

Nubes y aerosoles en la atmósfera de Marte observadas por la cámara MEx-VMC

Ander Garro Abrain¹, Agustín Sanchez Lavega¹, Ricardo Hueso¹, Teresa del Rio¹, Hao Chen-Chen¹, Iñaki Ordoñez¹, Alejandro Cardesin², Dima Titov³, Simon Wood⁴

- 1. Física Aplicada I, Universidad del País Vasco UPV/EHU, Bilbao, España.
- 2. European Space Agency ESAC, Madrid, Spain.
- 3. European Space Agency ESTEC, Noorwijk, Netherlands.
- 4. European Space Agency ESOC, Darmstadt, Germany.

Visual Monitoring Camera – Mars Express

VMC no era un instrumento científico Monitorizó el descenso del Beagle 2 Divulgación científica y Colaboración amateur

<u>Detector</u> CMOS Bayer RGB (COLOR) 640x480 pixels

<u>Óptica</u>

Distancia Focal: 12.3 mm FOV: 40x31 grados Lon. Onda: 400-650 nm

Navegación

- PLIA (Hueso et al., Adv. Space Res. (2010))
- Cosmosgraphia (open software)

MEx – VMC Órbita

Satélites naturales y artificiales orbitando Marte.

Animación de Celestia que muestra las órbitas de Mars Express sobre Marte durante 25-27 May 2015.

Periastro: 290-310 km Apoastro: 10100-10300 km Periodo orbital: ~7h Excentricidad: 0,94 Inclinación: 86° Avance del periastro de 2 años aprox.

Imágenes de VMC

MEX-VMC 18 de Junio del 2012

MEX - VMC – Valle Marineris

ESA, 29 de Abril del 2016, órbita 15624, 13:45–19:09 GMT

Implicación del Grupo de Ciencias Planetarias en el Proyecto

Planificación de Observaciones:

- Decisión de objetivos científicos según viabilidad
- Cosmographia no tenía MEX-VMC actualizado
- \rightarrow Software a partir de SPICE

Software Time2Situation

VMC vs Sintética, 23-05-2010 01:03:12 CPESS 5 – ESAC – 6-8 de Junio del 2017

Explotación científica

IDL> eclat + -4.5431820

- Adaptación de objetivos científicos a ventanas de observación de VMC.
- Viabilidad de observaciones segun

estaciones, posición orbital, insolación,....

Planificación 2017-2018. Hora local en función de tiempor a pericentro v orbitas

TTO: 1 and	Los -	112	1.00	COMMON CO		,		
100 1 40	1.	-	1	N AND N				
AND ST	Ann Ann	14						
100.9 50	imr_ins	CLUM	10	E=040 /				
IDC> es	1111101	-30,						
10c> di	stance	-540	ю.					
10L> de	t#=['34	117	20	8 81 82:00', '281	7.308.3	8 25:59		
IDL> PH	IN_CONST	tral	nti	i, date, solar_S	nclifeno	e, emission, dist Solar Incidence (deg)	ance, gclat, fmission (deg)	gclen, gcalt Altitude (km)
Starts	2017 3	1.84	85	89:88:23.186443	128	25.2155	38.8000	1167.9438
Stops	2817	SLW.	85	09:13:10.154771	TD8	26.1426	26.3998	1618.0008

Starts	2017 1	NUT	87	10:06:04.068266	708	20,9957	30,0000	1146.0636
Stopi	2017 2	h.N	87	18:11:27.964208	708	22.1099	16.9471	1610.0000
	-			11-04-11 013134	-	17.1000		1101 0007
2447.54	4997.1		22	11.00.00.000000	100	AC DODD	12.4424	1010 0000
stopi	2927	2,74	**	11109/201452471	100	10.2744	12.9074	1918-9666
Starts	2017	nn:	11	12100130.091212	108	14,5791	30.0000	1271.3026
Stop:	2017 3	NN.	11	12:07:30.572944	TDB	15.1252	18.6889	1610.0000
Startes	2017	1.84		12-04-00.029453	TOP	13,8450	10.0000	1454.7586
Stop:	2017	1.84	11	13:05:13.127568	TOP	13, 1534	28.1154	1410.0000
			-		0.77			
101.2								

Ejemplo Script IDL: Ventanas temporales que satisfacen restricciones en altitud, inc. solar y ang. Emision.

Objetivos Científicos

Vórtice Polar

Polo Norte marciano con indicativos de presencia de vórtice polar. MARCI, mosaico en falso color, 22 de Octubre del 2012. NASA/JPL/MSS. *The Bruce Murray Space Image Library.*

Nubes y Aerosoles en el Limbo

Anderson and Leovy, J. Atmos. Sci. (1978)

Vórtices Baroclínicos

Nieblas en Valle Marineris

Walter Myers Vista de Valle Marineris desde el borde del cañón (1999).

