Tracking Planet Footprints in Dusty Disks

Catherine Espaillat Boston University

How do planets form?

General picture is that grain growth in disks creates the building blocks which form planets

To get a more detailed picture of how disks form planets, need to identify disks displaying planet footprints

What do planet footprints look like?

Theory predicts forming planets will carve out gaps in disks

Disk gaps have been detected and provide constraints for planet formation models

Drawing of UX Tau A: NASA/JPL-Caltech/T. Pyle (SSC) Based on Espaillat et al. 2007b

Tracking Planet Footprints

What evidence do we have for planets forming in young disks?

What can disks with holes and gaps tell us about disk evolution and planet formation?

Where do we go from here?

Transitional disk

Espaillat et al. 2014, PPVI

Tracking Planet Footprints

What evidence do we have for planets forming in young disks?

- full disk overview
- SEDs and images of disk holes and gaps
- theoretical disk clearing mechanisms

What can disks with holes and gaps tell us about disk evolution and planet formation?

Where do we go from here?

Espaillat et al. 2014, PPVI

Protoplanetary disks have complex structure photon-dominated rich molecule chemistry accretion dust-gas interaction turbulent transport dust Oslo -Ice settling 150 K 1500 K snow line complex molecules UV/X-ray radicals and ions giant planet radiation formation

└ grain growth -

IR excess in SEDs is evidence for dusty disks

IR excess in SEDs is evidence for dusty disks

IR excess in SEDs is evidence for dusty disks

HST imaging confirms dusty disks exist around young stars

Young Stellar Disks in Infrared PRC99-05a • STScI OPO D. Padgett (IPAC/Caltech), W. Brandner (IPAC), K. Stapelfeldt (JPL) and NASA

HST • NICMOS

UV excess traces gas accretion

Calvet & Gullbring 1998

Simulating SEDs to probe disk structure

Tracking Planet Footprints

What evidence do we have for planets forming in young disks?

- full disk overview
- SEDs and images of disk holes and gaps
- theoretical disk clearing mechanisms

What can disks with holes and gaps tell us about disk evolution and planet formation?

Where do we go from here?

Espaillat et al. 2014, PPVI

Disk structure terminology

Transitional disks have IR dips in SED, indicating an inner disk hole

Some inner holes contain small, hot dust

Some inner holes contain small, hot dust

Some inner holes contain small, hot dust

Combining submm imaging and SED modeling to confirm disk cavities

Hughes et al. 2009

In addition to inner holes, annular gaps have been detected

Pre-transitional disks: objects with annular gaps

Espaillat et al. 2007b; also Brown et al. 2007

LkCa 15: gap or hole?

Imaging identifies a large cavity in LkCa15' s disk

Optical polarimetric imaging identifies small dust within the cavity

Thalmann et al., submitted, arXiv:1507.03587

LkCa 15's NIR blackbody-like excess points to a gapped disk

Espaillat et al. 2008a

Muzerolle et al. 2003

A potential protoplanet around LkCa 15

Kraus & Ireland 2011

Several disk cavities now confirmed via submm interferometric imaging

also AB Aur (*Pietu et al. 2005*), TW Hya (*Hughes et al. 2007*), SAO 206462 (*Brown et al. 2009*), RY Tau (*Isella et al. 2010a*), DM Tau (*Andrews et al. 2011*), IRS 48 (*Brown et al. 2012*), HD 142527 (*Casassus et al. 2013*), Sz 91 (*Tsukagoshi et al. 2014*)

Figure from Espaillat et al. 2014, PPVI; Data from Mathews et al. 2012 Isella, et al. 2010, Brown et al. 2009, Andrews et al. 2009, Hughes et al. 2009, Andrews et al. 2011b, Brown, et al. 2008, Cieza et al. 2012, Rosenfeld et al. 2013, Andrews et al. 2010

Tracing small dust within submm cavities with NIR polarimetric imaging

Figure from Espaillat et al. 2014, PPVI; Data from Follette et al. 2013, Kudo et al. in prep, Mayama et al. 2012

Gas can continue to accrete across holes and gaps in dust disk

Ingleby et al. 2013

Tracking Planet Footprints

What evidence do we have for planets forming in young disks?

- full disk overview
- SEDs and images of disk holes and gaps
- theoretical disk clearing mechanisms

What can disks with holes and gaps tell us about disk evolution and planet formation?

