Tycho-Gaia and beyond Combining data for precision astrometry

Daniel Michalik

2010–2015: Ph.D. at Lund University, Sweden 2009–2010: Young Graduate Trainee, European Space Agency

Step 1 The motivation: Our Galaxy

The Milky Way – a spiral galaxy

Artist impression

Illustration Credit: R. Hurt (ssc), JPL-Caltech, NASA Survey Credit: GLIMPSE

The Milky Way – a spiral galaxy

Artist impression

Illustration Credit: R. Hurt (ssc), JPL-Caltech, NASA Survey Credit: GLIMPSE

The Milky Way – a spiral galaxy

Structure hard to determine - we see it from within (real photograph)

\Rightarrow Measuring direction of and distances to the stars

Photo: J. Westlake (Colorado Mountain College)

Step 2 The technique: Astrometry

Astrometry

(Four-dimensional) mapping of stars, planets, galaxies, etc

Astrometric parameters, single stars:

- Positions α , δ (since Antiquity)
- Parallaxes ϖ (since 1838)
- Proper motions $\mu_{\alpha*}, \mu_{\delta}$ (since 1718)

Large distances \Rightarrow high accuracy required

ca 1600: Tycho Brahe's mural quadrant

Astrometric data are fundamental for many purposes

- · Orbits and position predictions of asteroids and comets
- Detection of invisible companions (binaries, exoplanets)
- Stellar evolution
- · Structure and kinematics of the Milky Way
- Calibration of the cosmical distance ladder
- Determination of reference frame
- Test of fundamental physical assumptions

Proper motion illustration

Proper motions of the stars of a well-known constellation From 100 000 years ago to today to 100 000 in the future

Animation: D. Michalik & Stellarium

Parallax effect

Earth orbits Sun \Rightarrow displacement of a star dependent of its distance

• Only direct method (model-independent)

Click for video: The Earth orbiting the Sun causes the parallax effect Click for video: Simulations of the real effect, 150 000x exaggerated

> Figure: L. Lindegren & D. Michalik Videos: (1) ESA podcast (2) D. Michalik & Stellarium

Absolute parallaxes

Requires global astrometry

- Scans along (many different) great circles
- Two simultaneous viewing directions, large basic angle
- · From space to observe continuously in all directions
- Stable thermal environment

Figure: Lindegren & Michalik

Mapping the stars is not a new idea

 E.g., Hipparchus (ca 150 BC), Brahe (ca 1600), Flamsteed (ca 1700), Bonner Durchmusterung (ca 1850), Carte du Ciel & Astrographic Catalogue (ca 1900), Palomar Sky Survey (ca 1950)

Lund Panorama of the Milky Way (K. Lundmark/M. and T. Kesküla)

Mapping the stars is not a new idea

- E.g., Hipparchus (ca 150 BC), Brahe (ca 1600), Flamsteed (ca 1700), Bonner Durchmusterung (ca 1850), Carte du Ciel & Astrographic Catalogue (ca 1900), Palomar Sky Survey (ca 1950)
- ESA satellite Hipparcos (1989-1993)

Significant contribution by L. Lindegren/E. Høg/F. Mignard

Illustration: ESA

Mapping the stars is not a new idea

- E.g., Hipparchus (ca 150 BC), Brahe (ca 1600), Flamsteed (ca 1700), Bonner Durchmusterung (ca 1850), Carte du Ciel & Astrographic Catalogue (ca 1900), Palomar Sky Survey (ca 1950)
- ESA satellite Hipparcos (1989-1993)
- Gaia (2013–2022), Nano-JASMINE (earliest launch 2017)

Left: Gaia (Artist illustration: ESA) Right: Nano-JASMINE (Photo: Nano-JASMINE team)

Step 3 The mission: Gaia

Gaia overview

Soyuz-Fregat rocket

- · European satellite
- · Launched December 2013
- 500 million EUR (+ science staff)
- · Five year mission time
- Proposed 25 years ago by
 L. Lindegren/E. Høg/M. Perryman

