Jovian Meteoroid Environment Model JMEM: Dust from the Galilean Satellites

J. Schmidt, X. Liu (U Oulu) M. Sachse, F. Spahn (U Potsdam) R. Soja, R. Srama (U Stuttgart) N. Altobelli, C. Vallat (ESA)

(images: NASA)

Background

Jupiter's ring system and ring moons

(images: NASA)

Jupiter's ring system and ring moons

(images: NASA)

Jupiter's ring system and ring moons

four large moons

Schematic of Jupiter's Outer Satellites

University of Hawai'i, Institute for Astronomy

44 New satellite orbits are shown in red

Retrograde satellites

Callisto's orbit

0

5 million km

* main rings, halo & gossamer ring

(images: NASA)

- * main rings, halo & gossamer ring
- * stream particles from Io's volcanoes

- * main rings, halo & gossamer ring
- * stream particles from Io's volcanoes
- * dust from the irregular satellites

- * main rings, halo & gossamer ring
- * stream particles from Io's volcanoes
- * dust from the irregular satellites
- * external dust, magnetospherically captured

- * main rings, halo & gossamer ring
- * stream particles from Io's volcanoes
- * dust from the irregular satellites
- * external dust, magnetospherically captured
- * dust from the Galilean moons

Perseid Meteor Shower 2013 by Jeff Sullivan Photography

Perseid Meteor Shower 2013 by Jeff Sullivan Photography

Perseid Meteor Shower 2013 by Jeff Sullivan Photography

hypervelocity impacts of interplanetary dust particles => erode surfaces of atmosphereles bodies

(Horanyi et al,Nature, 2015)

hypervelocity impacts of interplanetary dust particles => erode surfaces of atmosphereles bodies

(LASP/CU Boulder)

-> dust exospheres

(Krüger, 1999, Nature) replenish cirumplanetary dust environment

-> dust exospheres

(Krüger, 1999, Nature) replenish cirumplanetary dust environment

Galileo DDS data:

-> dust exospheres

(Krüger, 1999, Nature) replenish cirumplanetary dust environment

-> relevant for JUICE dust hazard

Galileo DDS data:

Dust from the Galilean moons: -> ejecta from impacts of interplanetary dust: fill region of Galilean moons

- -> ejecta from impacts
 of interplanetary dust:
 fill region of Galilean
 moons
- -> relevant for nano-silica JUICE dust hazard -> hydrothe
- -> S/C with dust spectrometer: analyse grain composition * Cassini CDA@Enceladus

Dust from the Galilean moons: -> ejecta from impacts of interplanetary dust: fill region of Galilean moons

- -> relevant for JUICE dust hazard
- -> S/C with dust spectrometer: analyse grain composition * Cassini CDA@Enceladus * Europa Clipper SUDA@Europa

Mass Yield ~ 4000

Koschny & Grün, Icarus, 2001; Krivov et al., Icarus, 2003

- -> ejecta from impacts -> habitability: of interplanetary dust: non-ice composition fill region of Galilean exchange processes moons
- -> relevant for JUICE dust hazard
- -> S/C with dust spectrometer: analyse grain composition * Cassini CDA@Enceladus * Europa Clipper SUDA@Europa

Mass Yield ~ 4000

Koschny & Grün, Icarus, 2001; Krivov et al., Icarus, 2003

Galileo Dust Detection Subsystem (DDS)

Dust Model for the Galilean Satellites: JMEM

(Liu et al, JGR, 2016)

- -> want to test effect of different starting distributions?
- -> dynamics through Hill-sphere (nearly) generic

(Liu et al, JGR, 2016)

long term orbital evolution:

Ganymede

-> CPU expensive. Want to re-use individual trajectories -> statistical weighting with probabilities from A

-> want to test effect of different
 starting distributions?
-> dynamics through Hill-sphere (nearly)
 generic

CO/DE

Jupiter

dust creation,

launch to orbit:

(Liu et al, JGR, 2016)

Callisto

1st step:

~10⁶ particles
from surface
-> tabulate phase
space density @
Hill sphere

(Liu et al, JGR, 2016)

1st step:

~10⁶ particles
from surface
-> tabulate phase
space density @
Hill sphere

EUROPA_EjectaDist_1.0RH.save

0.8

1.0

1st step:

~10⁶ particles
from surface
-> tabulate phase
space density @
Hill sphere

EUROPA_EjectaDist_1.0RH.save

ALPHA/PI

8

6

V [km/s]

(Liu et al, JGR, 2016)

