Gone with the Solar Wind: Turbulence, Intermittency, and Energy Dissipation in Space Plasmas

Luca Sorriso-Valvo
CNR Nanotec, Rende, Italy
Outline

- Introduction: solar wind and turbulence
- Large scale turbulence: energy spectra, intermittency and exact laws
- Small-scale turbulence: distribution functions and the role of structures
- What strategy for the future?
- Examples
- New space mission proposal: THOR
- Conclusions

Main collaborations
UC Berkeley, University of Delaware, Observatoire de Meudon, LPP/Palaiseau, INAF/IAPS, Uppsala Univ., Observatoire de Nice, Imperial College of London, Queen Mary Univ., University College of London, UC San Diego, ESA/ESTEC
The solar corona during eclipses
Comet tails
Polar aurorae
Discovering the Solar Wind

- 1859: Carrington (connected solar flare and geomagnetic storm)
- 1910: Eddington (while studying comets)
- 1916: Birkeland (continuous geomagnetic activity)
- 1950s: Chapman (calculated solar atmospheric extension)
- 1950s: Biermann, Ahnert (comet tails pointing anti-sunward)
- 1958: **Parker** (solar wind)
- 1959: Luna 1 (first direct measurement of the solar wind)
The solar wind

A weakly collisional, magnetized plasma (mainly protons and electrons) continuously blowing from the Sun, forming the Heliosphere while it interacts with planets and other bodies (e.g. shaping the magnetospheres).

- **Rarefied**: few particles per cm\(^3\) at Earth, in radial expansion
- **Highly supersonic** far from the Sun (V=300-700 Km/sec)
- **Hot**: \(T>10^5\) K (kinetic temperature, not thermodynamic)
- **Magnetized** (\(B=1\)nT at Earth)
- **Complex**, due to solar variability and local processes
- **Variable** on all measured scales, from m-second to centuries
The solar wind variability

**Low activity**: steady wind, constant magnetic polarity

**High activity**: mixed slow and fast streams, frequent magnetic field reversals

SOHO/Ulysses combined data
Seeing the solar wind

Credit: C. De Forest
The problem of solar wind heating: turbulence

Need some heat source: turbulent dissipation?
Unraveling fundamental plasma processes
Dissipation mechanisms, magnetic reconnection, waves, ...

Understanding solar processes
Role of turbulence in coronal heating, flares...

Understanding astrophysical plasmas
Stellar formation, jets, intergalactic medium, supernova remnants...

Relevant for energetic particle transport and acceleration
Controls cosmic rays throughout the solar system

Important for laboratory plasmas
May help confinement in fusion devices

Connects the Sun with the Earth: Space Weather
Better knowledge of triggers = better prediction and protection
Space Weather

- Galactic Cosmic Rays
- Micrometeoroids
- Surface and Interior Charging
- Magnetic Attitude Control
- Solar Flare Protons
- Astronaut Safety
- Atmospheric Drag
- Ionosphere Currents
- Plasma Bubble
- Signal Scintillation
- Radio Wave Disturbance
- Electricity Grid Disruption
- Earth Currents
- Telecommunication Cable Disruption
- Computer and Memory Upsets and Failures
- Solar Cell Damage
- Airline Passenger Radiation
- Rainfall Water Vapor
- Lucent Technologies

(C) Bell Laboratories, Lucent Technologies
Turbulence: a universal phenomenon
Turbulence: an energy budget

Neutral fluids: Navier-Stokes

\[ \partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla P + \nu \nabla^2 \mathbf{v} + \mathbf{F} \]

Cross scale energy transfer

Small scale energy dissipation

Large scale forcing

Energy injection \((\varepsilon)\)

Integral scale \(L\)

Non-linear energy transfer \((\varepsilon)\)

Inertial range

Energy dissipation \((\varepsilon)\)

Dissipative scale \(l_d\)

\[ R_e = \frac{\nu L}{\nu} = \frac{\text{Non-linear}}{\text{Dissipative}} \]

Power-law with “universal” exponent

(Kolmogorov 1941)

\[ F(k_i) \propto k_i^{-5/3} \]
Leonardo Da Vinci studies of turbulence, ca. 1500

L. Da Vinci, Codice Atlantico, f. 74v: "Doue la turbolenza dellacqua rigenera, doue la turbolenza dellacqua simantiene plugho, doue la turbolenza dellacqua siposa" (where the turbulence of water is generated, where the turbulence of water keeps steady, where the turbulence of water dissipates)
Magnetohydrodynamic turbulence

