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The Milky Way: Our Prototype Disk Galaxy 

Us 

NGC 1232                                               NGC 4565 
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Witnesses of the Evolution: Stars 

• Detailed chemistry and motions of stars of all ages 
• Disk probes: Solar-type dwarfs; Halo: Giants 

• What parameters do we want to know? 
 - Age; dwarfs (models, Teff, log g, Mv  uvbyβ) 
 - Metallicity ([M/H] ~ [Fe/H]; [X/Fe]) 
 - Distances, reddening  π; uvbyβ 
 - Space velocities U,V,W  μ, π, RV 
 - Disk heating; Galactic orbits; inner/outer halo 
• Main targets: Solar vicinity (disk life); extreme early halo  
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I:   uvbyβ photometry of all ~30,000 A5-G stars in the HD to V ≈ 8.5 
      Apparent magnitude limited sample (E. H. Olsen 1975-1994) 

II:  Select all ~17,000 bona fide F & G dwarfs from stage I 
      Ages can be derived for stars 0.5-1.5 mag above ZAMS 
      When distances known, volume limited sample can be defined  

III: Multiple RV observations of (nearly) all stars from stage II 
     (~63,000 new obs. of 14,139 stars - ~1,000 observing nights @ 
      ESO + OHP + CfA;  Geneva-Copenhagen team 1981 – 1997) 

IV: Re-check and complete all data (Hipparcos!); revisit calibrations  
      (Re)compute distances, velocities, [M/H], ages, Galactic orbits 
      (Lund – Copenhagen – Geneva 2003 − 2009) 

Rewinding History: The GCS Disk Survey 
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The GCS Disk Sample; Completeness 

R ~ 100 pc 

Volume complete to ~ 40 pc 

Ill.: Lars L. Christensen, ESO Solar orbit 
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Preparation: Test the Stellar Models 
Key questions for ages at start: 
 - Opacities; core convection; overshooting 
 

Test objects 1: Detached double-lined eclipsing binaries 
 - Complete, accurate, uvby light curves 
 - Spectroscopic orbits (1.52m spectra, CORAVEL, +…) 
 - [Fe/H]  ([M/H] from uvbyβ; [X/Fe] from CES, McD, …) 
 

Test objects 2: Open clusters with ages 1-4 Gyr 
 - Accurate uvby colour-magnitude diagrams 
 - RV identification of non-members and (binary) members 

ESA  Astronomy Centre (ESAC)                         J. Andersen                                           Madrid, June 2, 2016 



Method for Calculating Ages and Errors 

Adjust Teff scale as needed to match observed ZAMS @ low [Fe/H] 
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[Fe/H] 



MDF and Age-Metallicity Relation 

”G dwarf problem” and closed-box chemical evolution 
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AMR: Evolution Over 20 Years… 

- Same selection effects… 

Edvardsson et al. (1993)              Gaia-ESO Survey (2014) 
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The U-V Plane: Not Two Gaussians! 

Hyades 

Not thin + 
thick disk! 
 
Dynamical 
focusing? 
 
Radial 
migration? 
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Young                  Old                  Thick 

Disk Heating: Models vs. Reality 

Quillen & Garnett 2001: 
189 dwarfs from Edv ’93 

GCS III: 2,626 single stars,  
σп < 13%; σAge < 25%  

obs lin. 

Q&G 
Merger 
@ 3 Gyr 
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GCS I-III Finally Published 2004-2009  

    

Now ~1,600  cit. total 

    

Set a deadline…! 
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“The GCS Movie” 

”Solar neighbourhood”?? 
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A Subset: Detailed Element Abundances 
•  What stars made which elements, how, where, and when? 
 - Test the best atmospheres & synthetic spectra 
 - Instrument (CES) designed to obtain accurate spectra 

First visitor run 
December 1981 
 
- a young 
David Lambert 
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Disk: Evolution of Element Abundances 

Subsample of 
189 FG dwarfs 

 
Edvardsson  
et al. (1993) 

 
Now 1,650 cit 
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General: Galactic Chemical Evolution 

From the Big Bang via the Solar System to Today 
 

Conventional picture: 
Pop. III stars were presumably massive, exploded as SN II, and efficiently 
returned new heavy elements to the ISM. This enabled lower-mass 
extremely metal-poor (EMP) halo stars with [Fe/H] ≤ ~ −3 to form in GMCs 
seeded with these elements). Later SNe II and eventually SNe Ia further 
boosted the chemical evolution of the Milky Way halo and disk at steadily 
higher [Fe/H]. Outliers were ‘just’ due to binaries…. 
 
Observational check: 
Precise ([X/Fe]) ratios of normal (Pop I +) Pop II stars (“Edv+ for the halo”) 

ESA  Astronomy Centre (ESAC)                         J. Andersen                                           Madrid, June 2, 2016 



Stochastic Early Halo Enrichment …? 

Conventional Wisdom: 
Stochastic chemical evolution models produce significant 
dispersion in EMP element ratios (e.g. [Mg/Fe]).  
 
Observational Reality: 
Precise observed [Mg/Fe] relations 
  are tighter than models predict. 
 