0.8

1.0

1st step: ~10⁶ particles from surface -> tabulate phase space density @ Hill sphere -> for each Galilean moon
 ~10 CPU hours
-> repeat for various starting
distributions, if wanted

EUROPA_EjectaDist_1.0RH.save

[/]Users/jashridt/Projects/Dyne2/JHD#FrontEnd/EvoluateEjastsSimulationacamode

1st step:

~10⁶ particles from surface -> tabulate phase space density @ Hill sphere -> determine abscissas and weights for Gauss integration = weighting of

-> for each Galilean moon ~10 CPU hours -> repeat for various starting distributions, if wanted

EUROPA_EjectaDist_1.0RH.save

$$\ddot{\vec{r}} = \ddot{\vec{r}}\Big|_{\text{JUP}} + \ddot{\vec{r}}\Big|_{\text{EM}} + \ddot{\vec{r}}\Big|_{\text{RP}} + \ddot{\vec{r}}\Big|_{\text{DRAG}} + \ddot{\vec{r}}\Big|_{\text{MOONS}} + \ddot{\vec{r}}\Big|_{\text{SOLG}}$$

-> long-term integrations (using abscissa values
 of Gaussian weighting as starting conditions)

-> long-term integrations (using abscissa values
 of Gaussian weighting as starting conditions)

(Liu et al, JGR, 2016)

-> long-term integrations (using abscissa values
 of Gaussian weighting as starting conditions)

(Liu et al, JGR, 2016)

-> long-term integrations (using abscissa values
 of Gaussian weighting as starting conditions)

-> long-term integrations (using abscissa values
 of Gaussian weighting as starting conditions)

-> long-term integrations (using abscissa values
 of Gaussian weighting as starting conditions)

(Liu et al, JGR, 2016)

-> long-term integrations (using abscissa values
 of Gaussian weighting as starting conditions)

(Liu et al, JGR, 2016)

$$\ddot{\vec{r}} = \ddot{\vec{r}}\Big|_{\text{JUP}} + \ddot{\vec{r}}\Big|_{\text{EM}} + \ddot{\vec{r}}\Big|_{\text{RP}} + \ddot{\vec{r}}\Big|_{\text{DRAG}} + \ddot{\vec{r}}\Big|_{\text{MOONS}} + \ddot{\vec{r}}\Big|_{\text{SOLG}}$$

$$\uparrow$$

$$\text{solar gravity}$$

- -> long-term integrations (using abscissa values of Gaussian weighting as starting conditions)
- -> do this for 10 particle sizes from 0.05 micron
 to 1cm
- -> integrate until the particle hits a sink: planet, moons, escape from the system
- -> repeat for each moon: 60,000 CPU hours on

large cluster (CSC Espoo)

$$\ddot{\vec{r}} = \ddot{\vec{r}}\Big|_{\text{JUP}} + \ddot{\vec{r}}\Big|_{\text{EM}} + \ddot{\vec{r}}\Big|_{\text{RP}} + \ddot{\vec{r}}\Big|_{\text{DRAG}} + \ddot{\vec{r}}\Big|_{\text{MOONS}} + \ddot{\vec{r}}\Big|_{\text{SOLG}}$$

$$\uparrow$$

$$\text{solar gravity}$$

- -> long-term integrations (using abscissa values of Gaussian weighting as starting conditions)
- -> do this for 10 particle sizes from 0.05 micron
 to 1cm
- -> integrate until the particle hits a sink: planet, moons, escape from the system
- -> repeat for each moon: 60,000 CPU hours on
 - large cluster (CSC Espoo)

storage:

- save (osculating) orbital elements
- ~ once per orbit

(Liu et al, JGR, 2016)

3rd step: populate cylindrical grid

3rd step: populate cylindrical grid

3rd step: populate cylindrical grid

20 from Ganymede elements: 10 positions &velocities **@equidistant** times Y [RJ] (J) 0 increment Europa counters **@respective**_10 location in the grid -20 -20-100

10

X [RJ]

20

```
4<sup>th</sup> step:
co-adding
and
calibration
```

```
number density for
grains of size r
in cell i,j,k
of grid
```

4th step: co-adding and calibration number density for grains of size r in cell i,j,k of grid

4th step: A) distributions of co-adding starting conditions and **calibration** 1st step \downarrow $\tilde{n}_{moon}(i, j, k; r) dr = dr \int d\xi P_{moon}(\xi) \frac{N_{moon}(\xi; i, j, k; r)}{V_{cell}(i, j, k)}$ where $\xi = \{\phi, \theta, \alpha, \beta, v\}$ pos and direction number density for of velocity starting vector grains of size r in cell i,j,k of grid

