Infrared study of Transitional Disks in Ophiuchus with Herschel

Rebollido et al. (2015), A&A, 581, A30

Isabel Rebollido – ESAC Bruno Merín – ESAC Álvaro Ribas – ESAC, CAB Hervé Bouy – CAB Ignacio Bustamante – ESAC, CAB Pablo Riviere-Marichalar – ESAC

Timo Prusti – ESA/ESTEC, Göran L. Pilbratt – ESA/ESTEC Philippe André – CEA, Péter Ábrahám – Konkoly Obsevatory

Credit: ESO/L. Calçada.

Transitional Disks

Protoplanetary disks around young stars which have inner gaps, probably due to:

- Photoevaporation
- Grain growth
- Planet Formation

2MASS J16042165-2130284

Espaillat et al. (2014) ³

Hydrodinamical simulation of a planet forming transitional disk

Quillen et al. (2004)

Spectral Energy Distribution

Inner Gap in Circumstellar Disk Spitzer Space Telescope • IRS

NASA / JPL-Caltech / D. Watson (University of Rochester)

ssc2004-08c

HL TAU ALMA 850 μm

Credit: ALMA(NRAO/ESO/NAOJ); C. Brogan, B. Saxton (NRAO/AUI/NSF)

Herschel Space Observatory

- 3,5 m mirror
- Covered from 55 µm to 670 µm
- Instruments:
 - HIFI
 - PACS
 - SPIRE

Imaging Instruments	PACS	SPIRE
Wavelengths (µm)	70, 100, 160	250, 350, 500

ρ-Ophiuchi

Optical RGB

Credit: Robert Gendler, Jim Misti, and Steve Mazlin

R: 24 μm G: 8 μm B: 4,5 μm

R: 160 μm G: 100 μm B: 70 μm

ρ-Ophiuchi

125 pc 2-5 Myr >250 YSO's

ρ-Ophiuchi 1.38°x1.38° PACS – 70 μm

Herschel Gould's Belt Survey (PI: Ph. André) & OT2_pabraham_3 (PI: P. Ábrahám) **HIPE** (Herschel Interactive Processing Environment)

Python-based analysis software specifically designed for Herschel data analysis

1) Sample construction: 261 YSO's (from Ribas et al. 2014 + Cieza et al. 2010)

2) Source Extraction & Aperture Photometry

3) Visual Inspection

False Positive

3) Visual Inspection

4) Photometry study

We estimated an uncertainty of 25% for the measured fluxes

5) SED construction

objects detected from a sample of **261**

Spectral Energy Distribution

Inner Gap in Circumstellar Disk Spitzer Space Telescope • IRS

NASA / JPL-Caltech / D. Watson (University of Rochester)

ssc2004-08c

Spectral Energy Distribution

Olofsson et al. (2013)

Rebollido et al. (2015)

Rebollido et al. (2015)

Rebollido et al. (2015)

Rebollido et al. (2015)

Rebollido et al. (2015)

Additional criterion

Additional criterion

Rebollido et al. (2015)

Additional criterion

Rebollido et al. (2015)

Transitional disks candidates

Transitional disks candidates

Rebollido et al. (2015)

I.D.	Name	Id. Criterion	
1	Haro1-6	12-70	
2	DoAr24	12-24	
3	DoAr25	12-70	
4	WSB40	12-24	
5	SR24S	12-70	
6	2MASS J16270659-2441488	12-24	
7	WSB46	12-70	
8	2MASS J16273084-2424560	12-24	
9	IRS48	12-24	
10	IRS49	12-24	
11	2MASS J16273863-2438391	12-24	
12	WSB52	12-24	
13	SR9	12-24	
14	2MASS J16281385-2456113	12-70	
15	WSB60	12-70	
16	SR20W	12-70	
17	SR13	12-24	
18	2MASS J16285694-2431096	12-24	

Number of detected sources per band					
70 µm	160 µm	250 µm	350 µm	500 µm	
49	25	19	15	8	
18.8%	9.7%	7.3%	5.8%	3.1%	

From a list of **261 initial** YSO's we detected **49 objects** in at least one Herschel band, and from those, 7 **are considered as transitional disks candidates, according to the 12-70 criterion,** and other 11 according to the complementary criterion.

Fraction of Transitional Disk Candidates 37%

Likely, some of the candidates are not transitional. They show very flat slopes, and fullfil the criterion due to the uncertainties.

The sample requires a deeper study.

Additional interesting objects

Additional interesting objects

WISE points

Ribas et al. (2014)

Summarizing

- We have detected and provided IR fluxes for **49 disks** from an initial list of 261 YSO's in the region of ρ Ophiuchi in at least one band with Herschel data.
- 18 of them fullfil the criteria to be considered transitional disks, and 6 more are considered interesting objects for follow up.
- Herschel data has been proven to be very useful to detect new transitional disks candidates.
- We have found an extremely interesting candidate (2MASS J16281385-2456113), new to the literature.