MEX-VMC, 18 de Junio del 2012, Doble Vórtice Baroclínico

Nubes en el Limbo - I

Paper Icarus:

"Limb clouds and dust on Mars from images obtained by the Visual Monitoring Camera (VMC) onboard Mars Express"

A. Sánchez-Lavega , H. Chen Chen , I. Ordoñez-Etxeberria , R. Hueso , T. del Río-Gaztelurrutia, A. Garro, A. Cardesín-Moinelo, D. Titov , S. Wood

Under Revision

21 February 2010 - VMC 10-052 : $L_s = 55^{\circ} - LMST = 08:14$ H = 85 km - L =1,950 km Region: Cimmeria

Nubes en el Limbo - Il

Resultados:

- VMC/MEX, capaz de detectar aerosoles en el limbo.
- Estudio anual de fenómenos de gran altitud.
- Distribución areográfica de los fenómenos.
- Morfología y extensión de los fenómenos.
- Combinado con observaciones de otros instrumentos y GCM (LMD-MCD):
 → Visión 3D

15 December 2009 - VMC 09-349 $L_s = 24^{\circ} - LMST = 15:02$ H = 40 km - L =1,000 km Región: Amazonis

Vórtice Baroclínico

Doble Vórtice: LS: 125° Latitud: $50^{\circ}N - 70^{\circ}N$ Longitud: $70^{\circ}W - 110^{\circ}W$ Tamaño Lon.: 1300 km $\rightarrow 90^{\circ} \rightarrow n=4$

Recurrencia Estacional

Variabilidad Diaria

VMC, procesado ESA, 12-170_03.20.30_vmc_img_no_5

CPESS 5 - ESAC - 6-8 de Junio del 2017

Medidas del viento: Manuales

Doble Vórtice: 18 de Junio 2012 60ºN – 90ºW – LS 125º Tiempo entre imágenes: ~16 min

а

VMC 18-06-2012, a) 03:18:06, b) 03:34:53.

PC 1

Medidas Dinámicas: Manuales

Doble Vórtice: 18 de Junio 2012 60ºN – 90ºW – LS 125º Tiempo entre imágenes: ~16 min

V = 10-30 m/s

VMC 18-06-2012, a) 03:18:06, b) 03:34:53.

Medidas Dinámicas: Correlación Cruzada

PICV: Planetary Image Correlation Velocimetry

Artículo de referencia de PICV:

"The jovian anticyclone BA II. Circulation and interaction with the zonal jets" R. Hueso, J. Legarreta, E. García-Melendo, A. Sanchez-Lavega, S. Perez-Hoyos, Icarus 203 (2009) 499–515

Medidas Dinámicas

Equilibrio de Gradiente Vorticity (1e⁻⁵ s⁻¹) Zonal winds (m s⁻¹) Meridianal winds (m s⁻¹) 25 20 15 15 -3 -6 -9 -12 -10 -10

-15

	Parámetro	Expresión	Valor	Error
Fauilibria de Crediente	Velocidad Tan.	U	20 <i>m</i> / _s	10 <i>m</i> / _s
Equilibrio de Gradiente	Radio Vórtice	R	400 km	200 km
(dP)	Coriolis	fU	2,5 $m/_{s^2}.10^{-3}$	0,4 $m/s^2 \cdot 10^{-3}$
$U = -\frac{fR}{2} + \sqrt{\left(\frac{fR}{2}\right)^2 + R\left(\frac{dr}{dr}\right)^2}$	Centrífugo	U^2/R	1,2 $m/s^2 \cdot 10^{-3}$	0,3 $m/s^2 \cdot 10^{-3}$
$2 \gamma(2) \rho$	Gra. Presión	$\frac{1}{ ho} \left(\frac{dP}{dr} \right)$	0,6 $m/s^2 \cdot 10^{-3}$	0,2 $m/s^2 \cdot 10^{-3}$

-15

Gradiente Presión

-15

$$\frac{dP}{dr} = (6\pm3).10^{-4} \, \frac{mbar}{km}$$

 $\Delta P = 0,2mbar$

Complementando los resultados con MRO-MARCI

MARCI, 17,19 de Junio del 2012

MARCI-VMC 18 de Junio del 2012 Tiempo entre imágenes: 9h

MRO-MARCI: Medidas de Viento

Evolución Inestabilidad

Recurrencial estacional VMC/MEX – MOC/MGS – MARCI/MRO (LS=125°)

Altimetría en zona baroclínica (60ºN-90ºW)

Evolución con la hora solar del campo de nubes (MGS-MOC)

MOC – 22 de Marzo del 2003

Modelo de sublimación: Perdida de masa de nubes debida un proceso de sublimación por la insolación solar

 $1 - w_{c}$

$$\frac{dE}{dtdA} = K \Longrightarrow m(t) = m_0 e^{-t/\tau} \qquad \tau = \frac{L_S \rho_{H_2O} t}{1 - t}$$

Parámetro	Componente	Valor	
T. Relajación	τ	6-8 h	
Espe. Óptico	$ au_{opt}$	0,1-3,0	
Tam. Part	а	0,1-6,0 <i>µm</i>	
Albedo	w ₀	0,99-0,9999	

Conclusiones

Resultados:

- Caracterización dinámica de vórtice baroclínico:
 - V(r): 10-30 m/s.
 - Velocidad deriva: 3-5 m/s.
- Formación en la misma región: efecto orográfico subyacente (60°N 90°W).
- Formación en la misma época (LS: 125°). Máximo gradiente térmico.
- Desvanecimiento con la hora solar.

Investigación en Proceso:

- Estudio dinámico de estos procesos en otros años.
- Estudio térmico y correlación de resultados con GCM (MCD-LMD).