First Contact: Understanding the nature of Interstellar Object 1I/'Oumuamua

First Contact: Understanding the nature of Interstellar Object 11/'Oumuamua

The origin of ISOs
Discovery, orbit and observation constraints
Lightcurve period and amplitude
Colour measurements and interpretation
Spectroscopy and interpretation
Questions and future directions

Alan Fitzsimmons BELFAST Alan Fitzsimmons Astrophysics Research Centre

ISOs before 'Oumuamua

During Grand Tack and Nice model migration, ejection of 5-40 M_{Earth}.

Most ejected bodies come from beyond snowline and hence contain significant ice.

Similar exoplanet evolution around all stars would give a local density of $n(1 \text{ km}) \sim 10^{14} \text{ pc}^{-3}$.

<u>But</u> - numbers ejected heavily dependent on system architecture.

ISOs before 'Oumuamua

Oort Cloud erosion due to stellar encounters and Galactic tides results in a loss of 10¹¹ - 10¹² comets (Brasser & Morbideli 2013; Hanse et al. 2018).

ISOs before 'Oumuamua

Probable cometary appearance $\frac{n(icy)}{n(rocky)} \sim 10^2 - 10^4$ (e.g. Shannon et al. 2015)

Hyperbolic Orbit (Engelhardt et al. 2017)

Engelhardt et al. (2017) simulations of detected orbits and upper limits for H=19 (D~1km):

n<2x10¹² pc⁻³ for cometary ISOs n<2x10¹⁴ pc⁻³ for inert ISOs

19th October 2017

Pan-Starrs 1 Fast Moving Object P10Ee5V 15 acseconds/minute

Rob Weyrk

Marco Micheli

Rapid Reaction (1)

Rapid Reaction (2)

Rapid Reaction (3)

Pan-Starrs 1

CFHT

VLT+Gemini-South

25th October: C/2017 U1
26th October: A/2017 U1
6th November: 1I/2017 U1

'Oumuamua

(Oh - moo - ah - moo - ah)

"A messenger from afar arriving first"

Humuhumunukunukuapua'a

alpha=18h 40.6m dec=34° 9' ~6 degrees from Solar Apex

Where did it come from?

V= 26.2 km/s V= 26.6 pc/Myr

Small Body Lightcurves

22

Spin Period & Shape

P = 7.34 hours, $\Delta m \approx 2.5$ mag (Meech et al. 2017) H=22.4 implies D~200m Amplitude implies elongated body, axial ratio 10:1!

Spin Period & Shape

Lightcurve amplitude is a function of phase angle (scattering angle). Probable minimum elemention 5:1 for a = 20-24 degrees

Probable minimum elongation 5:1 for α = 20-24 degrees.

Non-Principal Axis rotation

Non-Principal Axis rotation

Belton et al. (2018) found long axis precession period of **8.67+/- 0.34** hr.

Long-Axis Mode rotation of 6.58 hr, 13.15 hr, or **54.48** hr

Short-Axis Mode rotation of 13.15 hr or 54.48 hr

Non-Principal Axis rotation

Internal Density Constraints

Fc

McNeil et al. (2018) Calculated constraints on the bulk density If completely strengthless (s=0) then $1500 < \rho < 2800 \text{ kg/m}^3$ If has non-zero cohesive strength, the density is lower and s~10 Pascals.

Optical+IR colours

Large amplitude lightcurve means colours need careful measurement!

Optical+IR colours

Colour variations not secular but linked with lightcurve phase. Fraser et al. (2018)

Optical Spectroscopy

Masiero (2017)

Ye et al. (2017)

Spectroscopy

October 25.9 UT

4.2m William Herschel Telescope + ACAM October 27.0 UT

8.2m Very Large Telescope UT2 + X-Shooter

Optical Spectrum

Optical + Near-Infrared Spectrum

Optical + Near-Infrared Spectrum

Optical + Near-Infrared Spectrum

D-type Asteroid?

Tagish Lake Meteorite

Bulk Density ~1.7 gm/cm3 (Ralchenko et al. 2014)

. (Hiroi et al. 2001)

Ice + dust

Irradiation mantle requires ~10⁸ yr to form ~50 cm thickness (Guilbert-Lepoutre et al. 2015)

Irradiated comet?

Ice survival

Fitzsimmons et al. (2018)

number density

We have found <u>one</u> ISO. Guess the size distribution, albedo, velocity distribution...

U	
Number per cubic parsec	Reference
< 2x10 ¹⁵	Englehardt et al. (2017)
~ 10 ¹⁵	Meech et al. (2017)
~10 ¹⁵	Trilling et al. (2017)
~2x10 ¹⁵	Do et al. (2018)
Number density in Solar system	

Number density in Solar system ~0.2 au⁻³

number density

We have found <u>one</u> ISO. Guess the size distribution, albedo, velocity distribution...

-	
Number per cubic parsec	Reference
< 2x10 ¹⁵	Englehardt et al. (2017)
~ 1 0 ¹⁵	Meech et al. (2017)
~10 ¹⁵	Trilling et al. (2017)
~2x10 ¹⁵	Do et al. (2018)
Number density in Solar system	

Implied number densities requires ~10¹⁵-10¹⁶ bodies ejected per star

- Efficient ejection by giant planets? (Raymond et al. 2018)
- Post-AGB phase ejection of Oort Clouds? (Do et al. 2018)
- Tidal disruption of terrestrial planets? (Cuk et al. 2018)

Number density in Solar system ~0.2 au-3

Large Synoptic Survey Telescope

Sky Surveys start 2022 Should find ~1 per year (Trilling et. al. 2017)

Summary

What we know

- It's probably been travelling for at least ~10 million years, and up to 10 billion years.
- It is elongated by at least 5 to 1.
- It is undergoing non-Principal Axis rotation, started in its home system.
- Colours vary over the surface.
- It was (partly) icy when it formed.

What we don't know

- The origin system of 'Oumuamua.
- How long it has been travelling.
- Why it is extremely elongated.
- How it became "multi-coloured".
- Whether it had surface ice before closest approach to the Sun.
- If it still has ice inside.

Credit:ESO