

Science in Microgravity

Science in Microgravity

Microgravity (µg)

On the subject: "what's that?"

- Where Gravity "is not felt"
- Where Gravity is [almost] the only force
- Where weight of everything is millions of times smaller

• Consequences:

- Liquids do not receive reaction force from their container
- Density gradients do not originate flow
- Support structures are unloaded
- Mechanisms with masses work differently

• How do we achieve it: letting ourselves fall (!!!)

Why Investigate in µg

- To measure better basic magnitudes
 For better models in physics
- To obtain in reality theoretical results
 To compare with industrial results and help improve the processes
- To improve systems or study human reaction
 With a view towards human exploration, lunar bases, etc.
- To observe in these conditions
 Expecting new ideas to generate scientific hypotheses

• Fluids – generic

Interfases, phase change, convection, critical fluids, colloids, foams, combustion

Materials

Complex Alloys, Autolubricants, Exact Properties, Semiconductors

Biology Plant Growth, Differentiation of Embryos, Gene Expression

Medicine / Physiology Balance, Lungs, Heart, Rhythms, Bones, Muscles...

How to Achieve µg

Drop Towers Parabolic Flights Sounding Rockets Automatic Satellites Space Station

How to Achieve µg – Drop Towers

Invented by W. Watts in Bristol (UK, 1775)
 Without convection, without container = perfect

- spheres of lead, best projectiles of their time
- Currently drop towers raise up to 150m (4/8 sec) or down into a shaft (up to 10 sec)
- Experiment Size: 20-40 cm
- Repetitions: 3 / day
- Everything must be automatic

How to Achieve µg – Drop Towers

NASA - Glenn

A cutaway drawing of the 2.2 Second Drop Tower, showing the levels on which an experiment package is prepared, released, and captured.

Kamisunagawa

Bremen

How to Achieve µg – Drop Towers

How to Achieve µg – Parabolic Flights

- The airplane manoeuvres without lift and compensating drag = only gravity
- Size and weight of experiments: large
- Power available: large
- Time: 25 sec, repeated up to 50 times
- Perturbations: 0.01 g
- Operators: investigators themselves
- Safety, accommodation etc. important

How to Achieve µg – Parabolic Flights

Vuelo estudiantes Nov2016

How to Achieve µg – rockets

- ESA System: Maxus
- Useful µ-g time: 12 minutes
- Maximum acceleration: 12g
 - Maximum altitude: 740 km
 - Launch location: Kiruna, sweden

How to Achieve µg – Autonomous Satellites

- Autonomous Spacecraft with experiments
- Eureca
 - Went up and down with the Shuttle (1 year autonomous)
 - 1000 kg experiments, 1 kW
 - Used only one time in 1992
- Foton / Bion
 - Soyuz Rocket, return as a capsule (1 month)
 - 500 kg experiments, 400 W
 - Frequent use, Annually ESA campaigns

How to Achieve µg – Autonomous Satellites

How to Achieve µg – The Space Station

- Times: unlimited, up to months
 - Experiment size: up to 1 m3
 - Powerful energy supply and data transmission
 - Operators available for the equipment
- Other considerations
 - Crew safety, accommodation
 - Long design and development lead times
 - Equipment must be lifted up there
 - Comparisons with control samples must be made carefully (best: with on-board centrifugue)

How to Achieve µg – The Space Station

The ISS is Complete

How to Achieve µg – The Space Station

Different Characteristics

System	Parabolic flight airplanes	Drop Towers	Sounding Rockets	Automatic Satellites	The Space Station
Examples	Novespace Airbus NASA KC 135 NASA DC 9	NASA Glenn INTA Madrid ZARM Bremen JAMIC (J) MG-LAB (J)	Mini-TEXUS TEXUS MAXUS	EURECA Foton-Bion	MIR IML ISS
Zero-gravity time	20 s	2.2s - 10 s	Minutes	Weeks – months	Hours - months
Perturbations (g)	10 e-2 – 10 e-4	10 e-5 – 10 e-6	10 e-4 – 10 e-5	0,001	10 e-3 – 10 e-5
Manual Access	Yes	No (yes between drops)	No	No	Yes
¿Automatic?	Recommended	Compulsory	Recommended	Compulsory	Recommended
Telemetry / telecommands	No	Yes	Yes	Yes (intermittent)	Yes (intermittent)
Campaigns	2/year	Daily	1 - 2/year	Irregular	Irregular
Flexibility for changes	Low	High	No	No	Low
In-situ help	No	Yes	No	No	Yes

- Experimentation in microgravity is a tool of ample use in Science
- There are a number of systems to achieve it with different prices and characteristics
- A complete Space Station is already fostering significant advances in Science