Mining the Kilo-Degree Survey for Solar System Objects

Max Mahlke | cpess5 | 07 June 2017

European Space Agency

1500 deg² imaged in *u*, *g*, *r*, *i* 5-step dithering pattern

VST, Paranal Observatory, ESO

1500 deg² imaged in *u*, *g*, *r*, *i* 5-step dithering pattern

VST, Paranal Observatory, ESO

How do we recover SSOs from survey images?

01 - Detect Sources in Images

- 02 Link Detections to Objects
- 03 Find SSOs in Sample

01 - Detect Sources in Images

- 02 Link Detections to Objects
- 03 Find SSOs in Sample

()0 ٢ 0۲ \bigcirc \odot ۲ \odot 0 \odot ۲ \odot \bigcirc ۲ ٢ $(\mathbf{0})$. ٢ ٢ \odot \bigcirc \odot 3 \odot ۲ \bigcirc $\left(\cdot \right)$ \odot \odot \odot (1) 00 \odot \odot \odot 00 \odot ۲ \odot \bigcirc ()٢ \bigcirc \bigcirc \odot ۲

					33.5	6.75	10	83	
	Ĩ) 🕐	/(0		ाहर	1313	23	
	٢			(*) (*)		14	100	8	
۲						2.2 4.5.2	1207	181	
	•	- /				1.00.0	0.22	121	
	\odot		۲						
		0) (9				
			0 0		۲				
	Ŷ	\odot	۲		6	6	2		
					Ø		9		
		 (a) 			торс	AT(2): Table Br	owser		
				2 ¥					
		U							
0			Table Browser 1	for 2: source_ext	ractor.cat-2			CLUDTIC ITY	V BLACE
0	\bigcirc		1 1	180.39786	0.72584	86,9589	0.714297	0.991787	469-818
	\sim		2 2	180,42478	0,72182	2,42112	2,08723	0,297299	923,817
	C.		3 3	180,47722	0,72041	2,27147	2,24903	0,144232	1808,3
	$\mathbf{U}_{\mathbf{U}}$		4 4	180,38704	0,71888	2,89	2,54234	0,828957	287,242
			5 5	180,4426	0,71925	1,47356	1,27925	0,260854	1224,44
) (6 6	180,46344	0,7193	1,91141	1,71549	0,465951	1575,88
San Standard			7 7	180,41058	0,71863	3,62919	3,26998	0,398238	584,357
			8	180,46856	0,71905	1,04863	0,407092	0,323275	1562,24
	(0)		10 10	180,41846	0,71588	1,8979	1,81825	0,1/8849	517,272
	\sim \odot		10 10	190,4005	0,71073	3,49030	3,1932/	0,440907	1241 51
(0)			12 13	180 4205	0 71262	4 94555	3 30731	0,422400	851 620
			13 13	180.38871	0,71867	4,98974	3,11608	0.596394	315.4
	0		14 14	180,44324	0,71873	2,79469	2,51859	0,482506	1235.29
			15 15	180,42522	0,71866	2,53708	2,43674	0,497045	931,236
Sec. A.			16 16	180,40742	0,71857	3,33948	2,75784	0,346118	531,014
		0		-	_	-	_		
the second se	A TANK A MARKET A REPORT OF A DATA OF A D								

01 - Detect Sources in Images

02 - Link Detections to Objects

03 - Find SSOs in Sample

SCAMP

1. Reference Catalog of FOV

2. Pattern Matching between the 5 exposures of one field

 t_0

 t_2

SCAMP

1. Reference Catalog of FOV

2. Pattern Matching between the 5 exposures of one field

 t_1

 t_0

 t_2

SCAMP

1. Reference Catalog of FOV

2. Pattern Matching between the 5 exposures of one field

 t_0

 t_2

- 01 Detect Sources in Images
- 02 Link Detections to Objects
- 03 Find SSOs in Sample

NUMBER OF DETECTIONS

3 - 5

-0

28,290 SSOs

7% Artifacts

28,290 SSOs

7% Artifacts

28,290 SSOs

7% Artifacts

0.3% Artifacts

28,290 SSOs ← Sample of Sources with 3 - 5 Detections 7% Artifacts 21,072 SSOs ← Sample of Sources with 4 - 5 Detections 0.3% Artifacts

Proper Motion distribution of the **28290** SSO candidates in the sample:

Proper Motion distribution of the **28290** SSO candidates in the sample:

47% of the SSO candidates in the sample have a match within 10" in the SkyBoT database

Proper Motion distribution of the **28290** SSO candidates in the sample:

47% of the SSO candidates in the sample have a match within 10" in the SkyBoT database

Among the **cross-matched** SSOs:

10

53% of the SSO candidates in the sample have no match within 10" in the SkyBoT database

46% of the SSO candidates in the sample have no match within 10" in the SkyBoT database

46% of the SSO candidates in the sample have no match within 10" in the SkyBoT database

Method to find SSOs in wide-field surveys that apply dithering strategy

Method to find SSOs in wide-field surveys that apply dithering strategy

Method to find SSOs in wide-field surveys that apply dithering strategy

The necessary tools already exist: Source Extractor, SCAMP, Python, SkyBoT

Method to find SSOs in wide-field surveys that apply dithering strategy

The necessary tools already exist: Source Extractor, SCAMP, Python, SkyBoT

Pilot study on the KiDS dataset shows applicability and large potential of this method

Method to find SSOs in wide-field surveys that apply dithering strategy

The necessary tools already exist: Source Extractor, SCAMP, Python, SkyBoT

Pilot study on the KiDS dataset shows applicability and large potential of this method

Method to find SSOs in wide-field surveys that apply dithering strategy

The necessary tools already exist: Source Extractor, SCAMP, Python, SkyBoT

Pilot study on the KiDS dataset shows applicability and large potential of this method ESA'S Euclid VISTA Surveys at ESO UKIDSS LSST

All SSO candidates with 3+ detections were submitted to the Minor Planet Centre

A paper summarizing our method and results has been submitted to A&A

Thank you very much

Hervé Bouy

LAB | Université de Bordeaux

Bruno Altieri

ESAC | European Space Agency

Gijs Verdoes-Kleijn

Kapteyn Astronomical Institute | University of Groningen

Emmanuel Bertin

Institut d'Astrophysique de Paris

Benoit Carry

Observatoire de la Côte d'Azur | Université Côte d'Azur

+ the KiDS collaboration

All SSO candidates with 3+ detections were submitted to the Minor Planet Centre

A paper summarizing our method and results has been submitted to A&A