

QUASI PERIODIC OSCILLATIONS IN BLACK HOLE BINARIES

Sara E. Motta

2016 July, 21st

X-ray binaries

X-ray binaries: they vary!

X-ray binaries: they vary!

X-ray binaries: they vary!

... on several timescales

What is a QPO? Quasi-Periodic Oscillation

- Quasi periodic signal in the flux (CVs, BHs, NSs, ULXs, even AGN)
- Becomes apparent in a power density spectrum
- They come in different flavours
- Associated to noise

Why should we care?

- They are useful!
 Common and easy to study, they help identifying source states
- Produced close to the central compact object
- Geometry constraints and strong gravity tests.

Low frequency QPOs in Black Hole binaries

- Discovered in the 80s in NS (EXOSAT, GX 5-1) and BHs (Ariel 6, GX 339-4)
- First "types" from Ginga data
- Very common
- Seen in NSs as well (HBOs, NBOs, FBOs...)

	А	В	С
ν	$\sim 6 \text{ Hz}$	$\sim 6 \text{ Hz}$	0.1-30 Hz
Q	1-3	$\geqslant 6 (\geqslant 2)$	$\geq 6 (\geq 2)$
ms	$\sim 1-5\%$	$\sim 1-10\%$	$\sim 1-25\%$
oise	weak red	weak red	strong flat-top

0.1 - 30 Hz

see e.g. Van der Klis et al. 1985 and Motch et al. (1983), Miyamoto et al. 1991, Wijnands et al. 1999; Homan et al. 2001; Remillard et al. 2002; Casella et al. 2005, ...

Type-A QPOs

- Very few detections (~10 in the RXTE archive)
- Observed in soft states, close to type-B QPOs
- broad and faint
- Origin: Disk instabilities? Possibly related to type-B QPOs.

Type-B QPOs

- Fairly common QPO
- Observed in intermediate states
- Strong peak(s) and weak red noise
- Origin: probably associated to jets. Disk instabilities? (e.g. Varnière et al. 2002,2012)

Type-C QPOs

- The most common QPO of all, they vary a lot in frequency
- Observed in hard <u>and</u> soft states
- Strong peak(s) and strong flat-top noise
- Origin: instabilities or geometrical effects (i.e. precession)

Type-C QPOs

- Oscillations of boundary layers/ coronae (e.g. Titarchuk & Fiorito 2004 and Cabanac et al. 2010)
- Accretion-ejection instability (Tagger & Pellat 1999 and Varnière et al. 2002,2012)

• Relativistic precession (Stella & Vietri 1998, Schnittman et al. 2006, Ingram et al. 2009...16)

QPO spectrum: it is hard!

Sobolewska & Zycki 2005

Casella et al. 2004

Courtesy of Adam Ingram

Flux vs Frequency: different dependencies

Inclination effects

"different" objects at different inclinations

Stellar mass Black holes ín bínaríes

QPOs (and noise) amplitude depend on inclination

Simultaneous Type-B and -C QPOs

Motta et al. 2015

Type-A and Type-B

The case of Z-sources

Comparison with NS might help

QPOs in BH and NS binaries are the same?

- * type-C = HBOs
- * type-B = NBOs
- * type-A = (?) FBOs

Proposed by Casella et al. 2005, based on a few sources

BH and NS binaries can be described in the same way through variability

Take home message n.1

- All low frequency QPOs have an hard spectrum
- They behave differently w.r.t. flux
- They **depend on inclination**: Type-C stronger edge on, Type-B stronger face on
- **Type-C** are most likely related to the inner hot flow and come from **geometrical effects (precession**)
- **Type-B** are probably related to the **jet-launching mechanism**
- no clue on type-A QPOs, more data needed (or a clever use of BH data, and possibly NS data)

High frequencies QPOs in Black Holes

- Discovered with RXTE in the 90s in GRS1915+105
- Quite rare, and difficult to detect, especially in pairs
- Exist in neutron stars as well (as kHz QPOs)

HFQPO sources

XTEJ1550-564 GX 339-4 GROJ1655-40 XTEJ1752-223 XTEJ1859+226 4U 1630-47 H 1743-322 IGRJ17091-3624 GRSJ1915+105

300 Hz (2 - 12 keV) 2014a lower HFQPO al. 2.04 et 2001, Motta Power 2.02 450 Hz (13 - 27 ke 2.00 al. Strohmayer et upper HFQPC 100 10 1000 Frequency (Hz)

100 - 500 Hz

See e.g. Morgan et al. 1997, Remillard et al. 1999, Strohmayer et al 2001, Belloni et al. 2012, Altamirano et al. 2012

High frequencies QPOs in Black Holes

in 10000t observations

11 significant detections from
 2 sources in the RXTE archive
 (or 42 detections from 7 sources)

See Belloni, Sanna, Méndez 2012

- Image: Second state sta
- Observed only at high luminosity
- Frequencies close to Keplerian values

High frequencies QPOs in Black Holes

- Two main mechanism: relativistic motions and resonances models
- Several models, but only seldom tested

E.g.

Relativistic precession model (Stella & Vietri 1999); modified relativistic precession model (Bursa 2006);

Non-línear resonance model (Alíev & Gal'tsov 1981); keplerían non-línear resonance model (Abramowícz & Kluzníak 2004), warped-dísk model (Kato 2004)

Models can be tested: the Relativistic Precession Model

Stella & Vietri 1998, Stella et al. 1999

• The RPM associates three frequencies orbital, periastron precession and nodal precession - to three QPOs.

upper HFQPO

lower HFQPO

type-C QPO

$$\nu_{\phi} = \pm \frac{1}{2\pi} \left(\frac{M}{r^{3}}\right)^{1/2} \frac{1}{1 \pm a \left(\frac{M}{r}\right)^{3/2}}$$

$$\nu_{per} = v_{\phi} \left(1 - \left(1 - \frac{6M}{r} - 3a^{2} \left(\frac{M}{r}\right)^{2} \pm 8a \left(\frac{M}{r}\right)^{3/2}\right)^{1/2}\right)$$

$$\nu_{nod} = v_{\phi} \left(1 - \left(1 + 3a^{2} \left(\frac{M}{r}\right)^{2} \mp 4a \left(\frac{M}{r}\right)^{3/2}\right)^{1/2}\right)$$

BC nodal precession [vo-vo]

AB orbital cycle $[v_{\varphi}]$

AC vertical epicycle [0.0]

Motta et al. 2014a,b; Ingram & Motta 2014

RPM Field testing

 GRO J1655-40:
 3 simultaneous QPOs and a dynamical measurement of the mass

• XTE J1550-564: **2 simultaneous QPOs** and a dynamical measurement of the mass

> Bonns: ín both cases, you get a BH spín!

Oscillating, Precessing torus model Field Testing

Fragile, Straub, Blaes 2016

Take home message n.2

- **HFQPOs** are very **rare** in black hole binaries (but very common in neutron star binaries)
- They appear only at **very high luminosities**

them

- Their **frequencies** are close enough to the **keplerian values**.
- We need to test the models!
- You can do amazing things with X-ray **timing** and **QPOs!**íf you understand

Thank you!