ESAC Science Faculty Seminar Villafranca del Castillo, Spain May 25th, 2017

Modeling hot star atmospheres: The current and the next generation

Andreas Sander

Wolf-Rainer Hamann, Rainer Hainich, Tomer Shenar, Helge Todt

Institute for Physics and Astronomy University of Potsdam, Germany

 Massive: *M*_{init} > 8*M*_☉

Orion Belt (Credit: ESO/ESA/NASA)

Andreas Sander (University of Potsdam)

Modeling hot star atmospheres

May, 25th 2017 2 / 28

- Massive: *M*_{init} > 8*M*_☉
- Hot: *T*_{eff} > 20 000 K
 - \rightarrow high surface brightness
 - $\rightarrow\,$ strong UV flux

Orion Belt (Credit: ESO/ESA/NASA)

Andreas Sander (University of Potsdam)

Modeling hot star atmospheres

May, 25th 2017 2 / 28

- Massive: *M*_{init} > 8*M*_☉
- ► Hot: T_{eff} > 20 000 K
 - \rightarrow high surface brightness
 - \rightarrow strong UV flux
- ▶ Luminous:
 L > 3000 *L*_☉

Orion Belt (Credit: ESO/ESA/NASA)

- Massive: *M*_{init} > 8*M*_☉
- Hot: *T*_{eff} > 20 000 K

 - \rightarrow strong UV flux
- ▶ Luminous:
 L > 3000 *L*_☉

Unofficial motto: "Live fast, die young"

Orion Belt (Credit: ESO/ESA/NASA)

Andreas Sander (University of Potsdam)

Modeling hot star atmospheres

Introduction: Mass Loss via Stellar Winds

Massive stars show a **strong matter outflow**, called *stellar wind*

- ► Mass loss up to 1...10 M_☉ in 10 000 yr
- \blacktriangleright Wind velocities up to $\approx 5000 \ \text{km/s}$

Hot stars:

Outflow is driven by strong radiation

Huge influence on environment:

- chemical enrichment
- kinetic energy injection
- ionizing radiation

The "Bubble Nebula" NGC 7635 (Credit: Russell Croman)

Introduction: Line-driven Winds

- Each photon carries momentum $\frac{h\nu}{c}$
- Momentum transfer from photons to metal ions by line absorption

 Absorptions mainly from radial directions but isotropic re-emission
 ⇒ Radial net outflow

Spectral appearance

Spectral signatures of mass-loss:

Optical:

- ► low \dot{M} : absorption lines \hookrightarrow decently affected by wind
- ► high M: emission lines ↔ strongly affected by wind

Line-driven wind regimes: From OB up to Wolf-Rayet

O and B Stars

- optical spectrum has mostly absorption lines
- relatively narrow lines
- \blacktriangleright mass loss rates up to $\approx 5 \times 10^{-6}$

Line-driven wind regimes: From OB up to Wolf-Rayet

O and B Stars

- optical spectrum has mostly absorption lines
- relatively narrow lines
- $\blacktriangleright\,$ mass loss rates up to $\approx 5\times 10^{-6}$

WR Stars

- \blacktriangleright optical spectrum dominated by emission lines \rightarrow dense wind
- strong lines, huge emission peaks
- \blacktriangleright mass loss rates up to $\approx 5 \times 10^{-5}$

Why we should care about stellar atmospheres:

- ► The stellar atmosphere is all we really see from the star
- ► Its spectrum is (usually) the only information we get ⇒ understand the spectrum to understand the star

Why we should care about stellar atmospheres:

- ► The stellar atmosphere is all we really see from the star
- ► Its spectrum is (usually) the only information we get ⇒ understand the spectrum to understand the star
- Only a proper modeling of the atmosphere can reproduce the emergent spectrum

Why we should care about stellar atmospheres:

Given sufficient observations, stellar atmosphere models provide:

▶ stellar and wind parameters $(T_{eff}, \log g, L, v_{\infty}, \dot{M} ...)$

Why we should care about stellar atmospheres:

Given sufficient observations, stellar atmosphere models provide:

- ▶ stellar and wind parameters (T_{eff} , log g, L, v_{∞} , \dot{M} ...)
- chemical abundances

Why we should care about stellar atmospheres:

Given sufficient observations, stellar atmosphere models provide:

- ▶ stellar and wind parameters $(T_{eff}, \log g, L, v_{\infty}, \dot{M} ...)$
- chemical abundances
- insights on stellar feedback (\dot{M} , ionizing photons, etc.)

