

Massive stars - binaries, Wolf-Rayets, and the Early Universe connection

Frank Tramper

European Space Astronomy Centre - Madrid

ESA UNCLASSIFIED - For Official Use

Introduction - Massive stars

- > ~8 solar masses
- Rare and short-lived, but key players in the Universe
- Strong impact on their surroundings
 - Dominant sources of momentum (stellar winds and SNe)
 - Strong ionizing radiation
 - May halt or start star formation
 - Chemical enrichment: main producers of alpha-elements (C, O, etc.)
 - Re-ionization of the Universe

ESA UNCLASSIFIED - For Official Use

2

ESA UNCLASSIFIED - For Official Use

Introduction - Massive stars

- Progenitors of:
 - Hypernovae
 - (long) Gamma-ray burst
 - X-ray binaries
 - Gravitational wave sources
- Evolution dominated by:
 - Mass-loss
 - Rotation
 Metallicity
 - Binary interactions

But... binaries!

- Massive stars like company: 91% of nearby O stars has one or more companions (on average 2.1 companions; *Sana*+ 2014)
- Interactions dominate massive star evolution: 71% of all stars born as O-type will interact during their lifetime (*Sana*+ 2012)

*

I - Very Massive Binaries

ESA UNCLASSIFIED - For Official Use

European Space Agency

*

+ |

Very massive binaries

- Binaries offer the most accurate determination of stellar mass
 - Radial velocity variations combined with Kepler's laws provide lower limits $\frac{M_2^3}{(M_1 + M_2)^3} \sin^3 i = \frac{P}{2\pi G} v_1^3 \qquad \qquad \frac{M_1}{M_2} = \frac{v_2}{v_1}$ If inclination is know then absolute mass
- Orbital solution allow disentangling of spectra: analyse both components individually
- Most massive stars:
 - NGC 3603-A1: 116(31) M_☉ + 89(16) M_☉ (*Schnurr*+ 2008)
 - R145: 116(33) M_o + >48(20) M_o (*Schnurr*+ 2009)
 - WR20a: 83(5) M_☉ + 82(5) M_☉ (*Rauw*+2004, *Bonanos*+ 2004)
 - R139: >78(8) M_o + >66(7) M_o (*Taylor*+ 2011)
 - R136-a1: 265(+80-35) M_☉ (*Crowther*+ 2010)
 - VFTS 682: ~150 M_☉ (*Bestenlehner*+ 2011)

ESA UNCLASSIFIED - For Official Use

WR21a

- Likely part of Westerlund 2
 - Distance 8kpc, age 1.5 Myr
- Wolf-Rayet + O-star binary
- Candidate most massive binary in the Milky Way:
 - >87(6) M_☉ + >53(4) M_☉ (*Niemela*+ 2008)
 - Eccentric orbit, no periastron coverage
 - Based on He II 4686
- Observed 26 epochs with X-Shooter
 - Focussed on periastron passage

ESA UNCLASSIFIED - For Official Use

8

WR21a

- Very accurate lower mass limits: 64.4(4.8) M_{\odot} + 36.3(1.7) M_{\odot}
 - But inclination unkown, no eclipses
- Mass from spectral type of secondary: 58.3(3.7) M_{\odot} based on *Martins*+ (2005)
 - \bullet Primary mass 103.6(10.2) M_{\odot} , total mass 161.9(19.0) M_{\odot}
- \bullet Total mass from luminosity and evolutionary tracks: 150.4(13.7) M_{\odot}

ESA UNCLASSIFIED - For Official Use

*

9

30 Doradus - Hunting for the most massive stars

R144 - potentially most massive binary (Sana+ 2013)

/FTS 682 - Most massive star outside cluster (*Bestenlehner*+ 2011)

R136 - 9 stars with M >100M_☉ (Crowther+ 2016)

VFTS 352 - Most massive over-contact binary (Almeida+ 2015)

