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Introduction: Hot, Massive Stars

I Massive:
Minit > 8M�

I Hot:
Teff > 20 000 K
→ high surface

brightness
→ strong UV flux

I Luminous:
L > 3000 L�

Unofficial motto:
“Live fast, die young”

Orion Belt (Credit: ESO/ESA/NASA)
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Introduction: Mass Loss via Stellar Winds

Massive stars show a strong matter
outflow, called stellar wind

I Mass loss up to 1 . . . 10 M�
in 10 000 yr

I Wind velocities up to ≈ 5000 km/s

Hot stars:
Outflow is driven by strong radiation

Huge influence on environment:
I chemical enrichment
I kinetic energy injection
I ionizing radiation

The “Bubble Nebula” NGC 7635
(Credit: Russell Croman)

Andreas Sander (University of Potsdam) Modeling hot star atmospheres May, 25th 2017 3 / 28



Introduction: Line-driven Winds

I Each photon carries momentum hν
c

I Momentum transfer from photons to metal
ions by line absorption

I Absorptions mainly from radial
directions but isotropic re-emission
⇒ Radial net outflow
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Spectral appearance

Spectral signatures of mass-loss:
UV: P Cygni Profiles
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Optical:
I low Ṁ: absorption lines
↪→ decently affected by wind

I high Ṁ: emission lines
↪→ strongly affected by wind
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Line-driven wind regimes: From OB up to Wolf-Rayet
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Why study stellar atmospheres?

Why we should care about stellar atmospheres:
I The stellar atmosphere is all we really see from the star
I Its spectrum is (usually) the only information we get
⇒ understand the spectrum to understand the star

I Only a proper modeling of the atmosphere can reproduce the
emergent spectrum
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Given sufficient observations, stellar atmosphere models provide:
I stellar and wind parameters (Teff, log g , L, v∞, Ṁ ...)

I chemical abundances
I insights on stellar feedback (Ṁ, ionizing photons, etc.)

⇒ Stellar atmosphere models are the basis for a plethora of applications
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I chemical abundances
I insights on stellar feedback (Ṁ, ionizing photons, etc.)
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Modeling stellar atmospheres

What has to be included?
I Extreme non-LTE situation
I Multiple scattering in an expanding

atmosphere (avoid CAK limitations)
I Model atoms for H, He, C, N, Fe, etc.
I Accounting for millions of lines for iron

group elements (“blanketing”)
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The complexity of non-LTE stellar atmosphere modeling

Radiation Transfer
Symbolically: linear mapping Λ

J = Λ S(~n)

Rate Equations (Statistical Equilibrium)
Set of linear eqns. at each spacial point

~n · P(J) = [0, ..., 0, 1]

radiation    source     population       pop. numbers        transition
  field           function    numbers         (at 1 depth point)      rates

 Coupling in space  Coupling in frequency

Radiative transition rates:
Frequency integrals

Rlu =

∫
4π

hν
σlu(ν) Jν dν

  high-dimensional, non-linear, fully coupled in space and frequency
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Modeling two regimes

hydrostatic star
(core)

supersonic wind
(halo)

Two different regimes must be
taken into account

I hydrostatic regime
I wind regime

Traditional core-halo approach:
Two separate models

Modern approach, since ≈ 1990s:
Unified model atmospheres
(e.g. Hamann & Schmutz 1987,
Gabler et al. 1989)

Unified models require an accurate description of the radiation pressure:
⇒ use Monte Carlo (MC) or Comoving Frame (CMF)
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Modeling two regimes

quasi-hydrostatic
regim

e

supersonic
wind-regime

Two different regimes must be
taken into account

I hydrostatic regime
I wind regime

Traditional core-halo approach:
Two separate models

Modern approach, since ≈ 1990s:
Unified model atmospheres
(e.g. Hamann & Schmutz 1987,
Gabler et al. 1989)

Unified models require an accurate description of the radiation pressure:
⇒ use Monte Carlo (MC) or Comoving Frame (CMF)

Andreas Sander (University of Potsdam) Modeling hot star atmospheres May, 25th 2017 10 / 28



