

Role of a global ocean on the formation and evolution of an atmosphere on early Titan

Nadejda Marounina, Olivier Grasset, Gabriel Tobie and Sabrina Carpy

June, 9th 2016

Titan :

- its radius is 2575 km
- its density is 1880 kg.m⁻³: Titan is composed ~50%~of water and ~50% of silicates
- Titan possess an atmosphere twice as massive as the Earth's atmosphere
- this atmosphere is mainly composed of N₂ (~98%) and CH₄ (~2%)
- the origin of Titan's atmosphere is still undetermined

Cassini-Huygens mission arrived in the system of Saturn in 2004, and Huygens probe landed at Titan's surface in January, 2005.

- discovering of the formation of complex molecules in the upper atmosphere (Waite et al. 2007)
- discovering of the methane cycle at Titan's surface, similar to the water cycle on Earth (Stofan et al. 2007, Rodriguez et al. 2009)
- first *in situ* measurements of Titan's atmosphere by Huygens (e.g. Niemann et al. 2005, 2010)

Methane is irreversibly lost and destroyed by photochemistry in the upper atmosphere

- methane lifetime in the atmosphere is approximately 20 30 Ma (Griffith et al. 2013)
- the atmospheric ¹²C/¹³C (CH₄) = 91.1 is close to the solar ratio (89) => methane is probably primordial and was recently injected in the atmosphere (<1Ga, Mandt et al. 2012)
- no surface methane reservoir was observed, inducing either a degassing from the interior of the satellite (⁴⁰Ar=74-78 ppb, origin: radioactive decay of ⁴⁰K) or an existence of a subsurface reservoir

Methane is irreversibly lost and destroyed by photochemistry in the upper atmosphere

- methane lifetime in the atmosphere is approximately 20 30 Ma (Griffith et al. 2013)
- the atmospheric ${}^{12}C/{}^{13}C(CH_4) = 91.1$ is close to the solar ratio (89) => methane is probably primordial and was recently injected in the atmosphere (<1Ga, Mandt et al. 2012)
- no surface methane reservoir was observed, inducing either a degassing from the interior of the satellite (⁴⁰Ar=74-78 ppb, origin: radioactive decay of ⁴⁰K) or an existence of a subsurface reservoir

0-2 km

Liquid methane in the porosity of the crust (Kossacki et Lorenz 1996, Hirai et al. 2001)

?

Methane is irreversibly lost and destroyed by photochemistry in the upper atmosphere

- methane lifetime in the atmosphere is approximately 20 30 Ma (Griffith et al. 2013)
- the atmospheric ¹²C/¹³C (CH₄) = 91.1 is close to the solar ratio (89) => methane is probably primordial and was recently injected in the atmosphere (<1Ga, Mandt et al. 2012)
- no surface methane reservoir was observed, inducing either a degassing from the interior of the satellite (⁴⁰Ar=74-78 ppb, origin: radioactive decay of ⁴⁰K) or an existence of a subsurface reservoir

How methane-rich clathrates could integrate Titan's icy crust?

Nitrogen is weakly affected by the photochemistry and the atmospheric escape

• the ratio ${}^{36}Ar/N_2 = 2.7 \times 10^{-7}$ is 3×10^5 smaller than the solar value. ${}^{36}Ar$ and N_2 are incorporated in a fixed proportion in Titan's building blocs:

Nitrogen is weakly affected by the photochemistry and the atmospheric escape

- the ratio ${}^{36}Ar/N_2 = 2.7 \times 10^{-7}$ is 3×10^5 smaller than the solar value. ${}^{36}Ar$ and N_2 are incorporated in a fixed proportion in Titan's building blocs
- the atmospheric ${}^{14}N/{}^{15}N(N_2) = 167$, close to the ratio measured in NH₂ radicals in comets (Rousselot et al. 2014, Shinnaka et al. 2014) and ${}^{14}N/{}^{15}N$ has probably not varied during Titan's history (Mandt et al 2014)

At the time of Titan's formation, nitrogen was probably incorporated as NH_3 in the satellite

Possible conversion mechanisms of NH_3 into N_2 :

٠

• high-velocity impacts

The efficiency of the NH₃ into N₂ conversion in the atmosphere is determined by the atmospheric composition

Internal structure of primitive Titan (from Lunine and Stevenson 1987)

we propose to model the chemical exchanges between an ocean and an atmosphere, which was never done before for primitive Titan

- modeling of the chemical exchanges between an ocean and an atmosphere
- we account for:
 - NH_3 as a main carrier of nitrogen
 - **CH**₄ to investigate its fate for early Titan
 - **CO**₂ as one of the main volatiles possibly accreted in Titan (Tobie et al. 2012)

- we account for the formation of a CH_4+CO_2 clathrate crust

2.1 Vapor-liquid equilibrium model

For an element i, in thermodynamical equilibrium in a liquid and a vapor phases:

$$f_i^g = f_i^L$$

$$y_i \ P = H_{solvant,i} \ x_i$$
 Ideal gas Henry's law

- no interaction between dissolved chemical species: only 2 compounds
- valid only for low molar fractions x_i

2. Role of a global ocean on the atmospheres of water-rich bodies2.1 Vapor-liquid equilibrium model

For an element i, in thermodynamical equilibrium in a liquid and a vapor phases:

Fugacity coefficient : Non-ideal behavior of the gas, Peng-Robinson equation of state

• used successfully for vapor mixtures that contain water (Englezos, 1993; Pazuki et al. 2006) Activity coefficient : Non-ideal behavior of the dissolved species,

