MAPPING GALAXY SPECTRA

Tamas Budavari / Johns Hopkins University

Understanding Spectra

Photometric redshifts
 Spectral templates
 Diversity of spectra
 Census of variations
 Semi-analytic models

Galaxy Light ~ Linear Combination

Principal Component Analysis

Principal directions

- Directions of largest variations
- Eigenproblem of covariances
- Singular Value Decomposition

Problems

- Needs lots of memory
- Only need largest ones
- Very sensitive to outliers

Streaming PCA

Initialization

Eigensystem of a small, random subset

Truncate at p largest eigenvalues

Incremental updates

- Mean and the low-rank A matrix
- SVD of A yields new eigensystem

Randomized algorithm!

 $C \approx E_p \Lambda_p E_p^{\mathrm{T}}$

$$C \approx \gamma E_p \Lambda_p E_p^{\mathrm{T}} + (1 - \gamma) y y^{\mathrm{T}}$$
$$\approx A A^{\mathrm{T}}$$

Galaxy Spectra

 Incremental updates (TB, Wild+ 2008 MNRAS)
 From 3 days on big computer
 To 15 minutes on a desktop

Mix in robust statistics
 Deal w/outliers (Maronna 2005)

Robust Statistics

In a nutshell

Location

M-estimates of the location $L(x_1, \dots, x_n; \mu) = \prod_{i=1}^n f_0(x_i - \mu)$ $\widehat{\mu} = \arg\min_{\mu} \sum_{i=1}^n \rho(x_i - \mu) \quad \text{with}$ $\sum_{i=1}^n \rho'(x_i - \widehat{\mu}) = 0$

E.g., mean if x^2 , median if |x|

 $\rho = -\log f_0$

Location

M-estimates of the location $L(x_1, \dots, x_n; \mu) = \prod_{i=1}^n f_0(x_i - \mu)$ $\widehat{\mu} = \arg\min_{\mu} \sum_{i=1}^n \rho(x_i - \mu) \quad \text{with}$ $\sum_{i=1}^n \rho'(x_i - \widehat{\mu}) = 0$

E.g., mean if x^2 , median if |x|

Intuitive

Weights:

$$\sum_{i=1}^{n} W(x_i - \widehat{\mu})(x_i - \widehat{\mu}) = 0$$

Dispersion

M-estimates of the scale

$$\frac{1}{\sigma} f_0\left(\frac{x}{\sigma}\right) \qquad \qquad \widehat{\sigma} = \arg\max_{\sigma} \frac{1}{\sigma^n} \prod_{i=1}^n f_0\left(\frac{x_i}{\sigma}\right) \\ \frac{1}{n} \sum_{i=1}^n \rho\left(\frac{x_i}{\widehat{\sigma}}\right) = 1$$

 $\rho(t) = t \psi(t)$ $\psi = -f_0'/f_0$

E.g., rms if x^2

Intuitive

$$\widehat{\sigma}^2 = \frac{1}{n\delta} \sum_{i=1}^n W\left(\frac{x_i}{\widehat{\sigma}}\right) x_i^2 \quad \text{with} \quad W(x) = \begin{cases} \rho(x)/x^2 & \text{if } x \neq 0\\ \rho''(0) & \text{if } x = 0 \end{cases}$$

Robust PCA

- PCA minimizes σ_{RMS} of the residuals r = y Py
 Quadratic formula: Σr² extremely sensitive to outliers
- We optimize a robust M-scale σ² (Maronna 2005)
 Implicitly given by

$$\frac{1}{N}\sum_{n=1}^{N}\rho\left(\frac{r_{n}^{2}}{\sigma^{2}}\right) = \delta \qquad \qquad \mu = \left(\sum w_{n}x_{n}\right) / \left(\sum w_{n}\right) \\ C = \sigma^{2}\left[\sum w_{n}(x_{n} - \mu)(x_{n} - \mu)^{\mathrm{T}}\right] / \left(\sum w_{n}r_{n}^{2}\right)$$

Fits in with the iterative method!

Galaxy Spectra

High SNR eigenfunctions
 Sign of robustness

Galaxy Spectra

- High SNR eigenfunctions
 Sign of robustness
- It makes a difference

Quenching of Star Formation

Identify post-starburst galaxies
 VVDS compared to mock
 Consistent w/being descendants of gas-rich major mergers

PCA of SDSS DR7 Spectra

- Days on a big-memory machine
- Continuous distribution
- Messy with lots of outliers

□ Plot of mixing angles:
 □ Take first 3 components →

BPT Diagrams

What Parameters?

Nonlinear Embedding

A	A	A	A	P	2	V	V	V	A	4	4	A	6	Þ	V	V
A	A	A	A	2	7	V	V	A	¥	4	*	4	6	Þ	V	V
A	A	A	2	2	7	7	V	A	¥	4	1	A	A	Þ	V	V
A	A	A	A	2	7	T	F	Y	V		1	A	L	Þ	Þ	V
A	A	A	>	2	7	7	4	¥	V	4	4	4	4	Þ	P	V
A	A	٨	>	2	7	7	4	Y	¥		~	4	4	Þ	V	V
A	A	٨	٨		7	7	4	¥	¥	4	~	L	4	Þ	Þ	V
A	A	٨	>	*	7	*	4	Y	¥	*	*	4	L	Þ	Þ	V
A	A	٨	۲	7	7	~	4	¥	¥		*	4	Ł	Þ	Þ	v
A	A	N	٨	7	7	~	4	¥	¥		A	i.	4	Þ	Þ	v
A	٨	N	۲	۴	7	₹	۲	۲	۲	4,	A.	A	4	Þ	Þ	v
A	A	N	•	۴	7	7	4	¥	*	4	*	4	4	*	Þ	v
A	٨			۴	*	*	+	¥	*			4	4	*	¥	v

Nonlinear Embedding

Nonlinear Embedding

- ISOMAP and LLE in Science Magazine (2000)
 - ISOMAP geodesic distance
 - Preserves metric
 - LLE locally linear
 - Preserves angles

BASED ON LOCAL SIMILARITIES

Mapping Galaxy Spectra: Global and Local Views^{*}

David Lawlor^{1,2}, Tamás Budavári³, and Michael Mahoney^{4,5}

¹Statistical and Applied Mathematical Sciences Institute ²Department of Mathematics, Duke University ³Department of Applied Mathematics and Statistics, the Johns Hopkins University ⁴International Computer Science Institute ⁵Department of Statistics, University of California, Berkeley

SDSS eCoeff 3D \rightarrow 2 angles

BPT Diagrams

Locally-Biased Embedding

Locally-Biased Embedding

Different Views

Double Strand of Blue

Double Strand of Blue

- Clean trends of known features w/ few outliers
- Unknown patterns & new insights
- Toward better spectrum models
 - Lines and Continuum
- Locally biased approach yields new "microscope"
 Help look for subtleties