Modeling two regimes

quasi-hydrostatic
regim

e

supersonic
wind-regime

Two different regimes must be
taken into account

I hydrostatic regime
I wind regime

Traditional core-halo approach:
Two separate models

Modern approach, since ≈ 1990s:
Unified model atmospheres
(e.g. Hamann & Schmutz 1987,
Gabler et al. 1989)

Unified models require an accurate description of the radiation pressure:
⇒ use Monte Carlo (MC) or Comoving Frame (CMF)

Andreas Sander (University of Potsdam) Modeling hot star atmospheres May, 25th 2017 10 / 28



Comoving frame radiative transfer: The benefits
CAK - Approximate description of arad using parameters (α, ...)

arad = athom + alines +(((((atrue cont

= Γe · g(r)
[

1 + C
(

r 2v
Ṁ

dv
dr

)α]

CMF radiative transfer - exact evaluation of the acceleration integral:

arad(r) = 4π
c

1
ρ(r)

∞∫
0

κν(r)Hν(r)dν

I implicitly includes various effects (e.g. multiple scattering)
I works for all line-driven winds (WR, O, B, LBV, sdO, [WR], ...)
I detailed approach → significant calculation time
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Quasi-Hydrostatic Regime

Another layer of complexity:
Hydrodynamically-consistent description of the quasi-hydrostatic regime
→ essential for a proper analysis of OB-stars
→ affects spectrum if quasi-static photosphere is visible

(O, B, “cool” and/or “thin” WR winds)
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Model requirement:
stratification in the
subsonic part must fulfill
the hydrostatic equation
(e.g. Sander et al., 2015)

left figures from Shenar et al. (2014):

absorption line diagnostic examples
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CMF model atmospheres: State of the art

The current state of the art:
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Achieved by:

I Detailed radiative transfer
I No artificial boundary between subsonic and supersonic regime
I Accounting for a variety of elements, incl. the large iron group
I Prescribed v(r) in the wind, special treatment for hydrostatic part
I Approximate treatment for density inhomogeneities (“clumping”)

Andreas Sander (University of Potsdam) Modeling hot star atmospheres May, 25th 2017 13 / 28



CMF model atmospheres: State of the art

The current state of the art:

Iterative Corrections

Temperature Strat.
Stat. Equilibrium
Radiative Transfer

Input

stellar parameters
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The PoWR Code

PoWR

PoWR
Potsdam Wolf-Rayet Star Model Code for
expanding stellar atmospheres

→ detailed model atmospheres for hot stars

Online model grids: www.astro.physik.uni-potsdam.de/PoWR/

For each model the website provides:
I Spectral energy distribution
I High-resolution line spectrum for various bands
I Atmosphere stratification
I Photometric colors and ionizing fluxes

plus extensive preview features for all spectra
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The PoWR Code

PoWR

PoWR
Potsdam Wolf-Rayet Star Model Code for
expanding stellar atmospheres

→ detailed model atmospheres for hot stars

Online model grids: www.astro.physik.uni-potsdam.de/PoWR/

Grid selection: Model selection: Preview & Download:
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PoWR: Model Stratification

Unified model atmosphere: Accurate physics throughout the atmosphere!

More than just spectrum and SED,
such as:

I Optical depth scales
I Temperature stratification
I Flux consistency (check)
I Ionisation stratification
I Detailed acceleration balance

⇒ Stratification details can provide input for various follow-up research!
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I Detailed acceleration balance
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Application examples
Obtaining stellar and wind parameters by reproducing observations:
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Example from
Sander et al. (2014)

M31WR 148
(WN10)
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Example: WR Hertzsprung-Russell Diagram
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Zero-Age

Main Sequence

Helium Zero Age

Main Sequence

In the last decade a growing
number of WR stars have
been analyzed with stellar
atmosphere codes:

combined HRD from
MW, LMC, SMC, & M31

Sources:
Crowther et al. (2002),
Hamann et al. (2006),
Barniske et al. (2008),
Martins et al. (2008),
Liermann et al. (2010)
Sander et al. (2012),
Hainich et al. (2014)
Sander et al. (2014),
Hainich et al. (2015),
Tramper et al. (2015)
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Example: WR Hertzsprung-Russell Diagram
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Over 250 different
Wolf-Rayet stars analyzed in
total

HRD contains (apperantly)
single stars only

Always: log L/L� > 4.9

No hydrogen-free WR at
log L/L� > 6.0

(Attention: This does not
include [WR] aka CSPN!)
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Example: Massive stars in the SMC
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Comparison of empirical
results with stellar evolution
models

→ often yields interesting
insights on multiple fields

Sources:
WNs: Hainich et al. (2015)
RSGs: Massey & Olsen (2003)
OBs: Ramachandran et al.
(in prep)

Tracks from Brott et al. (2011)
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Predict spectral appearances

Application example:
Gravitational Wave
Progenitors
How do they look like?