Where do we go from here?

Disk clearing mechanisms: dynamical clearing by planets

Masset et al. 2002

also Crida et al. 2006; Lubow & D' Angelo 2006; Paardekooper & Mellema 2006; Papaloizou et al. 2007; Pierens & Nelson 2008; Zhu et al. 2011; Kley & Nelson 2012; Baruteau et al. 2014

Disk clearing mechanisms: dynamical clearing by stellar companions

Ireland & Kraus 2008

Disk clearing mechanisms: photoevaporation

Adapted from Alexander et al. 2015; see also Hollenbach et al. 1994; Clarke et al. 2001

Photoevaporation models cannot explain accreting objects with large inner cavities

Tracking Planet Footprints

What evidence do we have for planets forming in young disks?

- full disk overview
- SEDs and images of disk holes and gaps
- theoretical disk clearing mechanisms

What can disks with holes and gaps tell us about disk evolution and planet formation?

- variable dust & gas properties
- spatial distributions of disk gas and dust

Where do we go from here?

Pre-transitional disks have variable "see-saw" IR emission

Espaillat et al. 2011; also Muzerolle et al. 2010, Flaherty et al. 2012

In pre-transitional disks, the inner wall casts a shadow on the outer wall

Changing the height of the inner wall changes the shadow on the outer wall

Can fit each SED by changing the height of the inner wall

Potential causes of MIR variability in pre-transitional disks

Planet-disk interaction

Flaherty et al. 2011

Ogilvie & Lubow 2002

MIR variability in transitional disks

Espaillat et al. 2011

FUV-NIR variability in GM Aur

Ingleby, Espaillat et al. 2015

FUV-NIR variability in GM Aur

Decrease in FUV-NIR emission of GM Aur

Excess in Observation #1 over #3

accretion rate decreases

dust mass in inner disk decreases

Decrease in FUV-NIR emission of GM Aur

H₂ gas density decreases

accretion rate decreases

dust mass in inner disk decreases

lower NUV

lower NIR

weaker 1600Å H₂

lower NUV decreased accretion rate less dense accretion column lower NIR weaker 1600Å H₂

Energy ∞ density x v³

Energy ∞ density x v³

Comparing the locations of dust and gas

Hartmann 2008

Tracing the star-disk connection

Inhomogeneities in the inner disk Less mass loading onto star

GM Aur's NUV, NIR, and 1600Å H_2 feature all decrease in strength.

- Points to decrease in the density of the accretion column and inner disk.

Tracking Planet Footprints

What evidence do we have for planets forming in young disks?

- full disk overview
- SEDs and images of disk holes and gaps
- theoretical disk clearing mechanisms

What can disks with holes and gaps tell us about disk evolution and planet formation?

- variable dust & gas properties
- spatial distributions of disk gas and dust

Where do we go from here?

Extracting observational constraints to inform physical models

LkCa 15

•

UX Tau A

30 AU

1 x 10⁻⁸ M $_{\odot}$ yr ⁻¹

Multiple planets open a large annular gap

Zhu et al. 2011

The gaps must be deep enough to be detectable in SEDs

Multiple planets significantly decrease the accretion rate onto the star

Zhu et al. 2011

Dust filtration can lead to different gas and dust distributions

Zhu et al. 2012

Possible evidence of earliest stages of gap opening via dust filtration

Tracking Planet Footprints

What evidence do we have for planets forming in young disks?

- full disk overview
- SEDs and images of disk holes and gaps
- theoretical disk clearing mechanisms

What can disks with holes and gaps tell us about disk evolution and planet formation?

- variable dust & gas properties
- spatial distributions of disk gas and dust

Where do we go from here?

- identifying more disks with cavities
- spatially resolving disk structure

Identifying new, fainter (pre-)transitional disks

Andrews et al. 2011

Identifying new, fainter (pre-)transitional disks

ALMA has revealed dust asymmetries

van der Marel et al. 2013

also Casassus et al. 2013; Fukagawa et al. 2013; Isella et al. 2013; Perez et al. 2014; Pineda et al. 2014

Imaging smaller disk gaps...

Planets can open small disk gaps

Dong, Zhu, & Whitney 2015; Meru et al. 2015

Linking disk evolution and planet formation

What do planet footprints look like?