R144 - revealed as very massive binary

• One of the brightest stars in 30 Dor, long suspected to be a binary

• $\log L/L_{\odot} = 6.8$

2.0 F

1.8

1.6

1.4

1.2

1.0

0.8

4000

Vormalized Flux

- 7 epochs of X-Shooter observations
- RV of Nv anti-correlated with NIII -> spectroscopic binary
- Observations too sparse to obtain good orbital solution
 - Additional epochs covering periastron passage obtained
- Based on luminosity: total mass $\sim 200-300 \text{ M}_{\odot}$ ($\sim 400 \text{ M}_{\odot}$ at birth)

NV

55674.479

VFTS 352 - the most massive over-contact binary

- Spectroscopic coverage from VFTS + TMBM
 - 38 epochs from 2010 2014
- Photometry from OGLE
 - 90 epochs V-band, 760 epochs I-band
- Orbital solution from RV and photometry
- Very short period binary
 - P = 1.12 days
 - \bullet Equal mass 28.6 + 28.9 M_{\odot}
 - Over-contact configuration
- High temperatures -> enhanced internal mixing

VFTS 352

ESA UNCLASSIFIED - For Official Use

= ■ ► == + ■ = = = = = ■ = = = = = = ■ ■ ■ = = = ■ ■

13

VFTS 352

ESA UNCLASSIFIED - For Official Use

= ■ ► == + ■ = = = = = ■ = = = = = = ■ ■ ■ = = = ■ ■

13

II - Oxygen Sequence Wolf-Rayet Stars

ESA UNCLASSIFIED - For Official Use

Wolf-Rayet stars

- Stars with strong, broad emission lines formed in optically thick winds
 - WNh: very massive main-sequence stars
 - Classical Wolf-Rayets: WN, WC, WO
 - (Some CSPN)
- High mass-loss rates: 10⁻⁴ 10⁻⁶ $\,M_{\odot}\,/yr$

= II 🛌 == + II 💻 🚝 == II II == == 🔚 🛶 🚺 II == == II 🛞 👭

Oxygen sequence Wolf-Rayet (WO) stars

- Very rare stage of massive star evolution
 - 4 in Milky Way (1 binary)
 - 3 in Large Magellanic Cloud
 - 1 in Small Magellanic Cloud (binary)
 - 1 in IC1613 (LG dwarf galaxy)
- Usually interpreted as short stage after WC phase. Spectrum dominated by strong carbon and oxygen emission.
 - \bullet possibly the direct pre-SN stage of 40-60 M_{\odot} stars
- All* WOs observed with X-Shooter between Sep. 2011 and Jun. 2014
 - *except 1 in LMC discovered June 2014 (*Massey*+ 2014)

*

Oxygen sequence Wolf-Rayet stars

Properties of WO stars

- Quantitative analysis to derive luminosity, temperature, mass loss, and He, O, and C abundances
- Very high temperatures: 150 kK < T < 220 kK
- Highly evolved: no hydrogen, surface helium abundance 14% < He < 40%
- Properties cannot be reproduced by standard evolutionary models

O VI

ESA UNCLASSIFIED - For Official Use

Неп

O IV

3500

Normalized Flux

3

2

*

Evolutionary state of WO stars - I

- Evolutionary models use mass-loss prescription from Nugis & Lamers (2000)
 - Mass-loss as function of luminosity and surface abundance
 - Does not reproduce the mass-loss of WO stars: fails for low helium abundance
- Calculate evolutionary models for the WO stars
 - Use several fixed mass-loss rates, start at He-ZAMS
 - Determine evolutionary state
 - Determine time to SN

ESA UNCLASSIFIED - For Official Use

Evolutionary state of WO stars - II

- Evolutionary models can reproduce luminosity, temperature and helium abundance when using constant high mass loss
- All WO stars are post-helium burning, explode within 10000 yr
- \bullet Most extreme: WR102 with t_{SN} < 1500 yr

The set of th

Mass-loss of WO and WC stars

- New prescription that works for all WC and WO stars
 - Mass-loss function of luminosity, helium abundance, and metallicity
 - WC parameters from literature, using detailed spectroscopic analyses
- Ongoing: evolutionary models for WO stars using new mass-loss prescription
 - Trainee Carlos Viscasillas