Universal quasi-chemical model (UNIQUAC)

- reproduce the vapor-liquid equilibrium of NH₃, CO₂ and H₂O (Thomsen et Rasmussen 1999, Darde et al. 2012)
- UNIQUAC could not be used for CH₄: we used Henry's law instead

Reference fugacity: is fixed by the choice of a model of the activity coefficient

- for the solvent it is the saturation vapor pressure
- for the dissolved species, it is their Henry's constant

2.1 Vapor-liquid equilibrium model

Prediction of the model, that account only for the vapor-liquid equilibrium:

2.1 Vapor-liquid equilibrium model

Prediction of the model, that account only for the vapor-liquid equilibrium:

For CO₂-NH₃-H₂O system:

2.1 Vapor-liquid equilibrium model

Comparison of the model to the experimental data for T=60°C:

- chemical interactions in water considerably increase the solubility of CO₂ and NH₃ in liquid water
- our model reproduce accurately (within 10%) the CO₂ and NH₃ partial pressures
- a precipitation of a carbon-rich salts is observed for high NH₃ and CO₂ concentrations

2. Role of a global ocean on the atmospheres of water-rich bodies

2.1 Vapor-liquid equilibrium model

Summary for the CO₂-NH₃-H₂O system:

- NH₃ partial pressure remains low and decreases with the increasing CO₂ concentration
- CO_2 d partial pressure depends on the relative concentrations of CO_2 and NH_3 :
- if $m_{CO2}/m_{NH3} < 1$ then P_{CO2} remains low
- if $m_{CO2}/m_{NH3} > 1$ then P_{CO2} increases with m_{CO2}

2. Role of a global ocean on the atmospheres of water-rich bodies2.2 Vapor-liquid equilibrium model in planetary context:

2. Role of a global ocean on the atmospheres of water-rich bodies 2.3 Size and chemical composition of the atmospheres for the CO₂-NH₃-H₂O system

Pressure (bar)

if m_{CO2}/m_{NH3} <1, the atmosphere is tenuous and the main compound of the atmosphere is water;

- if m_{CO2}/m_{NH3} >1, CO₂ the size of the atmosphere increases because the CO₂ partial pressure rises. CO₂ become the main atmospheric compound;
- NH₃ atmospheric abundance decreases • with the increasing CO_2 concentration.

2. Role of a global ocean on the atmospheres of water-rich bodies 2.3 Size and chemical composition of the atmospheres for the CO₂-NH₃-H₂O system

• NH₃ influence considerably the abundance of CO₂ in atmospheres of early Titan

- we add the dissolution of CH₄ in water to the previous model using the Henry's law, because the necessary experimental data for UNIQUAC is not available
- we observe the formation of CH₄-CO₂ clathrate hydrates at Titan's surface
- clathrate hydrate are commonly observed on Earth (e.g. gas pipelines) and forms easily at low temperatures, when an appropriate gas is in contact with water and the pressure is high enough

- no interaction of (NH₃, CO₂) and CH₄ in the liquid, therefore the results obtained for the previous ternary system are also valable here
- if m_{CO2}/m_{NH3} <1 CH₄ is the main compound trapped in clathrates

 if m_{CO2}/m_{NH3} >3 CO₂ is the main compound trapped in clathrates

- if CH₄ is the main compound trapped in clathrates, clathrates form a crust at Titan's surface
- if CO₂ is the main compound trapped in clathrates, the clathrates that forms at Titan's surface are denser than water

 we observe a formation of a clathrate crust at Titan's surface only when NH₃ concentration is higher than CO₂ concentration in Titan's building blocs (or Titan's ocean+atmosphere)

3. Discussion

 cometary abundances and Enceladus plume abundances indicate us that CO₂ was probably the main compounds in Titan's building blocks

- lead to a low abundance of NH_3 in the atmosphere and therefore to an inefficient the NH_3 into N_2 conversion in the atmosphere
- lead to a formation of CO₂-rich, dense clathrates no clathrate CH₄-rich crust at Titan's surface

3. Discussion

 cometary abundances and Enceladus plume abundances indicate us that CO₂ was probably the main compounds in Titan's building blocks

figure from Tobie et al. (2014)

- however, it is still unclear what fraction of volatile compounds in comets was lost or modified during the accretion processes
- the volatile inventory in Enceladus may have been re-processed due to aqueous alteration processes

3. Discussion

Evolution of a CO₂-CH₄ atmosphere :

- CH₄ is rapidly lost by photochemistry
- when the surface temperature is low enough, CO₂ condenses at Titan's surface
- for the case $m_{CO2}/m_{NH3} = 3$, ~10 bar of CO_2 in the atmosphere, the condensed CO_2 forms a ~500 m layer of ice and could influence the dynamic of Titan's crust during all its history

4. General conclusion

- chemical interactions of CO_2 and NH_3 in water allow an efficient dissolution of both compounds in water
- atmospheric abundances of both CO₂ and NH₃ depend on their relative abundances in atmosphere+ocean system
- efficient conversion of NH_3 into N_2 in Titan's primitive atmosphere is possible only when NH_3 is the main compound relative to CO_2 in ocean+atmosphere system
- the same constraint applies for the formation of the clathrate crust enriched in CH_4 at Titan's surface

5. Perspectives:

Use an atmospheric model to account fo the radiative equilibrium : explore the lifetime of the liquid water at the surface of the planetary bodies