Very accurate observations  
 are needed:  UVES@VLT! 
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“First Stars”: The ‘Normal’ Pop. II Pattern 

Element pattern  O → Fe group extremely uniform, but NLTE, 3D convection 

Cr II in dwarfs 

Giants 
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The First Elements Produced: CNO 

C from CH band @ 430 nm        N from NH band @ 336 nm 
 

Why is the scatter in C and N so enormous?? SNe II should  
be simple! Is this intrinsic or caused by internal processing? 
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Origin of the scatter in C & N ? 

O behaves much better ? C/N: mixing with CNO cycle! 

Mixed 

Unmixed 
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Explanation: CNO Cycle + Mixing! 

Li confirms the deep mixing 

CNO cycle just turned C into N 

- and the 12C/13C ratio as well  
Gaia π! 
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What True Chemical Peculiarities 
are Prominent in Today’s EMP Stars? 
C-enhanced EMP (CEMP) stars: 
 [C/Fe] = 0.7 → 2+ dex; 20 - ≥70% of EMP giants 
 May - or may not - also show enhanced [r,s/Fe]  
 
R-process enhanced stars (EMP-r stars): 
 [r/Fe] = 0.3 → ~2 dex; rare: ~3% of EMP giants 
 Some stars also have [r/Fe]  <  0 (e.g. HD122563) 
 
NB: Their spectra are complex, crowded, and non-standard! 
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Key: Local or Global Enrichment? 
Basically just two explanations of these excesses: 

• This is only a surface effect, produced locally; or 
• The parent ISM cloud had this composition 

Local production site(s):  
• Production, diffusion or mixing within the star itself, or 
• Transfer of processed matter from a binary companion 

External production sites: 
• Pollution of the parent cloud from a distant production site  

Clue: Frequency and orbits of binaries in sample! 
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What Was Thought Before 2006? 
Conventional wisdom: 
All chemical peculiarities were ascribed to binary evolution 
 
Origin of EMP-r stars: 
Original primary star became a SN II; polluted companion 
 
Origin of CEMP stars: 
Original primary star became an AGB star; polluted companion 
 
Precise observational clues needed: 
Reliable binary frequencies; orbital periods & eccentricities 
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Paradigm: C and Ba+s Likely Transferred  
From a Former AGB Binary Companion 

Note cutoff periods for: 

common-envelope  
evolution (secondary R) 

circularisation of orbits 
(Pop I: Depends on age) 

Theoreticians happy  

(Jorissen et al. 1998) 
Pop II 
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Do EMP-r (r-II) Stars Have a Similar Origin? 

[Fe/H] = −3.0±0.2; r-element pattern very uniform, but offset by ≤ ~2 dex 

SS s- 
pattern 

SS r-pattern 
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RV Monitoring With FIES@NOT (I) 
Both the prototype r-II+CEMP 
star CS22892-052 and the C 
normal U star CS31082-001 
are single (σ ≤ 100 m s -1) – 
rare elements are irrelevant(!) 
 
One U star has K ~ 350 m s -1 

One r-I star: P ~7 yr; e ~ 0.77 

P ~ 300 d 
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CEMP Stars Were Now Important: 
CEMP Stars Come in Two Varieties: 
 
CEMP-no Stars: 
• No s-element signatures 
• Most metal-poor group ([Fe/H] ≤ −3) 
• Dominant group in outer halo 
• Binary properties unknown 
 
CEMP-s stars: 
• Strong s-element signatures 
• Dominate in inner halo 
• Binary frequency high (simulations said 100%??) 
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RV Monitoring With FIES@NOT (II)  
Most (≥80%) CEMP-s stars are indeed binaries, but CEMP-no and 
EMP-r stars are generally single, and some (~20%) CEMP-s stars 
are single as well (σ < 100 m s -1). 
 
 P = 20 d (post common envelope?)                                   P ~30 yr(!) 
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• Distances 
• Kinematics 
• Evolution     
- are unknown! 
Are the stars 
Giants or AGB? 
 

Follow-up I (2017+): Gaia π, d, L 

Answer in 2017: Gaia space astrometry & photometry! 

Some CEMP-s  
stars are variable 
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Tantalizing Results From the LMC: 

Pulsating LMC RGB & AGB stars from MACHO and Spitzer (Riebel+ 
2010). Sharp limit between RGB and AGB stars? 
Gaia parallaxes will help to put our field stars on the same Mv scale. 
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Results/Conclusions: 
• CEMP-no and EMP-r stars are basically single    
• ~20% of the CEMP-s stars are single as well(!) 
• Most, but not all CEMP-s stars are in (long-period) binaries 
• Abundance anomalies are intrinsic and were imprinted on 

 the parent clouds across interstellar space in ISM at z ≥ 3(?) 
• Some early enrichment processes were complex and non-local 
• Could this process account for the C-rich DLAs at z = 2-3? 
• Could the C in CEMP-no and the single CEMP-s stars originate in 

 AGB stars without s-element production? 
• Alternatives: ‘Faint’ SNe with fallback & mixing? Or ‘spinstars’? 
• Some CEMP stars seem to be pulsating; Gaia should tell if & why! 
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THANK  YOU ! 
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