Plasma flows: incompressible Magnetohydrodynamics (MHD)

\[
\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \mathbf{B} \cdot \nabla \mathbf{B} + \nu \nabla^2 \mathbf{u}
\]

\[
\frac{\partial \mathbf{B}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{B} = \mathbf{B} \cdot \nabla \mathbf{u} + \eta \nabla^2 \mathbf{B}
\]

Elsasser fields:

\[
z_i^\pm = v_i \pm b_i = v_i \pm \frac{B_i}{\sqrt{4\pi \rho}}
\]

\[
\partial_t z_i^\pm + z_i^\mp \partial_\alpha z_i^\pm = -\partial_i P + \nu \partial_\alpha^2 z_i^\pm
\]

\[
\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla P + \nu \nabla^2 \mathbf{v} + \mathbf{F}
\]
The solar wind as a wind tunnel

Turbulence in the Solar Wind

Early observations of magnetic spectra with “universal” power-law scaling exponent.
Intermittency in turbulence

Universal feature of turbulence: intermittency

Energy dissipation is more efficient when it occurs in vortices distributed inhomogeneously in space.

Experimental observation of intermittent, bursty, multifractal dissipation fields.
Intermittency in solar wind turbulence

Rare, bursty dissipative events dominate the small-scale statistics

- Probability distribution Functions (PDFs) of velocity and magnetic field fluctuations have non-Gaussian, scale dependent fat tails. Quantitative diagnostics possible
- Dependence on wind speed, radial distance, solar activity...
- Good agreement with multifractal models of intermittent turbulence

DoY 1976 - Helios 2 data

Small scale: heavy tails

Large scale: nearly Gaussian

- 15+ years work
- 30+ articles: thorough quantitative description of intermittency in different wind conditions, using spacecraft data and numerical simulations
Identification of intermittent structures

In wavelets space

\[ \text{LIM}_{\Delta t, t} = \frac{|\tilde{b}_{\Delta t, t}|^2}{\langle |\tilde{b}_{\Delta t, t}|^2 \rangle_t}, \]

Bruno et al., 2001

In physical space

\[ \text{PVI}_{\Delta t, t} = \frac{|\Delta B(t, \Delta t)|^2}{\langle |\Delta B(t, \Delta t)|^2 \rangle}, \]

Greco et al., 2009
Statistical properties of structures

Power law WTD, quantitatively describing the state of turbulence. Less evident and evolving in fast wind. More evident near solar maxima. Relationship with heating and acceleration?
The turbulent cascade in the solar wind

**Fluids** - Yaglom law: linear scaling of the 3rd order moment: $\Delta V_l^3 = -4/5 \varepsilon l$

**MHD** - Politano-Pouquet law: linear scaling of the *mixed* 3rd order moment.

$$Y^\pm (\ell) = \left \langle |\Delta z^\pm (\ell; x)|^2 \Delta z_R^\mp (\ell; x) \right \rangle = \frac{4}{3} \varepsilon^{\mp \ell}$$

2D-MHD simulations
Sorriso-Valvo et al., 2002

1997, days 1-9 (fast)

Ulysses - Solar wind
Sorriso-Valvo et al., 2007, 2010
Marino et al., 2008, 2011
Turbulent energy transfer rate

Politano-Pouquet: first measurement of the mean energy transfer rate $\varepsilon$

$$Y^\pm (\ell) = \langle |\Delta z^\pm (\ell; x)|^2 \Delta z_R^\mp (\ell; x) \rangle = -\frac{4}{3} \varepsilon^\pm \ell$$

- Not always observed: identification of “clean” turbulence solar wind intervals.
- Correlations with wind speed, solar activity, radial distance, heliolatitude, cross-helicity, velocity shears.

Turbulent heating in the solar wind

Energy available for heating: compatible with temperature observations.

Marino et al., 2011

Squares: Compressive (phenomenological)

Lines: rate required for the observed heating

Circles: Incompressive
Solar wind turbulence: beyond MHD

Break at ion scales: MHD approximations no longer valid: plasma physics
Kinetic effects in plasmas

Field-particle interactions: resonance, damping, plasma instabilities, magnetic reconnection, particle acceleration, heating, collisions...

