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3D Viz made with VolView



data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum 5 X13COL13CO, where X13CO 5 8.0 3 1020 cm2 K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs 5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs , 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum 5 X13COL13CO, where X13CO 5 8.0 3 1020 cm2 K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs 5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs , 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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“z” is depth into head “z” is line-of-sight velocity
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CT

MRI

Chang, et al. 2011, brain.oxfordjournals.org/content/134/12/3632

CT/MRI  
 composite

SPECT

chandra.harvard.edu/photo/2014/m106/

X-rayComposite

Optical Radio

Astronomy & Medicine both rely on  
high-dimensional, big, wide, data for insight.
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sub-mm peak (Hatchell
et al. 2005, Kirk et al. 2006)

13CO (Ridge et al. 2006)
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from c2d data (Foster, 
Laakso, Ridge, et al.)

Optical image (Barnard 1927)
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Temperature Foreground amplitudes from Commander, Planck Data [Feb 2015]
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BIG DATA and ”Human-Aided Computing” 

example here from: Beaumont, Goodman, Kendrew, Williams & Simpson 2014; based on Milky Way Project catalog (Simpson et al. 2013), which came from 
Spitzer/GLIMPSE (Churchwell et al. 2009, Benjamin et al. 2003), cf. Shenoy & Tan 2008 for discussion of HAC; astroml.org for machine learning advice/tools

mark bubbles

machine-
learning 
algorithm 
(Brut)



BIG DATA and ”Human-Aided Computing” 
mark neurons

machine-
learning 
algorithm 
(RF+CRF)

example here from: Kaynig...Lichtman...Pfister et al. 2013, “Large-Scale Automatic Reconstruction of Neuronal Processes from Electron Microscopy
Images”; cf. Shenoy & Tan 2008 for discussion of HAC; astroml.org for machine learning advice/tools (Note: RF=Random Forest; CRF=Conditional Random Fields.)



Movie: Volker Springel, formation of a cluster of galaxies. Millenium Simulation requires 25TB for output.
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data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum 5 X13COL13CO, where X13CO 5 8.0 3 1020 cm2 K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs 5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs , 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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figure, by M. Borkin, reproduced from Goodman 2012, “Principles of High-Dimensional Data Visualization in Astronomy”
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multidimensional data exploration

video by Tom Robitaille, lead glue developer 
glue created by: C. Beaumont,  M. Borkin,  P. Qian, T. Robitaille, and A. Goodman, PI 
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video by Chris Beaumont, glue developer 
glue created by: C. Beaumont,  M. Borkin,  P. Qian, T. Robitaille, and A. Goodman, PI 
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Video courtesy of Maarten Breddels, consulting developer
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The challenge of 3D Selection

A state-of-the-art 3D model of the stars & gas near the Orion nebula, created at Orion (un)plugged, Vienna, 2015. 
Expert builders (~20 total)  include: Joao Alves, John Bally, Alyssa Goodman & Eddie Schlafly. (cf. “Image & Meaning” workshops by Felice Frankel) 

YouTube video explanation; WWT Tour



The challenge of 3D Selection



The challenge of 3D Selection



F=
Gm1m2

R2
glue

multidimensional data exploration

WorldWide 
Telescope



Literature as (a filter for) Data

Many thanks to Alberto Pepe, August Muench, Thomas Boch, Jonathan Fay, 
Michael Kurtz, Alberto Accomazzi, Julie Steffen, Laura Trouille, David Hogg, Dustin Lang, 

Christopher Stumm, Chris Beaumont & Phil Rosenfield for making this all work!
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ADS All Sky Survey 
2014

WorldWide Telescope 
2008

Zooniverse 
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Astrometry.net 
2011

Astronomy Image Explorer 
2014

Astronomy Rewind 
2017

0. ADS All-Sky Survey offers (filtered) article 
density layer on the Sky 

…automatically, applying astronometry.net to 
wide-field optical images, or

via  “Astronomy Rewind” Zooniverse Citizen 
Science Project

ADS All-Sky Survey & Astronomy Rewind

“historical” 
images

“recent” 
images

  1. Images Extracted from Journal Articles  

2. Missing coordinate metadata added 
back to images, either…

”putting articles and images (back) on the Sky”

4. New button in Astronomy Image Explorer offers image-in-
context, using AAS’ WorldWide Telescope in the browser

3. “Solved” images returned to ADS & Astronomy Image Explorer
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Contact Us
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Daily Zooniverse
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Privacy Policy …  Jobs …  System Status …  Security

Thanks all for helping with our 2nd beta! Beta is now complete. We'll be revising the site

based on your feedback. Stay tuned for our full launch!

Help us create a database of astro-

referenced old Astronomy images.

ASTRONOMY REWIND STATISTICS

100% Complete

201
Volunteers

1,987
Classifications

360
Subjects

360
Completed Subjects

ABOUT ASTRONOMY REWIND

This project is part of an ongoing NASA-funded effort aimed at turning the SAO/NASA Astrophysics

Data System (ADS) into a data resource. The result will be a database of astro-referenced images, i.e.,

images of the sky for which coordinates, orientation, and pixel scale will be publicly available through

NASA data archives, the Astronomy Image Explorer, and World Wide Telescope, thanks to your

help!

ASTRONOMY REWIND ABOUT CLASSIFY TALK COLLECT

FEEDBACK

Learn more Get started

1 person is talking about Astronomy Rewind right now.

Join in

WORDS FROM THE RESEARCHER

"Your contributions unlock the information from old

astronomy journals. Thank you and enjoy the

images!"

≡

Who, How, and Who’s Paying?  

The ADS All Sky Survey 
was  first funded via a 2012 grant 
from the NASA ADAP program 

to Seamless Astronomy, in 
collaboration with CDS, 

Astrometry.net and  
Microsoft Research. 

Articles-on-the-Sky  
was first deployed in 2014, using  

APIs from WWT (Microsoft 
Research, now AAS)  

and CDS (Aladin) 

Images-on-the-Sky  
relies on the astrometry.net, 

Zooniverse, IOP/AAS Astronomy 
Image Explorer and WorldWide 

Telescope platforms, and it is 
funded by the American 

Astronomical Society, in 
addition to the NASA ADAP 

grant.  

These projects rely on  
open source sofware, primarily 

hosted on GitHub.

PI to contact for more information 
Alyssa Goodman, Harvard 

agoodman@cfa.harvard.edu 
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Alyssa A. Goodman 
Harvard Smithsonian Center for Astrophysics & Radcliffe Institute for Advanced Study 

@aagie

Seeing the Sky
Visualization & Astronomers



To continue the conversation…

Role/Play: Collaborative Creativity and Creative Collaborations
National Academy of Sciences Sackler Student Fellows Symposium, March 12, 2018, Washington DC

Creativity & Collaboration: Revisiting Cybernetic Serendipity
National Academy of Sciences Sackler Colloquium, March 13-14, 2018, Washington, DC

www.nasonline.org/Sackler-Creativity-Collaboration

10qviz.org with Arzu Çöltekin (beta 2017, release 2018)

Creativity & Collaboration   
 at NAS March 2018 

with Ben Shneiderman,  
Maneesh Agrawala, Roger Malina,  

Youngmoo Kim & Donna Cox


