Modeling lightning impact on the upper atmospheres of Venus and giant gaseous planets

Francisco J. Pérez-Invernón¹ Alejandro Luque¹ Francisco J. Gordillo-Vázquez¹

fjpi@iaa.es

¹Instituto de Astrofísica de Andalucía (IAA-CSIC) CPESS 5, 2017

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

イロト イポト イヨト イヨト

Results

Conclusions

æ

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

+ •	0		~	÷.	0	m
ιı			c			

Results

Conclusions

Content

æ

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

イロト イポト イヨト イヨト

lnte	00	4	-	н.	~	n

Results

Conclusions

Content

æ

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Int		0	А		-	н.	~	n
	LI.	U				ur		
	•••	~		-	-	•••	~	•••

Results

Conclusions

Content

Э

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

ntroduction	Models	Results	Conclusio
ntroduction	Lightning in	the Solar System b	evond the

Earth

h

Planet	E-M evidence	Chemical evidence
Jupiter and Saturn	✓ HF, SED, VLF	✓ Optical evidence
Uranus and Neptune	✓ UED, VLF	×
Venus	VLF?	✓ TEXES: NO_x lines

Table: Lightning evidence

Figure: Saturnian storm [Cassini spacecraft, NASA]

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

In	tro	dι	icti	on

Results

Conclusions

Introduction: Transient Luminous Events

Figure: Halos are produced by quasielectrostatic fields.

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Figure: Elves are generated by EMPs.

Elves on Venus and giant gaseous planets

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Introduction			
<i>.</i>	Intro	duct	ion
in clouderon	111110	uucı	

Results

Conclusions

Introduction: The case of Venus

• Electromagnetic signals from lightning or plasma instabilities?

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

Introduction: The case of Venus

- Electromagnetic signals from lightning or plasma instabilities?
- Lack of optical signals. Lightning optical emissions attenuated by a dense cloud deck?

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

Introduction: The case of Venus

- Electromagnetic signals from lightning or plasma instabilities?
- Lack of optical signals. Lightning optical emissions attenuated by a dense cloud deck?
- Optical emissions from TLEs as an indirect lightning detection?

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

Introduction: The case of Venus

- Electromagnetic signals from lightning or plasma instabilities?
- Lack of optical signals. Lightning optical emissions attenuated by a dense cloud deck?
- Optical emissions from TLEs as an indirect lightning detection?
- Temporal and spatial variability in the nightglow emissions from the 557.7 nm atomic oxygen line, between 0 and **136** R. Connection with lightning?

Introduction	Models	Results	Conclusions
Introduction:	The case of Giant	Gaseous Planets	5

• Very energetic strokes: Total energy released by intra-cloud (IC) lightning discharge around $10^{12} - 10^{13} J$.

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

Introduction	Models	Results	Conclusion

Introduction: The case of Giant Gaseous Planets

- Very energetic strokes: Total energy released by intra-cloud (IC) lightning discharge around $10^{12} 10^{13} J$.
- Lightning discharges evidence, but... possible TLEs?

F.J. Pérez-Invernón - A. Lugue - F.J. Gordillo-Vázguez

Elves on Venus and giant gaseous planets

イロト イポト イヨト イヨト

Introduction	Models	Results

Introduction: The case of Giant Gaseous Planets

- Very energetic strokes: Total energy released by intra-cloud (IC) lightning discharge around $10^{12} 10^{13} J$.
- Lightning discharges evidence, but... possible TLEs?
- Lightning and TLEs study as a source of information about the atmosphere composition?

Conclusions

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

(D) (A) (A)

Intr	nd	110	tı.	nn
	ou	uc		

Results

Conclusions

Missions

• Japanese Akatsuki probe (JAXA), equipped with cameras to detect fast 777.4 nm (lightning) and 557.7 nm (nightglow) emissions.

Figure: Akatsuki probe [JAXA webpage, Courtesy of Akihiro Ikeshita]

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

A (1) > A (2) > A

Intr	od	uct	on
mu	ou	ucu	

Results

Conclusions

Missions

• Japanese Akatsuki probe (JAXA), equipped with cameras to detect fast 777.4 nm (lightning) and 557.7 nm (nightglow) emissions.

Figure: Akatsuki probe [JAXA webpage, Courtesy of Akihiro Ikeshita]

 Juno spacecraft (NASA), equipped with IR and UV spectrometer, plasma detectors and a vector magnetometer.