Why we should care about stellar atmospheres:

Given sufficient observations, stellar atmosphere models provide:

- ▶ stellar and wind parameters $(T_{eff}, \log g, L, v_{\infty}, \dot{M} ...)$
- chemical abundances
- insights on stellar feedback (\dot{M} , ionizing photons, etc.)

 \Rightarrow Stellar atmosphere models are the basis for a plethora of applications

Andreas Sander (University of Potsdam)

Modeling hot star atmospheres

Modeling stellar atmospheres

What has to be included?

- Extreme non-LTE situation
- Multiple scattering in an expanding atmosphere (avoid CAK limitations)
- ► Model atoms for H, He, C, N, Fe, etc.
- Accounting for millions of lines for iron group elements ("blanketing")

The complexity of non-LTE stellar atmosphere modeling

→ high-dimensional, non-linear, fully coupled in space and frequency

Two different regimes must be taken into account

- hydrostatic regime
- wind regime

Two different regimes must be taken into account

- hydrostatic regime
- wind regime

Traditional core-halo approach: Two separate models

Two different regimes must be taken into account

- hydrostatic regime
- wind regime

Traditional core-halo approach: Two separate models

Modern approach, since \approx 1990s: Unified model atmospheres (e.g. Hamann & Schmutz 1987, Gabler et al. 1989)

Two different regimes must be taken into account

- hydrostatic regime
- wind regime

Traditional core-halo approach: Two separate models

Modern approach, since \approx 1990s: Unified model atmospheres (e.g. Hamann & Schmutz 1987, Gabler et al. 1989)

Unified models require an accurate description of the radiation pressure: \Rightarrow use Monte Carlo (MC) or Comoving Frame (CMF)

Andreas Sander (University of Potsdam)

Modeling hot star atmospheres

Comoving frame radiative transfer: The benefits

CAK - Approximate description of a_{rad} using parameters (α , ...)

$$\begin{aligned} a_{\rm rad} &= a_{\rm thom} + a_{\rm lines} + \underline{a_{\rm true \ cont}} \\ &= \Gamma_e \cdot g(r) \left[1 + \mathcal{C} \left(\frac{r^2 v}{\dot{M}} \frac{\mathrm{d}v}{\mathrm{d}r} \right)^{\alpha} \right] \end{aligned}$$

Comoving frame radiative transfer: The benefits

CAK - Approximate description of a_{rad} using parameters (α , ...)

$$\begin{aligned} a_{\rm rad} &= a_{\rm thom} + a_{\rm lines} + \underline{a_{\rm true \ cont}} \\ &= \Gamma_e \cdot g(r) \left[1 + \mathcal{C} \left(\frac{r^2 v}{\dot{M}} \frac{\mathrm{d}v}{\mathrm{d}r} \right)^{\alpha} \right] \end{aligned}$$

- allows fast calculation based on only a few parameters
- neglects continuum contribution
- \blacktriangleright neglects multiple scattering \rightarrow breakdown for thick winds

Comoving frame radiative transfer: The benefits

CAK - Approximate description of a_{rad} using parameters (α , ...)

$$\begin{aligned} a_{\rm rad} &= a_{\rm thom} + a_{\rm lines} + \underline{a_{\rm true \ cont}} \\ &= \Gamma_e \cdot g(r) \left[1 + \mathcal{C} \left(\frac{r^2 v}{\dot{M}} \frac{\mathrm{d}v}{\mathrm{d}r} \right)^{\alpha} \right] \end{aligned}$$

CMF radiative transfer - exact evaluation of the acceleration integral:

$$a_{\mathsf{rad}}(r) = rac{4\pi}{c} rac{1}{
ho(r)} \int\limits_{0}^{\infty} \kappa_{
u}(r) \mathcal{H}_{
u}(r) \mathrm{d}
u$$

- implicitly includes various effects (e.g. multiple scattering)
- ▶ works for all line-driven winds (WR, O, B, LBV, sdO, [WR], ...)
- detailed approach \rightarrow significant calculation time

