THE SPLITTING OF DOUBLE-COMPONENT ACTIVE ASTEROID P/2016 J1 (PANSTARRS)

Fernando Moreno¹, Francisco J. Pozuelos¹, Bojan Novaković², Javier Licandro^{3,4}, Antonio Cabrera-Lavers^{3,5}, Bryce Bolin⁶, Robert Jedicke⁷, Brett J. Gladman⁸, Michele T. Bannister⁹, Stephen D. J. Gwyn¹⁰, Peter Vereš¹¹,Kenneth Chambers¹², Serge Chastel¹², Larry Denneau¹², Heather Flewelling¹², Mark Huber¹²,Eva Schunová-Lilly¹², Eugene Magnier¹², <u>Richard Wainscoat¹²</u>, Christopher Waters¹², <u>Robert Weryk¹²</u>, Davide Farnocchia¹¹, and Marco Micheli^{13,14}

IAA-CSIC IAC GRANTECAN UNIV. BELGRADO PANSTARRS JPL

Discovery: 2016 May 5.5 UT with the 1.8 m Pan-STARRS1 telescope (Weryk & Wainscoat,2016)

Follow-up observations showed a second "comet" in the field

From the orbital elements, P/2016 J1 is a main-belt asteroid pair, outer belt, T_J>3 (short-period comets have 2<T_J<3)

P/2016 J1 OSIRIS@GTC May 29, 2016

SIZE OF NUCLEI

Bowell (1989) formalism (G=0.15, C-type): H=19.2 (J1-A), H=19.4 (J1-B) H-diameter relationship (Harris & Lagerros (2002): $D = \frac{1329}{\sqrt{p}} 10^{-0.2H}$ (km)

 $p \approx 0.04$ (C-type)

D < 1 km (stringent upper limit) Escape velocity ≈ 0.3 to 0.6 m/s [$\rho \approx 1$ to 3 g/cm³]

ORBITAL DYNAMICS

- To assess the common origin of the asteroids, backward integration of their orbits
- Orbit9 integrator in OrbitFit package (Milani et al.)
- 4×10^4 clone combinations from the multivariate normal distribution, defined by the orbital covariance matrix
- Orbital elements from JPL Small Node Database
- Orbits propagated 100 years backward in time

Frequency distribution of dates of closest approach between J1-A and J1-B clone pairs

Frequency distribution for pairs of clones that approached closer than 1500 km

Relative velocity ≈0.8 m/s

Splitting mechanism uncertain

Separation event ≈2300 days (≈6 years) before current perihelion

Since the orbital period is 5.65 years, it happened near perihelion during the previous orbit.

Splitting mechanism uncertain: Rotational fission (YORP effect), catastrophic collision ?

The separation event is not apparently linked to the observed activity

How to confirm this ? \rightarrow Dust tail modeling

MONTE CARLO DUST TAIL/COMA MODEL (Moreno et al. 2009)

DYNAMICAL/RADIATIVE CODE

 COMPUTE **POSITION IN THE SKY PLANE** OF PARTICLES EJECTED FROM NUCLEUS
CALCULATE **SIMULATED TAIL BRIGHTNESS** FROM LIGHT SCATTERING PROPERTIES OF DUST GRAINS

MODEL PARAMETERS:

1)DEPENDENCE OF EJECTION VELOCITY OF GRAINS AS FUNCTIONS OF SIZE: $v=v_0/r^{1/\gamma}$ 2)SIZE DISTRIBUTION: **n(r)**=C**r**^{- α}, GRAINS DISTRIBUTED IN SIZES FROM μ m TO cm 3)MASS LOSS RATE: dm/dt=A exp(-[(t-t_0)/\sigma]^2),

Fitting parameters of the model: A, t_0 , σ , v_0 , γ (for each fragment)

Multidimensional minimization method: Downhill Simplex method

At each iteration step, synthetic and observed tails are compared and standard deviation is computed

CONCLUSIONS ON P/2016 J1 SPLITTING

- Splitting event (unspecified mechanism) near perihelion during previous orbit
- Both fragments became activated at the same time, some 250 days to the current perihelion passage
- Total dust loss: 8×10^6 kg (J1-A) and 6×10^6 kg (J1-B)
- Particle terminal velocities in the range 0.6-0.9 m/s, compatible with escape velocities of ≈500 m radius bodies
- Activity lasting 6 to 9 months

SPLITTING EVENT AND DUST ACTIVITY UNRELATED

ACTIVITY MOST LIKELY INDUCED BY ICE SUBLIMATION

More details: Moreno et al., ApJ, 837, L3 (2017)