I Calculate models for
predicted tracks

I Obtain observational
parameters

I Consistency checks
between atmosphere and
evolution models
↪→ improve evolutionary
calculations

Figure adapted from Abbott et al. (2016)
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Predict spectral appearances

Model I: 50 M

Z = Z /20

Model II: 60 M

Z = Z /10

pre WR phase

WN: 55 % ≥ XH > 5 %
WN: XH ≤ 5 %
WC/WO phase
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Application example:
Gravitational Wave
Progenitors
How do they look like?

I Calculate models for
predicted tracks

I Obtain observational
parameters

I Consistency checks
between atmosphere and
evolution models
↪→ improve evolutionary
calculations

GW progenitor tracks from Marchant et al. (2016)
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Predict spectral appearances
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Application example:
Gravitational Wave
Progenitors
How do they look like?

I Calculate models for
predicted tracks

I Obtain observational
parameters

I Consistency checks
between atmosphere and
evolution models
↪→ improve evolutionary
calculations

Figure from Hainich et al. (2017, in prep)

Andreas Sander (University of Potsdam) Modeling hot star atmospheres May, 25th 2017 19 / 28



Predict spectral appearances
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Application example:
Gravitational Wave
Progenitors
How do they look like?

I Calculate models for
predicted tracks

I Obtain observational
parameters

I Consistency checks
between atmosphere and
evolution models
↪→ improve evolutionary
calculations

Figure from Hainich et al. (2017, in prep)
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The next generation of atmosphere models

PoWR

The next step
Use models for more then measurements:

Gain predictive power for mass-loss rates!

Iterative Corrections

Temperature Strat.
Stat. Equilibrium
Radiative Transfer

Input

stellar parameters

Ṁ, v(r)

Emergent spectrum
if converged

(changes < ε)

⇒ excellent for obtaining empirical parameters, but lacks predictive power
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The next generation of atmosphere models

PoWR

The next step
Use models for more then measurements:

Gain predictive power for mass-loss rates!

Iterative Corrections

Temperature Strat.
Stat. Equilibrium
Radiative Transfer

Input

stellar parameters

Ṁ, v(r)

mass-loss rate measured, not predicted

Emergent spectrum
if converged

(changes < ε)
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The next generation of atmosphere models

PoWR

The next step
Use models for more then measurements:

Gain predictive power for mass-loss rates!

Iterative Corrections

Temperature Strat.
Stat. Equilibrium
Radiative Transfer

Ṁ, v(r)

Input

stellar parameters

Ṁ, v(r)

Emergent spectrum
if converged

(changes < ε)

⇒ v(r) and Ṁ need to be calculated consistently
Andreas Sander (University of Potsdam) Modeling hot star atmospheres May, 25th 2017 20 / 28



The complexity of non-LTE stellar atmosphere modeling

Radiation Transfer
Symbolically: linear mapping Λ

J = Λ S(~n)

Rate Equations (Statistical Equilibrium)
Set of linear eqns. at each spacial point

~n · P(J) = [0, ..., 0, 1]

radiation    source     population       pop. numbers        transition
  field           function    numbers         (at 1 depth point)      rates

 Coupling in space  Coupling in frequency

Radiative transition rates:
Frequency integrals

Rlu =

∫
4π

hν
σlu(ν) Jν dν

  high-dimensional, non-linear, fully coupled in space and frequency
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J = Λ S(~n)

Rate Equations (Statistical Equilibrium)
Set of linear eqns. at each spacial point

~n · P(J) = [0, ..., 0, 1]

radiation    source     population       pop. numbers        transition
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Radiative transition rates:
Frequency integrals
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4π

hν
σlu(ν) Jν dν

  high-dimensional, non-linear, fully coupled in space and frequency
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 add hydrodynamics
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The complexity of non-LTE stellar atmosphere modeling

