling choice for the sky map, the assumed and actual detector geometries and
the scanning strategy.

• The convolution realized by the map estimation algorithm is not negligible with respect to the instrument’s
PSF. Note however that a measured PSF is in fact the convolution of the instrument PSF with the
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projection–back-projection pixel response function of the PSF observation.

• More importantly, the algorithm chosen to estimate the sky map is flux conserving. This means that
despite the convolution, the total flux of an object is preserved in the estimate, i.e. when using an
identical projector for the projection and the back-projection, the total intensity of the pixel response
function is 1. When using a wrong projector, the total flux is not strictly preserved but it is multiplied
by a constant which is the ratio of the correct pixel size to the wrong pixel size. This can be taken care
of by the calibration scheme if the maps are used to derive the responsivity.

Therefore as far as total fluxes are concerned, it essentially does not matter whether we know our detector
geometry or not. This can be fixed by the calibration strategy. It remains to be investigated whether there are
any particular precaution to use to compare maps estimated this way with other maps.
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