JUICE: a European mission to Jupiter and its icy moons

Olivier Witasse
Nicolas Altobelli
Claire Vallat

JUICE artist impression
(Credits ESA, AOES)
Study the habitability of Icy Moons around Gas Giants (Cosmic Vision)
An icy crust…
Liquid water below the crust…
And heat!!

Resolution 6m/pixel
Ongoing hydrothermal activities at sea floor

Embedded nano-silicates in icy-grains require hot (100 deg), alkaline water

Shu et al. 2015, Nature
Selected Moons of the Solar System, with Earth for Scale

- Earth (Moon: Delmos, Phobos)
- Mars (Ida, Dactyl)
- Asteroid
- Jupiter (Io, Europa, Ganymede, Callisto)
- Saturn (Mimas, Enceladus, Tethys, Dione, Rhea, Titan, Hyperion, Iapetus, Phoebe)
- Uranus (Puck, Miranda, Ariel, Umbriel, Titania, Oberon)
- Neptune (Proteus, Triton, Nereid)
- Pluto (Charon, Dysnomia)

Scale: 1 pixel = 25 km
Emergence of habitable worlds around gas giants

Jupiter system as an archetype for gas giants
Ganymede Interior

- Ice crust
- Saline ocean
- Ice mantle
- Rocky mantle
- Iron core

- Liquid ocean layers, more saline with depth

Ganymede

- Ice I
- Ice III snow
- Ice V
- Ice VI

Moon

Mercury
Jupiter atmosphere

- Atmospheric structure, composition and dynamics
- Coupling between troposphere, stratosphere and thermosphere

- Polar dynamics, chemistry
- Connection with Jovian magnetic/charged environment
- Vertical coupling
- Bulk composition, origins
- Dynamics, winds
- Cloud layers, hazes, lightning
- Storms, hotspots, instabilities, upheavals, waves
- Composition and chemistry
- Thermodynamics of phenomena
Jupiter magnetosphere

- Magnetosphere as a fast rotator
- Magnetosphere as a giant particle accelerator
- Interaction of the Jovian magnetosphere with the moons
- Moons as sources and sinks of magnetospheric plasma

A GIANT SYSTEM IN ROTATION

A LARGE DIVERSITY OF BINARY INTERACTIONS
Jovian magnetosphere
JUICE Payload

JANUS: Visible Camera System
PI: Pasquale Palumbo, Parthenope University, Italy
Co-PI: Ralf Jaumann, DLR, Germany
- ≥7.5m/pixel
- Multiband imaging, 380 - 1080 nm
- Icy moon geology
- Io activity monitoring and other moons observations
- Jovian atmosphere dynamics

SWI: Sub-mm Wave Instrument
PI: Paul Hartogh, MPS, Germany
- 600 GHz
- Jovian Stratosphere
- Moon atmosphere
- Atmospheric isotopes

MAJIS: Imaging VIS-NIR/IR Spectrograph
PI: Yves Langevin, IAS, France
Co-PI: Guiseppe Piccioni, INAF, Italy
- 0.9-1.9 µm and 1.5-5.7 µm
- ≥62.5 m/pixel
- Surface composition
- Jovian atmosphere

GALA: Laser Altimeter
PI: Hauke Hussmann, DLR, Germany
- ≥40 m spot size
- ≥0.1 m accuracy
- Shape and rotational state
- Tidal deformation
- Slopes, roughness, albedo

UVS: UV Imaging Spectrograph
PI: Randy Gladstone, SwRI, USA
- 55-210 nm
- 0.04“-0.16“
- Aurora and Airglow
- Surface albedos
- Stellar and Solar Occultation

RIME: Ice Penetrating Radar
PI: Lorenzo Bruzzone, Trento, Italy
Co-PI: Jeff Plaut, JPL, USA
- 9 MHz
- Penetration ~9 km
- Vertical resolution 30 m
- Subsurface investigations
JUICE Payload

J MAG: JUICE Magnetometer
- PI: Michele Dougherty, Imperial, UK
- Dual Fluxgate and Scalar mag
- ±8000 nT range, 0.2 nT accuracy
- Moon interior through induction
- Dynamical plasma processes

3GM: Gravity, Geophysics, Galilean Moons
- PI: Luciano Iess, Rome, Italy
- Co-PI: David J. Stevenson, CalTech, USA
- Ranging by radio tracking
- 2 µm/s range rate
- 20 cm range accuracy
- Gravity fields and tidal deformation

PEP: Particle Environment Package
- PI: Stas Barabash, IRF-K, Sweden
- Co-PI: Peter Wurz, UBe, Switzerland
- Six sensor suite
- Ions, electrons, neutral gas (in-situ)
- Remote ENA imaging of plasma and torus

PRIDE: Planetary Radio Interferometer & Doppler Experiment
- PI: Leonid Gurvits, JIVE, EU/The Netherlands
- S/C state vector
- Ephemerides
- bi-static and radio occultation experiments