Illustration: Spacecraft during launch

Figure: Arianespace. Movie: ESA, C. Carreau

Gaia overview

Soyuz-Fregat rocket

- Astrometry, Photometry, Spectroscopy
- More than 1 billion stars in our Galaxy
- 100s of thousands of Solar System objects (asteroids and comets)
- · Tens of thousands of exo-planets
- Half a million of extra-galactic quasars

Illustration: Unfolding of the solar shield

Figure: Arianespace. Movie: ESA, C. Carreau

Gaia release schedule (old)

Tentative schedule, status 15 Nov 2015

- Science Alerts as soon as possible
- Summer 2016:
 - Positions & G-magnitudes for 100s of millions of stars
 - Ecliptic pole data
 - Proper motions to Hipparcos stars (нтрм)
- 2017: + first 5 parameter astrometry, bright star radial velocities, integrated BP/RP photometry, (astrophysical parameters)
- 2018: + BP/RP data, some RVS spectra, astrophysical parameters, orbital solutions for short period binaries
- 2019: + variability, solar system objects
- 2022: Final catalogue release

Gaia scanning the sky

Figures: L. Lindegren & D. Michalik

Gaia scanning the sky

Sky coverage over time (Nsl₃₇ + Nsl_{GAREQ})

Animation: D. Michalik & B. Holl

Preprocessed observations \Rightarrow Individual source parameters

- Have: 10¹² observations
- Want: ca 5x10⁹ unknowns:
 Astrometric source parameters, attitude, calibration
- How: Globally, self-consistent manner
- Strategy: Iterative Solution
- Tool: Astrometric Global Iterative Solution (AGIS)

\Rightarrow A linear least-squares problem Nx = b with iterative solution

Read more: Lindegren et al. (2012, A&A)

AGISLab

A software package for development and testing of AGIS algorithms and experiments with scientific exploitation

Figure: D. Michalik

First release is special

Number of transits in a nominal 5 year interval: smooth coverage, 80 transits on average

Simulations: D. Michalik

First release is special

Number of transits during the 13 months for Gaia-DR1: some areas are poorly observed

Simulations: D. Michalik

Step 4 The problem: ambiguity in short datasets

Change in observed coordinate over 5 years

Figure: D. Michalik & L. Lindegren

Gaia observations over 5 years \Rightarrow pos, ϖ , μ

Figure: L. Lindegren & D. Michalik

Gaia observations over 1 year \Rightarrow marginal

Figure: L. Lindegren & D. Michalik

$\mu - \omega$ degeneracy for < 1 year observations

Figure: L. Lindegren & D. Michalik

$\mu - \omega$ degeneracy for < 1 year observations

Figure: L. Lindegren & D. Michalik

Step 5 Prior information to the rescue

Integrating prior data in Gaia astrometry

Using Bayes' rule $f(\mathbf{x}|\mathbf{h}) \propto L(\mathbf{x}|\mathbf{h}) \times p(\mathbf{x})$

- Prior probability density function $p(\mathbf{x})$ from prior data
- Likelihood L(x|h) from Gaia
- Assuming Gaussian errors: posterior $f(\mathbf{x}|\mathbf{h})$ is given by joint solution of combined normal equations

Figure: D. Michalik

Prior information lifts the degeneracy

Gaia 0.5 yr, diverges

Simulations: D. Michalik

Prior information lifts the degeneracy

Gaia 0.5 yr with Hipparcos prior, converges nicely.

Simulations: D. Michalik

Step 6 The 1st example: Hundred Thousand Proper Motions (HTPM)

Source of prior information: Hipparcos

- Five parameters for 120 000 stars, < 1 mas
- Telescope: diameter 0.29 m
- · Instrument: image-dissector tube and modulating grid

Illustration: ESA

Hundred-Thousand Proper Motions (HTPM)

- Combine full Gaia and Hipparcos datasets (10⁵ stars in common)
- Original plan for the first Gaia release (Gaia-DR1)
- Accurate and long-term proper motions (baseline 23.75 years)
 - ⇒ Many-fold improvement to Hipparcos
 - \Rightarrow Remains useful even after the final Gaia release
- We developed the joint solution originally for нтрм

Hipparcos not dense enough for attitude solution

- About 10⁶ auxiliary (non-нip) stars must be added
- Needs >1 yr of Gaia observations for a good unbiased solution

