

Preparing staff for ELT science operations activities

Andres Pino Pavez

European Southern Observatory

ESA/ESO Sciops Workshop 2017

"Working together in support of science"

17-20 OCTOBER 2017 - EUROPEAN SPACE ASTRONOMY CENTRE (ESAC) - ÉSA, VILLANUEVA DE LA CAÑADA, MADRID, SPAIN

Paranal Observatory – the home of ELT

ESA/ESO Sciops Workshop 2017 - 17-20 OCTOBER 2017 - EUROPEAN SPACE ASTRONOMY CENTRE (ESAC)

Why this talk

- ELT will demand various and unique areas of expertise
- Being an integral "AO Telescope" requires different awareness, new skill sets and technical background
- Additional astroclimate parameters/decisions will drive the process of prioritization of observations
- The combination of the AO Facility (DMs, Lasers) and new generation instruments, will need more and different monitoring strategies (tools and people)
 - Staff should incorporate these new techniques and parameters in a common and standard language

Why this talk

- A complete staff training program is the only starting point to ensure the best use of observational time and science quality
- Complexity of the system will require newer techniques and engineering knowledge

Challenge

ELT Design

Altitude cradles for inclining the telescope

Instrument platforms sit either side of the rotatable telescope

- 1. The 39.3-metre primary mirror collects light from the night sky and reflects it to a smaller mirror located above it.
- 2. The 4-metre secondary mirror reflects light back down to a smaller mirror nestled in the primary mirror.
- 3. The third mirror relays light to an adaptive flat mirror directly above.
- 4. The adaptive mirror adjusts its shape a thousand times a second to correct for distorsions caused by atmospheric turbulence.
- 5. A fifth mirror, mounted on a fast-moving stage, stabilises the image and sends the light to cameras and other instruments on the stationary platform.

system can turn through 360 degrees

Lasers

ELT Instrumentation Programme

HARMONI Integral Field Spectrograph

MICADO+MAORY

Imager and single slit spectrograph

METIS Mid-IR imager and spectrograph

HIRES High resolution spectrograph

MOSAIC Multi-object spectrograph

PCS Extreme AO imager and spectrograph

HARMONI

High Angular Resolution Monolithic Optical and Near-Infrared spectrograph

- "3D" Integral Field Unit spectrograph
 > Think "MUSE+KMOS"
- Covering optical (0.47µm) to near-IR (2.45µm)
- Resolving power from R=3500 to 20000
- Range of spatial scales with field of views from 9"x6" to 0.8"x0.6" and 32000 spatial pixels
- From seeing limited observations down to the diffraction limit
- with SCAO and LTAO
 - A factor of ~>100 in size scales

Survey ~50 Ultra-Luminous infrared galaxies discovered by the *SPITZER* space telescope

mass, velocities of gas and stars, details of star formation

Quarter view of the HARMONI spectrometer cryostat. More than 4m in diameter, cooled to ~ -150°C.

HARMONI-LTAO concept

HARMONI METIS

- Single conjugated adaptive optics fed imager (10"x10" FOV) and (3D) spectrograph
- Covers the thermal / mid infrared wavelength range from 3µm to 19µm
- Spectral Resolving power from ~100s-100 000 (with IFU)
- Coronography for observations of exoplanets, disks

HARMONI METIS MAORY and MICADO

- Multi-conjugate AO system using 6 laser guide stars and 3 natural guide stars
- 1 or 2 deformable mirrors in addition to ELT M4 to correct atmospheric turbulence
- **Single-conjugate AO** as Joint development between MAORY and MICADO, managed by MICADO
- Optical beam can feed MICADO or second instrument port

HARMONI METIS MAORY and MICADO

- Imaging from 0.8-2.4µm, > 30 filters, an array of 3x3 detectors with 4096x4096 pixels each. Pixel scales of 4mas (FoV ~53") and 1.5mas (FoV ~20")
- Astrometric imaging to 50µarcsec precision across whole imageSpectroscopy for single compact objects, two settings (0.8-1.4µm and 1.5-2.4µm) at spectral resolving power ~8000.
- Coronagraph plus single conjugate AO
- Time Resolved Astronomy as fast as 4ms

AO Experience on-site

- After more than 15 years performing operations with AO/Laser systems, staff has good knowledge of current techniques and awareness of meteorological conditions for operations
- Most of this background is born from the operations itself
- Specificities are so broad, that dedicated training has to be provided
- Existing know-how (TIOs):
 - 8 operators are usually working in UT4 (MUSE, HAWKI, SINFONI,LGSF)
 - 4 of them are the main supporters for AOF installation and commissioning (4LGSF, GRAAL, GALACSI)
 - One specialist in meteorological data analysis

Experience on-site

- AO and UT-VLTI Instruments require skills about AO techniques and meteo constrains (8 out of 17 Instruments)
 - > Not all operators have internalized those requirements
 - For other instruments, Seeing and Transparency are the main drivers for selecting the observations

