Modelling X-ray beacons in curved space time

Sebastian Falkner¹

ESAC, 28th July

in collaboration with

F.-W. Schwarm¹, G. Schönherr², D. Klochkov³, P. Kretschmar⁴,
P. A. Becker⁵, M. T. Wolff⁶, K. A. Postnov⁷, K. Pottschmidt⁸,
P. B. Hemphill⁹, R. Ballhausen¹, R. Staubert³, and J. Wilms¹

¹Remeis Observatory Bamberg & ECAP, ²AIP, ³IAAT, ⁴ESA/ESAC, ⁵GMU, ⁶NRL SSD, ⁷SAI, ⁸CRESST, ⁹CASS

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

(Artist impression by A. Patruno)

Accreting neutron stars

(adapted from Lamb et al., 1973)

compact object Mass: $1 - 3 M_{\odot}$ Radius: 8 – 20 km

highly magnetized B-field: $B \sim 10^{12} {
m G}$

Observables

Modeling pulse profiles of accreting neutron stars

Tool needed which accounts for **relativistic effects** while allowing

- arbitrary geometries for the emission regions
- arbitrary emission profiles

⁽priv. comm M. Kühnel)

Sample geometry of the emitting surface with small surface elements

light bending model

We now have a modular model to obtain the observed flux of an accreting neutron star accounting for

- relativistic effects
- arbitrary geometries for the emission regions
- arbitrary emission profile

model parameters

neutron star: *M*_{NS}, *R*_{NS}, *f*

emission region, e.g., accretion column:

 $i_{AC_1}, \phi_{AC_1}; R_{AC_1}, H_{AC_1}$ $i_{AC_2}, \phi_{AC_2}; R_{AC_2}, H_{AC_2}$

observer: inc

. . .

beam pattern: $I_E(\vec{R}, \vec{k_0}, \ldots)$

Impact of the observers inclination

Impact of the inclination of the magnetic field

Impact of the height of the accretion column

Outlook

(Bildsten et al., 1997)

Pulse profile of KS 1947+300

⁽Epili et al., 2016)

References

- Ballhausen R., Kühnel M., Pottschmidt K., et al., 2016, ArXiv e-prints
- Bildsten L., Chakrabarty D., Chiu J., et al., 1997, apjs 113, 367
- Chandrasekhar S., 1983, The mathematical theory of black holes
- Einstein A., 1916, Annalen der Physik 354, 769
- Epili P., Naik S., Jaisawal G.K., 2016, Research in Astronomy and Astrophysics 16, 008
- Lamb F.K., Pethick C.J., Pines D., 1973, ApJ 184, 271
- Misner C.W., Thorne K.S., Wheeler J.A., 1973, Gravitation
- Schwarzschild K., 1916, Abh. Konigl. Preuss. Akad. Wissenschaften Jahre 1906,92, Berlin,1907 189–196
- Trümper J., Pietsch W., Reppin C., et al., 1978, apjl 219, L105