Fluid range: MHD
Kinetic range: Vlasov
Solar wind small-scale waves

Mirror modes near the Earth
Lacombe et al., 2014

Mirror and ion-cyclotron modes near Saturn
Russel et al.
Non-Maxwellian velocity distribution

Feldman, 1979

Gloecker et al., 2012

Marsch et al., 1982

Halo Solar Wind

Bulk Solar Wind

Pickup $H^+$

-5 Suprathermal Tail

Gloecker et al., 2012

Phase Space Density ($s^3/km^6$)

Protons
Vlasov-Maxwell equations

Evolution of the particle distribution functions in the absence of collisions

\[
\frac{\partial f_e}{\partial t} + \mathbf{v}_e \cdot \nabla f_e - e \left( \mathbf{E} + \frac{\mathbf{v}_e}{c} \times \mathbf{B} \right) \cdot \frac{\partial f_e}{\partial \mathbf{p}} = 0
\]

\[
\frac{\partial f_i}{\partial t} + \mathbf{v}_i \cdot \nabla f_i + Z_i e \left( \mathbf{E} + \frac{\mathbf{v}_i}{c} \times \mathbf{B} \right) \cdot \frac{\partial f_i}{\partial \mathbf{p}} = 0
\]

+ Maxwell

Fluid range: nonlinear cascade for the moments (n, v,...), structures...

Kinetic range: nonlinear cascade for the distribution functions, waves...
Vlasov-Maxwell turbulence

Numerical simulations: large computational requirements
Only recently: transition to turbulence and intermittency

Determine the complexity of current structures to describe the transition to turbulence: cancellation analysis

Quantitative measure of intermittency: multifractal analysis of the energy dissipation
Turbulent Heating & Acceleration

How is turbulent energy dissipated in space plasmas?

waves in coherent structures:
- wave generation & damping
- secondary instabilities

waves:
- cyclotron damping
- Landau damping
- stochastic heating

coherent structures:
- reconnection
- scattering & acceleration
- trapping & betatron
- vortex dynamics

non-linear waves:
- steepened waves
- phase space holes
- nonlinear Landau damping

Individually studied for simple approximations and under ideal conditions
What strategy?

1. Improve space data quality

2. Increase performance of fluid and fully kinetic numerical simulations

3. Develop more precise diagnostic tools

4. Perform extensive data analysis - measurements and numerical simulations
Example of specific approach

• Dissipation and dispersion: various mechanisms
  Which processes occur under specific conditions? What triggers them?

• Solar wind extremely complex system
  Complexity: solar origin (activity, speed, composition, structures...) and turbulence origin (expansion, anisotropy, waves, cross-helicity...)

• Even under “quiet” conditions
  Intermittency and inhomogeneous dissipation (see Castaing)

Accurate data conditioning
to isolate different processes
Study of “dissipative” processes

- Collect samples from **space measurements** and **numerical simulations**
- Accurately describe all possible properties and phenomena

<table>
<thead>
<tr>
<th>Plasma properties</th>
<th>Diagnostics for dissipation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global and statistical</td>
<td>Local</td>
</tr>
<tr>
<td>Plasma conditions (composition, speed, cross-helicity, $\beta$, region...)</td>
<td>Shocks, reconnection, structures, collisions...</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbulence (spectra, energy flux, intermittency, anisotropy...)</td>
<td>Structure topology, field singularity...</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Look for correlations to discriminate dissipation mechanisms
Constrain theoretical models for dissipation
Exploit numerical simulations and support space mission design
Examples: heating and acceleration near intermittent structures

Enhanced heating near PVI detected structures [Osman et al., 2012]

Enhanced SEP flux observation near PVI detected structures [Tessein et al., 2013]

Chiasapis et al., 2015
Examples: heating of $\alpha$-particles

Protons and $\alpha$ heated differentially: info about heating mechanism?

Valentini et al., 2016
Local dissipation rate in solar wind

Politano-Pouquet law: proxy for the local energy transfer rate:

\[
Y^{\pm}(\ell) = \left\langle |\Delta z^{\pm}(\ell; x)|^2 \Delta z^{\mp}_R(\ell; x) \right\rangle = \frac{4}{3} \varepsilon^{\pm} \ell \quad \Rightarrow \quad \epsilon^{\pm}(t) = \frac{|\Delta z^{\pm}(t)|^2 \Delta z^{\mp}_R(t)}{\tau \langle v \rangle}
\]

Local dissipation \(\epsilon(t) [10^6 \times \text{J Kg/ sec}]\)

- ULYSSES fast
- HELIOS 2 slow
- HELIOS 2 fast

\(P(\epsilon) \sim \exp(\epsilon/\epsilon_0)^c\)

Sorriso-Valvo et al, APJ 2015
Conditioned PDFs

PDFs conditioned to given $\varepsilon$: Gaussian PDFs at all scales:
Multifractal model of intermittency

THOR

Exploring plasma energization in space turbulence

Science questions

- How is plasma heated and particles accelerated?
- How is the dissipated energy partitioned?
- How does dissipation operate in different regimes of turbulence?