Andreas Sander (University of Potsdam)

Modeling hot star atmospheres

Quasi-Hydrostatic Regime

Another layer of complexity:

Hydrodynamically-consistent description of the quasi-hydrostatic regime

- $\rightarrow\,$ essential for a proper analysis of OB-stars
- \rightarrow affects spectrum if quasi-static photosphere is visible (O, B, "cool" and/or "thin" WR winds)

Model requirement:

stratification in the subsonic part must fulfill the hydrostatic equation (e.g. Sander et al., 2015)

left figures from Shenar et al. (2014):

absorption line diagnostic examples

The current state of the art:

The current state of the art:

The current state of the art:

Achieved by:

Detailed radiative transfer

The current state of the art:

- Detailed radiative transfer
- ► No artificial boundary between subsonic and supersonic regime

The current state of the art:

- Detailed radiative transfer
- ► No artificial boundary between subsonic and supersonic regime
- ► Accounting for a variety of elements, incl. the large iron group

The current state of the art:

- Detailed radiative transfer
- ► No artificial boundary between subsonic and supersonic regime
- Accounting for a variety of elements, incl. the large iron group
- Prescribed v(r) in the wind, special treatment for hydrostatic part

The current state of the art:

- Detailed radiative transfer
- ► No artificial boundary between subsonic and supersonic regime
- Accounting for a variety of elements, incl. the large iron group
- Prescribed v(r) in the wind, special treatment for hydrostatic part
- Approximate treatment for density inhomogeneities ("clumping")

The PoWR Code

PoWR Potsdam Wolf-Rayet Star Model Code for expanding stellar atmospheres

 \rightarrow detailed model atmospheres for hot stars

Online model grids: www.astro.physik.uni-potsdam.de/PoWR/

For each model the website provides:

- Spectral energy distribution
- High-resolution line spectrum for various bands
- Atmosphere stratification
- Photometric colors and ionizing fluxes

plus extensive preview features for all spectra

Andreas Sander (University of Potsdam)

The PoWR Code

PoWR Potsdam Wolf-Rayet Star Model Code for expanding stellar atmospheres

 \rightarrow detailed model atmospheres for hot stars

Online model grids: www.astro.physik.uni-potsdam.de/PoWR/

Grid selection:

PoWR - The Potsdam Wolf-Rayet Models	Powe
This AREE animhers allows to impact and download cyclindic specials for AREE Report and CRE data. The special are calculated from DMRR nodel atmospheres which account to Non-CRE, special segmelor and much line Montecrep	WR model prids
Model assospheres and synthesic spectra	
The following data is available for each model:	Have to cite the grids and models
Jonat Graph Calabiant Jonat Graph Calabiant Jonat Calabiant Jonation Jonat Calabiant Jonational Calabiant Jonat Calab	Antifi carbon sections i dimen sensitiva i Linnens 2021 MA 100 Mon 2020 MA 100 Mon 2020 Participation i March 2000 Mon 2020 Participation i March 2000 Participation i March 2020 Participation
Wolf-Rayet model grids	
log L V _{Ind} D _{max} X ₁₁ X ₁₀ X ₂ X ₃ X ₃ X ₁₀ X ₇ , (L _{max}) (0xN) mass fractions	
Galactic Metallolly	
WNG Deals 5.3 1608 4 - 8.96 1.85-4 8.015 - 1.45-3	

Model selection:

Preview & Download:

Colors & enangephotons which is recent ¥ Stratification which is recent ¥		Year current selection:		
		Grid	LWC-08-7	
pectral data			T, (RA)	24
Spectral Energy Distribution Previous the flux over the schole spectral workingth gift.	n, including the lines, but	depaded to a marke	100 L [L_1] 100 H [M_2]91 100 H [M_2]91	47 -2.00 1915
Une Spectrum (nonnelized) The detailed tree spectrum is high result.	• Mileone to 7	Welcome to FOMR - the	Regard Bolf Ravel Star	- 0 ×
Line Spectrum (calibrated) The detailed free spectrum or high result.	S 0 mm	S C monastrapt	ysikumi potadamude/	whyTollEypop 805
- Please select a wavelength b	- Controle	PoWR - LMC-O	I-I model 24-84	preview
Urr (000-2100 A) W 'Hourt (000-9907 A) J Alana (100-1 40 pro) Hilbert (100-1 40 pro) Hilbert (100-2 40 pro) Miller (100-2 40 pro) Linit angle (100-2 40 pro) Linit angle (100-2 40 pro)	Delai 200-09-1	42 40 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LMC-CR-II	Aodel 24-34
Preview options:	NUC Di US US US US US US US US US US US US US	Î.,,	3/X	essi Download image file