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

(D) (A) (A) (A)

Results

Conclusions

General models: Halos

$$\nabla^{2}\phi = -\frac{\rho}{\varepsilon_{0}} \qquad (1)$$

$$J_{e,z} = -D_{i}\frac{\partial N_{e}}{\partial z} - \mu_{e}E_{z}N_{e} \qquad (2)$$

$$J_{e,r} = -D_{i}\frac{\partial N_{e}}{\partial r} - \mu_{e}E_{r}N_{e} \qquad (3)$$

$$\frac{\partial n_{e}}{\partial t} + \nabla \cdot \mathbf{J}_{e} = G_{e} - L_{e} \qquad (4)$$

$$\frac{\partial n_{i}}{\partial t} = G_{i} - L_{i} \qquad (5)$$

• (1) : 2-D Poisson equation.

Э

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

イロン イヨン イヨン イヨン

Results

Conclusions

General models: Halos

$$\nabla^{2} \phi = -\frac{\rho}{\varepsilon_{0}} \qquad (1)$$

$$J_{e,z} = -D_{i} \frac{\partial N_{e}}{\partial r} - \mu_{e} E_{z} N_{e} \qquad (2)$$

$$J_{e,r} = -D_{i} \frac{\partial N_{e}}{\partial r} - \mu_{e} E_{r} N_{e} \qquad (3)$$

$$\frac{\partial n_{e}}{\partial t} + \nabla \cdot \mathbf{J}_{e} = G_{e} - L_{e} \qquad (4)$$

$$\frac{\partial n_{i}}{\partial t} = G_{i} - L_{i} \qquad (5)$$

- (1) : 2-D Poisson equation.
- (2) and (3): Diffusion-advection equation for the electron flux.

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Results

Conclusions

General models: Halos

$$\nabla^{2}\phi = -\frac{\rho}{\varepsilon_{0}} \qquad (1)$$

$$J_{e,z} = -D_{i}\frac{\partial N_{e}}{\partial z} - \mu_{e}E_{z}N_{e} \qquad (2)$$

$$J_{e,r} = -D_{i}\frac{\partial N_{e}}{\partial r} - \mu_{e}E_{r}N_{e} \qquad (3)$$

$$\frac{\partial n_{e}}{\partial t} + \nabla \cdot \mathbf{J}_{e} = G_{e} - L_{e} \qquad (4)$$

$$\frac{\partial n_{i}}{\partial t} = G_{i} - L_{i} \qquad (5)$$

- (1) : 2-D Poisson equation.
- (2) and (3): Diffusion-advection equation for the electron flux.
- (4) and (5): Continuity equation of each species. BOLSIG+ is used to obtain the electric field dependence of some rates.

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

Results

Conclusions

General models: Halos

$$\nabla^{2}\phi = -\frac{\rho}{\varepsilon_{0}} \qquad (1)$$

$$J_{e,z} = -D_{i}\frac{\partial N_{e}}{\partial z} - \mu_{e}E_{z}N_{e} \qquad (2)$$

$$J_{e,r} = -D_{i}\frac{\partial N_{e}}{\partial r} - \mu_{e}E_{r}N_{e} \qquad (3)$$

$$\frac{\partial n_{e}}{\partial t} + \nabla \cdot \mathbf{J}_{e} = G_{e} - L_{e} \qquad (4)$$

$$\frac{\partial n_{i}}{\partial t} = G_{i} - L_{i} \qquad (5)$$

- (1) : 2-D Poisson equation.
- (2) and (3): Diffusion-advection equation for the electron flux.
- (4) and (5): Continuity equation of each species. BOLSIG+ is used to obtain the electric field dependence of some rates.

Approach: The system of equations is solved using a Runge-Kutta method.

Results

Conclusions

General models: Elves

$$\nabla \times \mathbf{E} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t}$$
(1)

$$\nabla \times \mathbf{H} = \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}$$
(2)

$$\frac{d\mathbf{J}}{dt} + v\mathbf{J} = \varepsilon_0 \omega_p^2(\mathbf{r}, t)\mathbf{E} + \omega_b(\mathbf{r}, t) \times \mathbf{J}$$
(3)

$$\frac{\partial n_i}{\partial t} = G_i - L_i$$
(4)

• (1) and (2): 3-D Maxwell equations in time domain.

臣

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

イロン イヨン イヨン イヨン

General models: Elves

$$\nabla \times \mathbf{E} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t}$$
(1)

$$\nabla \times \mathbf{H} = \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}$$
(2)

$$\frac{d\mathbf{J}}{dt} + v\mathbf{J} = \varepsilon_0 \omega_p^2(\mathbf{r}, t)\mathbf{E} + \omega_b(\mathbf{r}, t) \times \mathbf{J}$$
(3)

$$\frac{\partial n_i}{\partial t} = G_i - L_i$$
(4)

- (1) and (2): 3-D Maxwell equations in time domain.
- (3): Langevin equation for the electron current.