Particle measurements requirements

Vlasov Simulation

Virtual Previous Spacecraft

Virtual - THOR

Vaivads et al., 2016
THOR payload

Vaivads et al., 2016
THOR timeline

- 2015-01-15 proposal submitted to ESA M4
- 2015-06-04 THOR selected for study phase
- 2015-06-11 kick-off of ESA phase 0 study
- 2015 fall end of phase 0
- 2016 phase A study
- 2016 kick-off workshop of THOR
- 2017 fall final down-selection
- 2026 launch?
Summary

- Solar wind offers a great opportunity to study plasma physics
- Fluid-scale turbulence & intermittency have been deeply studied
- Small-scale turbulence has been recently addressed
- There are many proposed mechanisms for dissipation of plasma turbulence
- Multiple approach: space missions, data, theory, and numerical simulations
- Important to understand what triggers different dissipation mechanisms
- Collateral gain: astrophysical and laboratory plasma dissipation processes, implications for space weather

Thank you
Short CV

• **PhD** at Calabria University (Italy) & Observatoire de Nice (France)
• **Post-doctoral** researcher at Calabria University (Italy)
• Since 2004: Staff **Researcher** at National Council of Research (Italy)
• 2012-2013: **Researcher** at UC Berkeley
• **Visiting** researcher: Observatoire de Nice; Technical University of Barcelona; Ocean Science Institute, Barcelona; National Institute of Astrophysics, Rome; Torino Observatory; Observatoire de Paris; Plasma Physics Laboratory, Palaiseau; University College of London; Queen Mary University of London.
• 78 published **articles**, 1500+ citations, h-index=21
• 18 **invited talks**, 100+ conferences and workshops
• **Convener** of conference sessions: EGU, AOGS
• **Organizer** & co-organizer of international Workshops and schools
• **Coordinator** of one EU Marie Curie Project (4 years, 300k€)
• Several national research **grants** and projects (Italy)
• 10+ years **teaching** experience (Italy and Spain)
• Italian national **qualification** as full professor
• **Supervisor** of 2 PhD and several Master students
• ESA astronaut **instructor**
• **Panelist** for NASA and Italian Ministry of University and Research
Compressive cascade in the solar wind

Include compressive effects in the P-P law:
better scaling and higher energy transfer rate

\[ w^\pm (\ell; \mathbf{x}) = \rho^{\frac{1}{3}}(\ell; \mathbf{x}) z^\pm (\ell; \mathbf{x}) \]

Carbone et al., PRL 2009; Banerjee, PhD thesis; Banerjee & Galtier, PRE 2013.
Castaing multifractal model

Multifractal picture: different subsets with different energy transfer rate have Gaussian fluctuations (e.g. $\Delta b$), at all scales.

Intermittent PDF: superposition of those Gaussians, each with given variance $\sigma$ and weight $L$, proportional to the size of each subset.

- Introducing the distribution of weights $L(\sigma)$;
- Computing the convolution of Gaussians of width $\sigma$, $G(\sigma, \Delta b)$:

$$ P(\Delta b) = \int L(\sigma) \ G(\Delta b, \sigma) \ d\sigma $$

Self-consistent $L(\sigma)$

- Standard deviations of conditioned PDFs computed through Gaussian fit.

- Distribution of variances $L(\sigma)$ estimated self-consistently from the data: roughly stretched exponential.

$$P(\Delta v) = \int L(\sigma) \ G(\Delta v,\sigma) \ d\sigma$$
Self-consistent Castaing PDF

The parameter-free Castaing convolution fits the experimental PDFs: validation of the multifractal model of solar wind intermittency

Sorriso-Valvo et al, APJ 2015
Small-scale fluctuations: intermittency?

Evidences from data and simulations: current sheets reach minimum size, then filament

Telloni et al., 2015

Bruno et al., 2015

Martin et al., 2013
Example: Virtual spacecraft

Numerical simulations reproduce spacecraft time series to test diagnostics tools and help defining space mission payload requirements.

The VDF shape responds to field fluctuations.

Vlasov numerical simulations and relative proton distribution function.