Andreas Sander (University of Potsdam)

85 848 1864 8015

Unified model atmosphere: Accurate physics throughout the atmosphere!
PoWR: Model Stratification

Unified model atmosphere: Accurate physics throughout the atmosphere!

More than just spectrum and SED, such as:

Optical depth scales

- Optical depth scales
- Temperature stratification

- Optical depth scales
- Temperature stratification
- Flux consistency (check)

- Optical depth scales
- Temperature stratification
- Flux consistency (check)
- Ionisation stratification

- Optical depth scales
- Temperature stratification
- Flux consistency (check)
- Ionisation stratification
- Detailed acceleration balance

More than just spectrum and SED, such as:

- Optical depth scales
- Temperature stratification
- Flux consistency (check)
- Ionisation stratification
- Detailed acceleration balance

 \Rightarrow Stratification details can provide input for various follow-up research!

Application examples

Obtaining stellar and wind parameters by reproducing observations:

Application examples

Obtaining stellar and wind parameters by reproducing observations:

Application examples

Obtaining stellar and wind parameters by reproducing observations:

Andreas Sander (University of Potsdam)

Modeling hot star atmospheres

Example: WR Hertzsprung-Russell Diagram

In the last decade a growing number of WR stars have been analyzed with stellar atmosphere codes:

combined HRD from MW, LMC, SMC, & M31

Sources:

Crowther et al. (2002), Hamann et al. (2006), Barniske et al. (2008), Martins et al. (2008), Liermann et al. (2010) Sander et al. (2012), Hainich et al. (2014), Hainich et al. (2015), Tramper et al. (2015)

Example: WR Hertzsprung-Russell Diagram

Example: Massive stars in the SMC

Example: Massive stars in the SMC

Comparison of empirical results with stellar evolution models

 \rightarrow often yields interesting insights on multiple fields

Sources:

WNs: Hainich et al. (2015) RSGs: Massey & Olsen (2003) OBs: Ramachandran et al.

(in prep) Tracks from Brott et al. (2011)

Example: Massive stars in the SMC

Comparison of empirical results with stellar evolution models

 \rightarrow often yields interesting insights on multiple fields

Sources:

WNs: Hainich et al. (2015) RSGs: Massey & Olsen (2003) OBs: Ramachandran et al.

(in prep) Tracks from Brott et al. (2011)

Application example: Gravitational Wave Progenitors How do they look like?

Figure adapted from Abbott et al. (2016)

19 / 28

Application example: Gravitational Wave Progenitors How do they look like?

Figure adapted from Abbott et al. (2016)

Application example: Gravitational Wave Progenitors How do they look like?

- Calculate models for predicted tracks
- Obtain observational parameters

Figure from Hainich et al. (2017, in prep)

Application example: Gravitational Wave Progenitors How do they look like?

- Calculate models for predicted tracks
- Obtain observational parameters
- Consistency checks between atmosphere and evolution models
 → improve evolutionary calculations

Figure from Hainich et al. (2017, in prep)

The next step Use models for more then measurements:

Gain predictive power for mass-loss rates!

The next step Use models for more then measurements:

Gain predictive power for mass-loss rates!

The next step Use models for more then measurements:

Gain predictive power for mass-loss rates!

 \Rightarrow excellent for obtaining empirical parameters, but lacks predictive power

Andreas Sander (University of Potsdam)

The next step Use models for more then measurements:

Gain predictive power for mass-loss rates!