Figure: Michalik et al. 2014, Fig. 2

Step 7 The improvement: Tycho-Gaia Astrometric Solution

Source of prior information: Tycho-2 catalogue

2.5 million positions at J1991.25, σ = 5–70 mas, 90% complete to V=11.5, obtained from Hipparcos starmapper (auxiliary photomultiplier and grid for attitude determination)

Figure: Tycho-2 sky coverage (Michalik et al. 2015a, Fig. 2, left)

Position alone sufficient to lift the degeneracy

⇒ Independent long-baseline proper motions, parallaxes

Figure: L. Lindegren & D. Michalik

Simulated Gaia observations (July 2014–May 2015)

Median number of transits per source (mean: 12.3, map depth: 7 = 196608 pix)

Number of focal plane transits (simulated with AcIsLab)

Figure: D. Michalik

Simulated Gaia observations (July 2014–May 2015)

Iter 100 VarPi errors (2420458 stars)

Unbiased parallax errors (average per pixel), small spread ⇒ Success! (...in a perfect world)

Figure: D. Michalik

Tycho-Gaia Astrometric Solution (TGAS)

- Use Tycho-2 stars instead of arbitrary auxiliary stars
- Prior: add their positions at J1991.25 as additional observations
- Full solution with much less Gaia data (approx. one year earlier)
- нтрм is an integral part of тсая
- Independent proper motions and parallaxes for 2.5 M stars

Left: Tycho-2 CD cover Right: Illustration Gaia satellite (ESA) Read more: Michalik et al. 2014, 2015a

Step 8 A prior to rule them all

Short/scarce datasets need a prior

- Gaia observes 1 billion of the Milky Way stars (a few 100 billion)
- Tycho prior for 2.5 M what about the remaining 997.5 M?
- · Actual parallax and proper motion cause (unknown!) bias

- · Same partial solution for very different astrometric parameters
- Is the observation a nearby dwarf (blue) or a distant giant (orange)?
- Formal errors grossly underestimate the actual errors!
 Figure: L. Lindegren & D. Michalik

A generic approach for incomplete data

Objective: Obtain positions and correct error estimates, even for:

- First release (too short a time interval)
- Stars at the detection limit (seen too seldom)
- Transient objects (too short a time interval)

What is ...

- the influence of a prior to an astrometric solution?
- the probability density function of the positional offset?
- a realistic distribution of true ϖ and μ ?
- the optimal prior to pick, and what does it depend on?

Study based on Gaia Universe Model Snapshot (GUMS)

Read more: Michalik et al. 2015b

Behaviour of astrometric solution with prior

Left: Quasi two parameter solution

· Formal errors grossly underestimate actual errors

Middle: Use knowledge that parallaxes, proper motions are small

• 5 parameter solution, realistic formal errors

Right: Degenerate solution

Figures: Michalik et al. 2015b, Fig. 1+2

Generic prior properties

90% of the actual position errors contained in the 90% confidence formal uncertainty ellipse

Excerpt from Michalik et al. 2015b, Fig. 3

Generic prior properties

Prior uncertainty depends on magnitude and Galactic latitude

Generic prior results

Table: Actual errors and agreement factor with formal uncertainty.

Prior $\sigma_{\varpi,p}$	Fraction in 90% conf. ellipse			Actual position errors [mas]		
	$G \simeq 11$	$G \simeq 15$	$G \simeq 19$	$G \simeq 11$	$G \simeq 15$	$G \simeq 19$
none (2 parameters) Generic prior	0.5% 90.1%	1.8% 91.4%	13.5% 91.2%	33.0 7.6	16.3 4.3	15.2 7.6

Benefits: always provides a non-singular solution

- Reasonable error estimates and better actual errors
- With insufficient amount of observations

Caveats: biases the solution

- **1** Serious for ϖ , $\mu \Rightarrow$ Not to be published
- Must not be used as soon as enough information are available

Table: Excerpt from Michalik et al. 2015b, Table 2

Step 9 Intermission: Launch

Launch and orbit

Folded Gaia spacecraft

Loading bay

Rocket before launch

Step 10 The complications: Basic Angle Variations

Real life \neq simulations

Some of the real life complications:

- · Data gaps due to orbit maintenance, cosmic rays
- Transmission loss \Rightarrow Heating for decontamination
- Re-focussing
- Micro-meteoroid hits
- Thermal micro-clanks (material relaxation)

And the eternal nightmare of an astrometrist ...