4th step: B) grid from A) distributions of co-adding 2nd step starting conditions **calibration** $\tilde{n}_{moon}(i, j, k; r) dr = dr \int d\xi P_{moon}(\xi) \frac{N_{moon}(\xi; i, j, k; r)}{V_{cell}(i, i, k)}$ where $\xi = \{\phi, \theta, \alpha, \beta, v\}$ pos and direction number density for of velocity starting vector grains of size r in cell i,j,k of grid

4th step: grid from A) distributions of **B**) co-adding 2nd step starting conditions and **calibration** $\tilde{n}_{moon}(i, j, k; r) dr = dr \int d\xi P_{moon}(\xi) \frac{N_{moon}(\xi; i, j, k; r)}{V_{cell}(i, j, k)}$ where $\xi = \{\phi, \theta, \alpha, \beta, v\}$ 1st step pos and direction number density for of velocity starting vector grains of size r in cell i,j,k numerical integration: of grid use Gaussian weights

4th step:
co-adding
and
calibration

$$\tilde{n}_{moon}(i, j, k; r) dr = dr \int d\xi P_{moon}(\xi) \frac{N_{moon}(\xi; i, j, k; r)}{V_{cell}(i, j, k)}$$

where
number density for
grains of size r
in cell i, j, k
of grid
 $n_{total}(i, j, k; > r) = \sum_{moons} c_{moon} \int_{r}^{\infty} dr' f(r') \tilde{n}_{moon}(i, j, k; r')$

4th step:
co-adding
and
calibration

$$\tilde{n}_{moon}(i, j, k; r) dr = dr \int d\xi P_{moon}(\xi) \frac{N_{moon}(\xi; i, j, k; r)}{V_{cell}(i, j, k)}$$

where
number density for
grains of size r
in cell i, j, k
of grid
 $n_{total}(i, j, k; > r) = \sum_{moons} c_{moon} \int_{r}^{\infty} dr' f(r') \tilde{n}_{moon}(i, j, k; r')$
plausible power
law: e.g. $r^{-3.7}$

Ath step:
co-adding
and
calibration

$$\tilde{n}_{moon}(i, j, k; r) dr = dr \int d\xi P_{moon}(\xi) \frac{N_{moon}(\xi; i, j, k; r)}{V_{cell}(i, j, k)}$$

where
number density for
grains of size r
in cell i, j, k
of grid
 $n_{total}(i, j, k; > r) = \sum_{moons} c_{moon} \int_{r}^{\infty} dr' f(r') \tilde{n}_{moon}(i, j, k; r')$
normalization
from Galileo DDS
 p grid from
B) grid from
 $N_{moon}(\xi; i, j, k; r)$
 $pos and direction
of velocity starting
vector
numerical integration:
 f plausible power
law: e.g. $r^{-3.7}$$

```
4<sup>th</sup> step:
co-adding
and
calibration
```

* do the same for the velocity in a given grid cell

$$\vec{v}_{total}(i, j, k; > r) = \sum_{moons} c_{moon} \int_{r}^{\infty} dr' f(r') \tilde{\vec{v}}_{moon}(i, j, k; r')$$
normalization
from Galileo DDS
$$\vec{v}_{total}(i, j, k; > r) = \sum_{moons} c_{moon} \int_{r}^{\infty} dr' f(r') \tilde{\vec{v}}_{moon}(i, j, k; r')$$

$$\vec{v}_{total}(i, j, k; > r) = \sum_{moons} c_{moon} \int_{r}^{\infty} dr' f(r') \tilde{\vec{v}}_{moon}(i, j, k; r')$$

$$\vec{v}_{total}(i, j, k; > r) = \sum_{moons} c_{moon} \int_{r}^{\infty} dr' f(r') \tilde{\vec{v}}_{moon}(i, j, k; r')$$

$$\vec{v}_{total}(i, j, k; > r) = \sum_{moons} c_{moon} \int_{r}^{\infty} dr' f(r') \tilde{\vec{v}}_{moon}(i, j, k; r')$$

$$\vec{v}_{total}(i, j, k; r')$$

$$\vec{v}_{total}(i, j, k; r')$$

```
4<sup>th</sup> step:
co-adding
and
calibration
```