\Rightarrow v(r) and \dot{M} need to be calculated consistently

Andreas Sander (University of Potsdam)

The complexity of non-LTE stellar atmosphere modeling

The complexity of non-LTE stellar atmosphere modeling

The complexity of non-LTE stellar atmosphere modeling

Hydrodynamics: Theoretical consequences

The hydrodynamic equation:

$$v\left(1-\frac{a_{s}^{2}}{v^{2}}
ight)rac{\mathrm{d}v}{\mathrm{d}r}=a_{\mathrm{rad}}(r)-g(r)+2rac{a_{s}^{2}}{r}-rac{\mathrm{d}a_{s}^{2}}{\mathrm{d}r}$$

In contrast to the hydrostatic equation, this equation has a **critical point** (here at v = a, i.e. the sonic point)

Hydrodynamics: Theoretical consequences

The hydrodynamic equation:

$$v\left(1-\frac{a_{s}^{2}}{v^{2}}
ight)\frac{\mathrm{d}v}{\mathrm{d}r}=a_{\mathrm{rad}}(r)-g(r)+2\frac{a_{s}^{2}}{r}-\frac{\mathrm{d}a_{s}^{2}}{\mathrm{d}r}$$

In contrast to the hydrostatic equation, this equation has a **critical point** (here at v = a, i.e. the sonic point)

The critical point in the hydrodynamic equation implicitly fixes \dot{M} \hookrightarrow consistent models gain predictive power

Hydrodynamics: Theoretical consequences

The hydrodynamic equation:

$$v\left(1-\frac{a_{s}^{2}}{v^{2}}
ight)\frac{\mathrm{d}v}{\mathrm{d}r}=a_{\mathrm{rad}}(r)-g(r)+2\frac{a_{s}^{2}}{r}-\frac{\mathrm{d}a_{s}^{2}}{\mathrm{d}r}$$

In contrast to the hydrostatic equation, this equation has a **critical point** (here at v = a, i.e. the sonic point)

The critical point in the hydrodynamic equation implicitly fixes \dot{M} \hookrightarrow consistent models gain predictive power

Consistent implementation of hydrodynamics:

- v(r) via integration of the hydrodynamic equation
- iterative adjustment of \dot{M}

Excursion: Depth-dependent acceleration

Acceleration contributions in an expanding stellar atmosphere:

Excursion: Depth-dependent acceleration

Acceleration contributions in an expanding stellar atmosphere:

Excursion: Depth-dependent acceleration

Acceleration contributions in an expanding stellar atmosphere:

Hydrodynamic equation: $a_{mech} + g = a_{rad} + a_{press}$

Andreas Sander (University of Potsdam)

Hydrodynamic equation: $a_{mech} + g = a_{rad} + a_{press}$

Hydrodynamic equation: $a_{mech} + g = a_{rad} + a_{press}$

Andreas Sander (University of Potsdam)

Remember the two different regimes in the stellar atmosphere:

Andreas Sander (University of Potsdam)

Remember the two different regimes in the stellar atmosphere:

Quasi-hydrostatic regime already consistent in newer models

Results: Force balance

Locally consistent acceleration balance: Sander et al. (2017)

24 / 28

Results: Driving details

Contributions to the radiative acceleration:

Results: Driving details

Contributions to the radiative acceleration:

Results: Velocity field

WNE model: hydrodynamically consistent

Results: Velocity field

 \Rightarrow very different velocity law than classically assumed

Results: Velocity field

Sanity check with B star model: can be approximated with standard β -law

Summary & Conclusions

The current and the next generation of atmosphere models:

- extensive applicability
 - $\rightarrow\,$ O, B, Of/WN, LBVs, WRs, CSPN, etc.
 - $\rightarrow\,$ from the first stars up to $Z>Z_{\odot}$
- ► reliable stellar and wind parameters for a wide range of T_{eff}, v_∞ and M
- new, sophisticated method to include hydrodynamics
 - ightarrow predictive power for \dot{M}
 - $\rightarrow\,$ detailed approach with cross-checks due to local consistence + emergent spectrum

"Thor's Helmet" around WR7 (Credit: SSRO & PROMPT/UNC)

Results:

- HD scheme usable for various spectral types
- new Zeta Pup "benchmark" model
- basis for detailed insights into wind driving of hot stars

Andreas Sander (University of Potsdam)

Modeling hot star atmospheres

May, 25th 2017 28 / 28