ESA UNCLASSIFIED - For Official Use

Tramper+ 2016b

III - The quest towards low metallicities

ESA UNCLASSIFIED - For Official Use

■ ## # # # # # 🚍 🚍 # # ## == 🖬 == 🖬 ## ₩ 🙌

Towards very low metallicities - I

			 First stars were very massive 	
	1	Galaxy	 Provided the first elements other than hydrogen & helium 	
	0.5	LMC	 Reionized the Universe 	
	0.2	SMC	 Dominate galaxy evolution 	
Metallicity Z/Z _o	• • • • • • •		 Winds driven by radiation pressure on metals: weaker winds at low Z More massive end products (GW progenitors) More rapidly rotating end products (GRB progenitors) 	
	10 ⁻⁴	2 nd generation	• We need to understand low-Z massive stars	
	0	1 st generation		

ESA UNCLASSIFIED - For Official Use

Towards very low metallicities - II

	1	Galaxy	 The problem: we cannot observe individual stars in high redshift galaxies
Metallicity Z/Z _o	0.5	LMC	 The solution: nearby dwarf galaxies with low SFR
	0.2	SMC	 Provide conditions similar to those in the early Universe
		2nd gameration	 current 8-10m class telescopes can resolve massive stars up to 2 Mpc* *pitfalls: clustering, multiplicity
	0	1 st generation	

ESA UNCLASSIFIED - For Official Use

Stellar winds at low metallicity

· = •• ▶ •• = + •• • • ■ ≔ = •• •• • • = = ≔ = ∞ •• = = •• ••

Stellar winds at low metallicity

═╹**╹**┝┓┇╕━╴┿╹╿**╹**━ ё ═╹╹╹╹╿ ═╴═╶╬╴━ Ҩ**╹╿** ═ ┇**╸**┖ ╟╿

Going beyond the SMC - I

ESA

	1	Galaxy	• Local Group dwarf galaxies with $Z \sim 1/7 Z_{\odot}$
	0.5	LMC	Young stellar population
Metallicity Z/Z _o	0.2 0.15	SMC IC1613, WLM, NGC3109	 10 brightest O stars observed with X- Shooter
	10 ⁻⁴ 0	2 nd generation 1 st generation	
ESA UNCI	LASSIFIED - For Of	ficial Use	.013 @ 120 kpc WIM @ 995 kpc 146C 5109 @ 1.5 Mpc 26

* iiiiii + |

Going beyond the SMC - II

	1	Galaxy	 Stellar winds appear to be too strong for their metallicity (<i>Tramper</i>+ 2011, 2014;
Metallicity Z/Z_{\odot}	0.5	LMC	 see also <i>Herrero</i>+ 2010, 2012) HST UV spectroscopy needed to confirm (see <i>Bouret</i>+ 2014)
	0.2 0.15	SMC IC1613, WLM, NGC3109	
			30 - IC 1613 → WLM → NGC 3109 Lincer fit
	· ·		29 Vink et al. 2007
			(mom) gol 0 l 2 a
	10 ⁻⁴	2 nd generation	27-
	0	1 st generation	$26 - 0.5 Z_{\odot}$
ESA UNC	LASSIFIED - For Of	ficial Use	$\log(L/L_{\odot})$ 27

Going beyond the SMC - Upcoming

	1	Galaxy
Metallicity Z/Z _o	0.5	LMC
	0.2 0.15 0.06 0.01	SMC IC1613, WLM, NGC3109 Sextans A SAGDIG
	10-4	2 nd generation
	0	1 st generation

- The next step: Sextans A & Sagittarius Dwarf irregular galaxy
 - Far enough to be small on the sky
 - Close enough to resolve the stellar population

ESA UNCLASSIFIED - For Official Use

Take-home messages

- Binaries play an important role in massive star evolution
- Getting the mass loss right is key to accurately predict stellar evolution
- WO stars offer a rare glimpse in the life of massive stars just before the supernova
- Strength of stellar winds at low metallicities remains uncertain
- Nearby low-metallicity galaxies offer a unique doorway to the early Universe

*

The second sec