GOAL: All operations staff should be available for AO/ELT Operations by 2022

Current UT4 operators to be fully certified by 2018 Certification Campaign for rest of TIOs (2019-2022)

AO systems at VLT

INSTRUMENTS

NAOS VIS+IR WFS (SCAO)

- NACO (Nasmyth Adaptive Optics System (NAOS) Near-Infrared Imager and Spectrograph (CONICA)
- SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared)
- MUSE (Multi Unit Spectroscopic Explorer)
 - GALACSI
- HAWK-I (High Acuity Wide field K-band Imager)
 - > GRAAL (GLAO)
- SPHERE (SCAO & XAO) (Spectro-Polarimetric High-contrast Exoplanet Research)
- VLTI Instruments
 - > AMBER, PIONIER, GRAVITY

AO systems at VLT

SYSTEMS / SUBSYSTEMS

- MACAO VLTI (VIS WF)
- CIAO VLTI (IR WFS)
- LGSF / 4LGSF (Laser Guide Star Facility)

Meteorological data at VLT

MASS - DIMM

- Turbulence velocity/altitude (7 layers), Seeing,
 Coherence Time, Isoplanatic
 Angle, relative flux variation
- SLODAR
 - Turbulence in Surface Layer (10 level up to 500m), Seeing, GL fraction (300/500 mts)
- LATHROP (Radiometer)
 - WV and sky background temp
- STEREO SCIDAR (ELT project)
 - HR turbulence Profiler (300 Layers 32Km)

METEO Tower

Ambient and Dew Temperatures, HR, atm pressure, Wind speed and direction, particle counter

Meteorological data at VLT

Meteo Forecast

- Wind Speed
 - Direction and m/s
- Temperature
- > Water Vapour
- Clouds Coverage

Future (?)
 Coherence Time

- Seeing
- Turbulence layers

Meteorological data at VLT

- Meteo Forecast
 - ➤ Wind Speed
 - Direction and m/s
 - Temperature
 Water Vapour
 Clouds Coverage

Future (?)Coherence Time

- Seeing
- Turbulence layers

Studies on-going

- Identify areas of development
 - > Adaptive Optics basics and techniques
 - > Astro-meteo
- Identify needs for astronomical observations decisionmaking process
- Identify an interdisciplinary group for AO facility maintenance and support on-site
 - System and Optics, Laser Specialists, Instrumentation, Electronics, Astronomers and Operators

UT4/AOF Operations Team ASTROMETEO-IOT

Equalize high level support

- Design and implementation of a HL training process (i.e. ESO-PUC)
- Generates a general training process for all other actors
 - By UT4/AOF Operations Team (ideally)
- Foster synergies and hands-on activities during commissioning
- Stablish AOF as a living area that needs constant follow-up and procedures update

Adaptive Optics Training (now happening)

> High Level Training (w PUC Chile)

- 2 days of "Basics lectures", preparing for the laboratory activities
- 4 days of "Advanced lectures"

Basics in Adaptive Optics

Basics in AO

Basics of AO reconstruction

Basic of optics and atmosphere

Basics of wave-front (WF) correction

Distributed AO (Tip-tilt/High order mirrors)

Basics of Natural Guide Star (NGS) WF sensing

Introduction to AO simulations + written exam #1

Adaptive Optics

> High Level Training (w PUC Chile)

- 2 days of "Basics lectures", preparing for the laboratory activities
- 4 days of "Advanced lectures"

Advanced lessons

AO history and challenges

Advanced lesson on WF correction

Tomographic AO principles

Written exam #2 (30 min) & Exams correction

Layered turbulence model

Advanced lecture on NGS WF sensing

Extreme AO specificities

Vibrations mitigation

Adaptive Optics

> High Level Training (w PUC Chile)

- 2 days of "Basics lectures", preparing for the laboratory activities
- 4 days of "Advanced lectures"

Advanced lessons (cont)

From Kolmogorov to von Kármán

Laser Guide Star WF sensing

Advanced reconstruction & control

Understanding an AO system diagram

Turbulence monitoring

Overview on WF sensing methods

AO calibration

AO Simulation tools

Adaptive Optics

> High Level Training (w PUC Chile)

- 2 days of "Basics lectures", preparing for the laboratory activities
- 4 days of "Advanced lectures"

The future plan

more training to come during the next years...

- IOT activities
- ELT Software
- ELT Hardware
- Astrometeo
- PLCs & Control
- Instruments
- Operations

Special thanks to: Suzanne Ramsay¹, Michele Cirasuolo¹, Steffen Mieske², Julien Milli², Julio Navarrete², Juan Carlos Guerra², Andres Guesalaga³ ¹European Southern Observatory, Garching

²European Southern Observatory, Garching ³Pontificia Universidad Católica de Chile

