

ESAC, Villanueva de la Cañada, Friday, January 27

Space Weather: The role of cold ions on magnetic reconnection at the terrestrial magnetopause

fully kinetic simulations

Jérémy Dargent, Nicolas Aunai, Benoît Lavraud & Sergio Toledo-Redondo

> Laboratory of Plasma Physics Palaiseau, France

> > IRAP Toulouse, France

Space weather: Science of Sun-Earth interactions

The Sun: an active star

Solar wind emission : 10⁹ kg.s⁻¹

The Sun: an active star

surface activity

magnetic reconnection

Coronal Mass Ejection (CME)

Solar surface activity results in plasma ejection

Magnetic reconnection at the magnetopause

The reconnection rate

$$R \sim v_{in}/v_{out}$$

- Sweet-Parker model : the ideal MHD with resistive region $R\sim \sqrt{\eta/v_AL}$

The reconnection rate

- Sweet-Parker reconnection rate too low to explain solar flare, dayside reconnection, etc...
- Petschek model : smaller diffusion region + slow shock

diffusion region

slow shocks

The reconnection rate

- Asymmetric magnetic reconnection
- Cassak-Shay semi-empirical formula:

 $R \sim \frac{\delta}{\sqrt{\pi cL}} \frac{(B_1 B_2)^{3/2}}{\sqrt{(\rho_1 B_2 + \rho_2 B_1)(B_1 + B_2)}}$

The plasmaspheric plumes

- Dense and cold plasma from the ionosphere
- Happens after geomagnetic storm

2001 Apr 11 00:24 2001 Apr 12 02:25

Cold ions : a non-negligible population

Influence of cold ions :

- Major contribution to the density
- New scales in magnetic reconnection (Toledo-Redondo+ GRL 2015)
- Others unknown effects?

Question:

What is the effect of cold ions on signatures of magnetic reconnection?

Cold ions : a non-negligible population

Influence of cold ions :

- Major contribution to the density
- New scales in magnetic reconnection (Toledo-Redondo+ GRL 2015)
- Others unknown effects?

Simulation initial setup

- Two 2D fully kinetic simulations:
 - with cold ions
 - without cold ions
- Same total density, total temperature and magnetic field.
- Only difference : species on magnetospheric side
- Initialisation done with regards on observations
 (Toledo-Redondo+ GRL 2015)

Reconnection rates

 $\partial \Phi/\partial t$

run A : without cold ions run B : with cold ions

No real effect of cold ions on the reconnection rate

Cold ion effects on the electric field

Extended « Larmor » electric field

Cold ion effects on the electric field

Extended « Larmor » electric field

17/24

Cold ions and E-field far from the X-line Frozen-in cold ions

- Cut far from the X line
- Only cold ions are frozen-in

Cold ions and E-field far from the X-line Frozen-in cold ions

• Frozen-in cold ions —> drift in the E field

 $rac{v_{iz}}{v_{iz}}$ is modified

Origin of the new electric field

Generalized Ohm's law

20/24

Origin of the new electric field

- Cold ions are frozen in E-field at small scales
 - --> They drift in small scale electric fields
 - ---> Their drift motion maintains those fields

Origin of the new electric field

without cold ions

The initial electric field does not disappear in the simulation with cold ions —> Origin of the elongated negative electric field

Conclusion

- Cold ions temperature does not seem to affect the reconnection rate
- Cold ions have an effect on small scale electromagnetic fields

Future works...

Plume simulation

Electron density, t = 0.90

