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Gravitational waves

Gravitational waves are quadrupolar distortions of 
distances between freely falling masses. They are 
produced by time-varying mass quadrupoles. 

€ 

Gµν =
8πG
c 4 Tµν (= 0 in vacuum)

gµν =ηµν + hµν

GWs from a NS-NS coalescence in the Virgo cluster (~16 MPc) has h ~ 10-21 near Earth, and 
happens ~once every 50 years. 

h =
�L

L



Numerical simulations
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Animation created by SXS, the Simulating eXtreme Spacetimes (SXS) project (http://www.black-holes.org) 



Sources of gravitational waves
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Astrophysical or  



5



2008+: 
Advanced LIGO detectors
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2008+: 
Advanced LIGO detectors
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Advanced LIGO = Servo 
Control
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Gravitational Wave signal 
Credit: Anamaria Effler, LIGO Livingston 



Initial (2001-2010) and  
advanced (2015+) LIGO
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15-20 Mpc BNS  
inspiral range; 
Ended 2010  

200 Mpc BNS  
inspiral range; 

Circa 2019 



Advanced LIGO detectors  
September 2015
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PRL 116, 061102 (2016) 
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Image Credit: Caltech/MIT/LIGO Lab  



LIGO Scientific 
Collaboration 



Image credit: LIGO  



Gravity’s music
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Properties of the merging binary black hole GW1509141

The LIGO Scientific Collaboration1 and The Virgo Collaboration2
2

1The LSC3
2Virgo4

( compiled 29 January 2016)5

PACS numbers: 04.80.Nn, 04.25.dg, 95.85.Sz, 97.80.–d6

FIG. 1. Posterior probability distributions for the source-frame
component masses msource

1 and msource
2 . In the 1-dimensional

marginalised distributions we show the Overall (solid), IMR-
Phenom (blue) and EOBNR (red) probability distributions; the
dashed vertical lines mark the 90% credible interval for the Over-
all PDF. The 2-dimensional plot shows the contours of the 50%
and 90% credible regions plotted over a color-coded posterior
density function.
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FIG. 2. Posterior probability distributions for the source-frame
mass and spin of the remnant BH produced by the coalescence of
GW150914. In the 1-dimensional marginalised distributions we
show the Overall (solid), IMRPhenom (blue) and EOBNR (red)
probability distributions; the dashed vertical lines mark the 90%
credible interval for the Overall PDF. The 2-dimensional plot
shows the contours of the 50% and 90% credible regions plotted
over a color-coded posterior density function.
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FIG. 3. Posterior PDFs for the source luminosity distance DL and
the the binary inclination ✓JN . In the 1-dimensional marginalised
distributions we show the Overall (solid), IMRPhenom (blue)
and EOBNR (red) probability distributions; the dashed vertical
lines mark the 90% credible interval for the Overall PDF. The 2-
dimensional plot shows the contours of the 50% and 90% credible
regions plotted over a color-coded posterior density function.

FIG. 4. Left: Posterior probability distributions (solid line) for the �p and �e↵ spin parameters compared to their prior distribution
(green line). The dashed vertical lines mark the 90% credible interval. The 2-dimensional plot shows probability contours of the
prior (green) and marginalised posterior (black) distribution. The 2D plot shows the contours of the 50% and 90% credible regions
plotted over a color-coded posterior density function. Right: Posterior probability distributions for the dimensionless component spins
S1/m

2
1 and S2/m

2
2 relative to the orbital angular momentum L, marginalized over uncertainties in the azimuthal angles. The bins are

constructed linearly in spin magnitude and the cosine of the tilt angles cos�1 (Ŝi · L̂), where i = {1, 2}, and, therefore, by design have
equal prior probability.

Finding parameters: GW150914

Phys. Rev. Lett. 116, 241102 (2016)  



Nov 30, 2016: O2 started
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Aug 1 



GW170814
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Sky localization
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GW150914

GW151226

LVT151012

GW170104

GW170814
Credit: LIGO/Virgo/NASA/Leo Singer  
(Milky Way image: Axel Mellinger) 
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Credit: Visualization: LIGO/Frank Elavsky/Northwestern  
EM Black Holes: https://stellarcollapse.org/sites/default/files/table.pdf | LIGO-Virgo Data: https://losc.ligo.org/events/ 
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Gravitational waves from black holes
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And on Aug 17, 2017…
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Gravitational waves : not just black holes!
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Gravitational waves : not just black holes!



GW170817
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GW170817
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Phys. Rev. Lett. 119, 161101 (2017)  



GW170817
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Phys. Rev. Lett. 119, 161101 (2017)  



LIGO/Virgo localization:  
optical counterpart found!

28



29



Gravitational and Electromagnetic waves!
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Nuclear physics with GWs
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Cosmology with GWs
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Nature 551, 85 (2017)  



GW-GRB joint observation: 
sGRB models
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ApJL, 848:L13, 2017 
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arXiv:1805.02870 



GW-GRB observation: 
Fundamental physics
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ApJL, 848:L13, 2017 



Past, present and (near) future
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Living Rev. Relativity 19 (2016), 1 



The next few years 

37https://arxiv.org/abs/1304.0670 



The (farther) future:  
3rd generation detectors
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Class. Quantum Grav. 34 (2017) 044001 

http://www.et-gw.eu/ 

Einstein Telescope 

S.Hild et al., Classical and Quantum Gravity, 28 094013, 2011  





The era of GW astronomy is here! 
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Image credit: LIGO/T. Pyle  

www.ligo.org 
gonzalez@lsu.edu 