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

・ロン ・四と ・ヨン ・ヨン

Conclusions

General models: Elves

$$\nabla \times \mathbf{E} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t}$$
(1)

$$\nabla \times \mathbf{H} = \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}$$
(2)

$$\frac{d \mathbf{J}}{dt} + v \mathbf{J} = \varepsilon_0 \omega_p^2(\mathbf{r}, t) \mathbf{E} + \omega_b(\mathbf{r}, t) \times \mathbf{J}$$
(3)

$$\frac{\partial n_i}{\partial t} = G_i - L_i$$
(4)

- (1) and (2): 3-D Maxwell equations in time domain.
- (3): Langevin equation for the electron current.
- (4): Continuity equation of each species. BOLSIG+ is used to obtain the electric field dependence of some rates.

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

General models: Elves

$$\nabla \times \mathbf{E} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t}$$
(1)

$$\nabla \times \mathbf{H} = \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}$$
(2)

$$\frac{d \mathbf{J}}{dt} + v \mathbf{J} = \varepsilon_0 \omega_p^2(\mathbf{r}, t) \mathbf{E} + \omega_b(\mathbf{r}, t) \times \mathbf{J}$$
(3)

$$\frac{\partial n_i}{\partial t} = G_i - L_i$$
(4)

- (1) and (2): 3-D Maxwell equations in time domain.
- (3): Langevin equation for the electron current.
- (4): Continuity equation of each species. BOLSIG+ is used to obtain the electric field dependence of some rates.

Approach: The system of equations is solved using a Finite Differences Time Domain scheme.

Introduction

Models

Results

Conclusions

Model: Cosmic ray ionization in Venus

Figure: Equilibrium profile at initial conditions under the influence of cosmic ray radiation [Pérez-Invernón et al., 2016].

æ

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

Results

Conclusions

Results: Venus

Figure: Main emission brightness, in Rayleighs, in the atmosphere of Venus 0.3 ms and 1 ms after the initiation of a discharge with different total released energies [*Pérez-Invernón et al., JGR, 2017, submitted*].

э

Results

Conclusions

Results: Saturn

Figure: Integrated flux of total emitted photons from the radiative decay of $H_2(d^3\Pi_u)$ and $H_2(a^3\Sigma_g^+)$ molecules [Pérez-Invernón et al., JGR, 2017, submitted].

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

A (1) > A (2) > A

э

Introduction	Models	Results	Conclusions
Results: Saturn			

Table 1: Total number of emitted photons from the Saturnian ionosphere produced 5 ms after an IC lightning:

Profile and CMC	Vertical channel	Horizontal channel	Oblique channel
CH _x - 10 ⁴	0	0	-
CH _x - 10 ⁵	2×10^{25}	3×10^{25}	1×10^{25}
non CH_x - 10^4	4×10^{23}	1×10^{25}	-
non CH_x - 10^5	4×10^{25}	6×10^{25}	8×10^{25}

Electron profile and lightning channel inclination are decisive in the number of total emitted photons.

Results

Conclusions

Results: Jupiter

Figure: Integrated flux of total emitted photons from the radiative decay of $H_2(d^3\Pi_u)$ and $H_2(a^3\Sigma_g^+)$ molecules [Pérez-Invernón et al., JGR, 2017, submitted].

Introduction	Models	Results	Conclusions
Conclusions			

 \ldots this increase would be more important in the case of halos than elves.

F.J. Pérez-Invernón - A. Lugue - F.J. Gordillo-Vázguez

Elves on Venus and giant gaseous planets

Introduction	Models	Results	Conclusions
Conclusions			

 \ldots this increase would be more important in the case of halos than elves.

• Future observation of elves in Saturn and Jupiter will provide useful information about lightning and the characteristics of their atmospheres.

F.J. Pérez-Invernón - A. Lugue - F.J. Gordillo-Vázguez

Elves on Venus and giant gaseous planets

Introduction	Models	Results	Conclusions
Conclusions			

 \ldots this increase would be more important in the case of halos than elves.

- Future observation of elves in Saturn and Jupiter will provide useful information about lightning and the characteristics of their atmospheres.
- Elves shape depends on the lightning channel inclination.

F.J. Pérez-Invernón - A. Luque - F.J. Gordillo-Vázquez

Elves on Venus and giant gaseous planets

イロト イポト イヨト イヨト

Introduction	Models	Results	Conclusions
Conclusions			

 \ldots this increase would be more important in the case of halos than elves.

- Future observation of elves in Saturn and Jupiter will provide useful information about lightning and the characteristics of their atmospheres.
- Elves shape depends on the lightning channel inclination.
- Latitude can influence TLEs characteristics in planets with an intrisic magnetic field.