Figure: a real Gaia micro-meteoroid hit

Basic Angle Variations

- Basic angle (BA), $\Gamma = 106.5 \text{ deg}$
- Stability critical for absolute parallaxes
- Gaia has on-board metrology, the Basic Angle Monitor (вам)
- BAM data shows large variations (approx. 1 mas)

Figure: L. Lindegren Publicly available from A. Mora et al. (2014, SPIE)

Results with BA variations

- Simulating variations found by вам
- Without corrections ⇒ large systematics in parallaxes

Iter 100 VarPi errors (2420458 stars)

Parallax errors (average per pixel, overall median \sim 0.8 mas)

Figure: D. Michalik. BAV implementation by L. Lindegren & A. Bombrun

Solving BA variations from observations

- · Most harmonics can be entirely removed
- · Homogeneous shift remains, must be verified through quasars

Iter 75 VarPi errors (2420458 stars)

Parallax errors (average per pixel, overall median ~ 0.8 mas)

Figure: D. Michalik. AGIS-GGU and VBAC by S. Klioner, H. Steidelmüller & A. Bombrun

Verification of TGAS parallaxes through quasars

Are BAM measurements real? (Michalik & Lindegren 2016)

But: Independent quasar solution in TGAS not possible

1 Add prior for quasars: Assuming zero proper motion

Compare resulting parallaxes to zero (BAM expectation: 871.9 μas)
 Demonstrated in simulations

Subset	Median [µas]			
with spurious proper motions				
Stars	872.0 ± 0.2			
Quasars	877.7 ± 3.4			
with 5% contamination				
Stars	872.0 ± 0.2			
Quasars	872.0 ± 2.4			

Table: excerpt from Michalik & Lindegren 2016, Table 1

Step 11 Conclusions

Summary of thesis research

Study of how to handle stars with insufficient observations

- · Scenarios: first release, transient sources, sources at detection limit
- Solution by incorporating prior information
- · Demonstrated through detailed simulations

Generic prior for non-Hipparcos and non-Tycho stars

· Ensures sensible position estimates and uncertainties

Tycho-Gaia: long-baseline astrometry, full five parameter

- · Preliminary results (real data!) very exciting and promising
 - 2.2 million parallaxes and proper motions, Hipparcos-like quality
 - 1 million of very high quality ($\sigma_{c\sigma}$ < 0.32 mas)
 - · Independent parallaxes and proper motions
 - Includes Hipparcos stars
- · Challenges: scientific validation, basic angle variations
- · Quality of parallaxes to be verified through quasars

Versatile concepts

Applicable to scanning global astrometry satellites in general, e.g. the Japanese astrometry satellite Nano-JASMINE

... or a potential Gaia successor mission in a few decades time

Photo: with the satellite in the clean room in Tokyo Read more: Michalik et al. 2012, 2013

- Mean long-baseline proper motion from joint solution (TGAS)
- Instantaneous proper motion from Gaia alone
- · Difference reveals long-period exoplanets/binaries
- Similar principle to $\Delta\mu$ -binaries in Hipparcos

HR-diagram from TGAS trial (real data)

Results are based on a trial run using just a few months of Gaia data

(approx. 480 000 Tycho-2 stars, with 2MASS colours, ϖ > 0, σ < 1 mas, ϖ/σ > 10)

Plot: L. Lindegren

Updates to the schedule, current prediction

- Summer 2016:
 - Improved positions, realistic uncertainties and G-magnitudes for 100s of millions of stars
 - Ecliptic pole data (photometry calibration)
 - 5 parameter astrometry for approx. 2 million Tycho and Hipparcos stars (Tycho-Gaia Astrometric Solution; TGAS)

Second release postponed to summer 2017, remaining schedule from 2018 onwards unchanged