RPWI: Radio and Plasma Wave Investigation
- PI: Jan-Erik Wahlund, IRF-U, Sweden
- Langmuir Probes
- Search Coil Magnetometer
- Tri-axial dipole antenna
- E and B-fields
- Ion, electron and charged dust parameters

+ Radiation Monitor (RADEM)
JUICE Spacecraft

- Prime industrial Contractor: Airbus Defence & Space (Toulouse, France), selected in July 2015

- Spacecraft:
 - 3-axis stabilised
 - Mass:
 - Launch mass: 5264 kg
 - Instruments: 219 kg
 - Propellant: 2857 kg
 - Solar array 97 m² (~850 W at Jupiter)
 - Fixed High Gain Antenna (X, Ka Bands)
 - Steerable Medium Gain Antenna (X, Ka Bands)
 - Data Volume > 1.4 Gb per day
JUICE Spacecraft
<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch</td>
<td>May/June 2022</td>
</tr>
<tr>
<td>Interplanetary transfer</td>
<td>7.6 years</td>
</tr>
<tr>
<td>(Earth-Venus-Earth-Mars-Earth)</td>
<td></td>
</tr>
<tr>
<td>Jupiter orbit insertion</td>
<td>October 2029</td>
</tr>
<tr>
<td>2 Europa flybys</td>
<td>October 2030</td>
</tr>
<tr>
<td>Jupiter high-latitude phase</td>
<td>Dec 2030-May 2031</td>
</tr>
<tr>
<td>Transfer to Ganymede</td>
<td>June 2031-July 2032</td>
</tr>
<tr>
<td>Ganymede orbit insertion</td>
<td>August 2032</td>
</tr>
<tr>
<td>Ganymede elliptical orbit/5000 km circular orbit</td>
<td>August-Dec 2032</td>
</tr>
<tr>
<td>Ganymede 500 km Circular Orbit</td>
<td>January-June 2033</td>
</tr>
<tr>
<td>End of mission</td>
<td>June 2033</td>
</tr>
</tbody>
</table>
Cruise Phase with 5 Planetary Flybys

EARTH ORBIT
VENUS ORBIT
MARS ORBIT
JUPITER ORBIT
JUICE TRAJECTORY

Fbs: 2023-150T20:34:17 EARTH12725 km
Fbs: 2023-295T14:22:33 VENUS 9538 km
Fbs: 2024-245T19:24:31 EARTH 1945 km
Fbs: 2025-041T17:57:47 MARS 1118 km
Fbs: 2026-330T01:25:08 EARTH 3683 km
Jupiter Orbit Insertion
Icy Moon Flybys

• 2 EUROPA @ 400 km
• 11 GANYMEDE @ 400-33 000 km
• 13 CALLISTO @ 200-6000 km
JUICE SOC activities
SOC development concept

- Main challenge for SOC: **VERY long cruise phase (7 years)** **NO SCIENCE** during cruise phase

 → No need for full SOC functionalities at launch – main development during Cruise phase, driven by functionalities need-dates

- **However:**

 → need to have SOC-embryo **as early as possible** to keep development **consistency** of MOC/Instrument Teams/SOC

 → check **Science Feasibility within S/C sizing during iterations**

Project/Industry

- **HENCE:**

 → SOC **exists formally** since mission adoption [November 2014]

 → Main work package: simulation of Science Ops Scenarios *(Supporting SWT/PS AND PROJECT!)*

 → RE-use available tools....
1- Support to the SWT:

- Support and coordinate the work of 4 Working Groups (one per discipline: Geophysics/Surface-exosphere/Plasma/Jupiter)

- Start collecting observations and observation campaigns details (centralized observations library)

- Science scenarios simulations and analysis:
 - Europa flyby (Closest Approach +/- 12 hours)
 - Jupiter equatorial phase (20 days scenario covering Jupiter equatorial orbit and Ganymede flyby)
 - Ganymede circular orbits at 500 km altitude (4 months duration, end of nominal mission)
GCO-500 simulations
2- Support to industry:

• Development of engineering scenarios for thermal and power analysis
 (Difficulties: boundary conditions for SWT and Industry scenario diverged...)

3- Support reviews:

• SRR Q1 next year (documentation, scenarios)
• IPDR review next year (10 instruments)

4- Support SOC planning system development:

Identify planning tools requirements:

• Currently using already existing tools (MAPPS), in-house scripts and manual process.
• Book keeping of currently missing functionalities that will be needed as part of the system development.
Concluding remarks

Very broad and interdisciplinary investigations: interior, subsurface, geology and surface composition, atmospheres, plasma, rings, dust, habitability, origins, exoplanets

Challenges:
- Big mission
- Long cruise phase
- Radiation environment
- Power and thermal
- Data rate
- Complex navigation in the Jupiter system

Jupiter system: largest planet, largest storm, fastest rotation, largest magnetic field, largest moon, largest moon system, most active moons