- * do the same for the velocity in a given
 grid cell
- * to reconstruct the flux on a user specified surface: also store moments for <v²> and <v³>

$$\vec{v}_{total}(i, j, k; > r) = \sum_{moons} c_{moon} \int_{r}^{\infty} dr' f(r') \tilde{\vec{v}}_{moon}(i, j, k; r')$$
normalization
from Galileo DDS
$$u = \frac{1}{2}$$

```
4<sup>th</sup> step:
co-adding
and
calibration
```

- * do the same for the velocity in a given
 grid cell
- * to reconstruct the flux on a user specified surface: also store moments for <v²> and <v³>
- * populating the grid cells takes about 2 CPU hours for all moons, grain sizes

$$\vec{v}_{total}(i, j, k; > r) = \sum_{moons} c_{moon} \int_{r}^{\infty} dr' f(r') \tilde{\vec{v}}_{moon}(i, j, k; r')$$
normalization
from Galileo DDS
$$u = \frac{1}{2} u = \frac{1}{2} u$$

- -----

Calibration, in practice

Calibration, in practice

22

Grain lifetimes

Grain lifetimes

Grain lifetimes

Grain lifetimes

Model: Grains from Europa only

Model: Grains from Ganymede only

Model: Grains from Callisto only

All moons:

Vertical cut

s>1.0e+01 mu s_calib=3.0e-01 mu exponent=-3.7 broken powerlaw including: JO EUROPA GANYMEDE CALLISTO

Only grains from Callisto:

spread

including: CALLISTO

Systematic velocities

Systematic velocities

Systematic velocities

Calculation of fluxes: Vsc Vsc $J = \int \mathrm{d}^3 v \, f(\vec{v}) \, |\vec{v}_{sc} - \vec{v}| \, \Theta_H(\cos \omega)$ we cannot store the full velocity distribution function in each grid point! and: approximation J = nv does NOT hold in many cases! => save 4 moments of the velocity components and use known algorithm to reconstruct the distribution from the moments

Calculation of the flux: Example

Calculation of the flux: Example

mom. rec., 4 moments MODEL FLUX: 2.37e-03 REC. FLUX: 2.49e-03 ERROR: 4.9 %

/Users/jachmidt/Projects/Dyna1/MEMFrontEnd/VelocityDistributionTays:)GoodsongeDate

Calculation of the flux: Example

	sum_16_0_0.txt
	JMEM MODEL
	mom. rec., 4 moments
	MODEL FLÚX: 2.37e-03
	REC. FLUX: 2.49e-03
	ERROR: 4.9 %

40

Callisto

* new model/code to simulate dust environment
of Jupiter

* size-resolved number densities and fluxes

* new model/code to simulate dust environment
of Jupiter

- * size-resolved number densities and fluxes
- * applications:
 - -> dust hazard, degradation of SC hardware
 - -> pointing information for instruments
 on future missions:
 JUICE (PEP-JOEE, RPWI)
 Europa Clipper (SUDA)
 - -> characterize external inflow of dust on surfaces, e.g. Io dust on Europa
 - -> space weathering

* TBD:

Sputtering, variable charging processes, different materials (e.g. silicates)

* TBD:

Sputtering, variable charging processes, different materials (e.g. silicates)

* future applications of the code to: -> Jovian main and gossamer rings -> dust from the irregular satellites (dark color of Callisto & Ganymede)

* TBD:

Sputtering, variable charging processes, different materials (e.g. silicates)

- * future applications of the code to: -> Jovian main and gossamer rings
 - -> dust from the irregular satellites
 (dark color of Callisto & Ganymede)

Thank You!

spare slides

<i>r</i> g (μm)	lo	Europa	Ganymede	Callisto
0.05	0	0	0	5.45E5
0.1	0	0	0	7.45E4
0.3	1.79E-2	1.05E-2	1.04E-2	1.91E-2
0.6	2.43E-2	2.43E-2	2.85E-2	4.67E-2
1	3.09E-2	2.18E-2	3.64E-2	8.38E-2
2	4.38E-2	2.95E-2	1.20E-2	9.70E-4
5	3.72E-4	5.30E-4	6.95E-4	4.98E4
10	3.15E-6	3.84E-6	2.93E-5	9.28E-5
30	6.17E-7	2.49E-5	8.93E-6	1.51E-4
100	1.29E-5	4.80E-6	6.31E6	1.14E-4
300	0	2.41E-6	2.83E-6	2.50E-4
1000	5.88E-7	9.38E-6	2.79E-6	1.19E-4
10000	4.64E-9	5.80E-6	2.87E-6	8.63E-5

Table 6. Fraction of Retrograde Particles Per Source Moon

(Liu et al, JGR, 2016)