Radiation Transfer
Symb.: lin. mapping Λ

J=ΛS(~n, 3)

Hydrodynamics
non-lin. differential eqn.

dv

dr
= −

g

v

F̃(J, ~n)

G̃(v, ~n)

Rate Eqns. (Stat. Eq.)
Linear eqn. set / point

~n · P(J) = ~b

radiation  source     pop.    velocity         velocity          pop. numbers      transition
  field         func.    numb.    gradient           field           (at 1 depth point)      rates

 Coupling in space  Adjustment of Ṁ  Coupling in frequency

Radiative transition rates:
Frequency integrals

Rlu =

∫
4π

hν
σlu(ν) Jν dν

  high-dimensional, non-linear, fully coupled in space and frequency

Andreas Sander (University of Potsdam) Modeling hot star atmospheres May, 25th 2017 21 / 28



Hydrodynamics: Theoretical consequences

The hydrodynamic equation:

v
(

1− a2
s

v2

)
dv
dr = arad(r)− g(r) + 2a2

s
r −

da2
s

dr

In contrast to the hydrostatic equation, this equation has a critical point
(here at v = a, i.e. the sonic point)

The critical point in the hydrodynamic equation implicitly fixes Ṁ
↪→ consistent models gain predictive power

Consistent implementation of hydrodynamics:
I v(r) via integration of the hydrodynamic equation
I iterative adjustment of Ṁ
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Excursion: Depth-dependent acceleration

Acceleration contributions in an expanding stellar atmosphere:
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hydrodynamic
equation not
fulfilled

⇒ adjust amech

Andreas Sander (University of Potsdam) Modeling hot star atmospheres May, 25th 2017 23 / 28



Excursion: Depth-dependent acceleration

Acceleration contributions in an expanding stellar atmosphere:

amech
g+amech

apress
arad
arad +apress

amech = v
dv

dr

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

-3 -2 -1 0 1 2
log (r/R*  - 1)

lo
g

1
0
(a

/g
)

standard
atmosphere
model with
prescribed v(r)
and Ṁ
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Excursion: Depth-dependent acceleration

Hydrodynamic equation: amech + g = arad + apress
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hydrodynamic
equation not
fulfilled

⇒ adjust amech

Andreas Sander (University of Potsdam) Modeling hot star atmospheres May, 25th 2017 23 / 28



Excursion: Depth-dependent acceleration

Hydrodynamic equation: amech + g = arad + apress

amech + g

arad + apress

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

-3 -2 -1 0 1 2
log (r/R*  - 1)

lo
g

1
0
(a

/g
)

standard
atmosphere
model with
prescribed v(r)
and Ṁ
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Excursion: Depth-dependent acceleration

Remember the two different regimes in the stellar atmosphere:

R
so

n
ic

sonic point

v(r) = as(r)
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Excursion: Depth-dependent acceleration

Quasi-hydrostatic regime already consistent in newer models
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Results: Force balance
Locally consistent acceleration balance: Sander et al. (2017)
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Results: Driving details
Contributions to the radiative acceleration:
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Results: Velocity field
WNE model: hydrodynamically consistent

beta-law v(r) = v∞
(
1− 1
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)β

WNE hydro model
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⇒ very different velocity law than classically assumed
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Results: Velocity field
WNE model: hydrodynamically consistent vs. beta-law v(r) = v∞
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Results: Velocity field
Sanity check with B star model: can be approximated with standard β-law

HD model
hydrostatic plus β-law:
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Summary & Conclusions
The current and the next generation of atmosphere models:

I extensive applicability
→ O, B, Of/WN, LBVs, WRs, CSPN, etc.
→ from the first stars up to Z > Z�

I reliable stellar and wind parameters for a
wide range of Teff, v∞ and Ṁ

I new, sophisticated method to include
hydrodynamics
→ predictive power for Ṁ
→ detailed approach with cross-checks due to

local consistence + emergent spectrum
“Thor’s Helmet” around WR 7

(Credit: SSRO & PROMPT/UNC)

Results:
I HD scheme usable for various spectral types
I new Zeta Pup “benchmark” model
I basis for detailed insights into wind driving of hot stars
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