RELATIVISTIC SPECTROSCOPY OF BLACK HOLES Michael Parker

ESAC science seminar 24/5/18

BLACK HOLES 101

For an object to just escape a massive body, it needs the sum:

Kinetic energy + gravitational binding energy = 0

$$\frac{1}{2}mv^2 - \frac{GMm}{r} = 0$$
$$r = \frac{2GM}{v^2}$$

At v = c, the speed of light, this gives the Schwarzschild radius:

$$r_s = \frac{2GM}{c^2}$$

Note that this is linear with mass, whereas for a constant density sphere:

$$M = \frac{4}{3}\pi R^3$$
$$R \propto M^{1/3}$$

It follows that for a sufficiently massive object of non-zero density, the radius will be smaller than the Schwarzchild radius, so light will not be able to escape.

- Big (10⁵-10⁹ solar masses)
- Formation process uncertain
- Slow
- Cosmologically important

- Small (I-100 solar masses)
- Stellar remnant
- Fast
- Nearby

X-rays are the most effective way of studying the inner accretion disk, where GR effects are strong.

X-ray telescopes, like XMM-Newton (the best telescope) use X-ray CCDs to count individual photons, and measure their energies and arrival times.

This means that we can have lightcurves, spectra, and images simultaneously.

RELATIVISTIC REFLECTION

Spectroscopy of the inner disk

Illumination of dense gas by X-rays produces a characteristic reprocessed emission spectrum

Illumination of dense gas by X-rays produces a characteristic reprocessed emission spectrum

Fabian et al., 1989

Barr, White & Page, 1985

"...a broad emission feature at 6.2 keV is reported with an equivalent width of typically 120 eV."

Fabian et al., 1989

"the broad, iron emission line found in Cyg X-1 ... is well modelled by fluorescent emission from the inner parts of an accretion disc"

Barr, White & Page, 1985

Parker et al., 2015

30 years on, relativistic lines are a powerful tool for measuring the inner accretion disk

NASA JPL/Caltech

Chartas+17

WHY ISTHIS IMPORTANT?

- Powerful probe of strong gravity regime, accretion physics and GR
- Gives information about the BH formation history

Problems with reflection spectroscopy

- Geometry dependent some information is encoded in the line shape, but not all
- How much does reflection contribute at low energies?
- Iron abundances found by fitting seem to be highly super-solar

Most (all) models to date assume a fixed value of the disk density, which is only likely to be accurate for very high mass AGN.

This alters the measured Fe abundance, and the contribution to low energies.

SOFT EXCESS

Parker+18a

GEOMETRY

The infamous lamppost

Most of the open questions with relativistic reflection are difficult to answer - they require detailed modelling and simulations.

Most of the big results for reflection with the current generation of instruments have probably already happened...

ULTRA-FAST OUTFLOWS (UFOS)

(UFOs = Outflows = Winds)

Highly ionized gas launched from the accretion disk in a wind, accelerated to 0.1-0.4c by magnetic fields in the disk and radiation pressure

WHY ISTHIS IMPORTANT?

AGN regulate the growth of their host galaxies, through AGN feedback. Powerful winds are one way of achieving this.

Reflection Outflow

Accretion disk

Gas is very highly ionized, due to low density

Proga & Kallman, 04

At high ionization, only a few absorption lines exist

MP+17

Chartas+02

Pounds+03

Tombesi+11

MP+18, submitted

Problems with UFO spectroscopy

MP+18, submitted

- Detecting only high energy (>7keV) lines introduces biases
- X-ray detectors are generally poorly calibrated and have small collecting area and high background at high energies
- We only see one line of sight through the gas, so cannot establish the density or geometry
- UFO features come and go, and change energies, with little or no explanation

Variability gives one way of addressing these problems. AGN are very variable! Matzeu+17

MP+17a

Using variability to search for absorption lines

If the strength of absorption features responds to the continuum, then there will be more variability in these energy bands...

High ionization

Low ionization

MP+17b, 18b

MP+17b, 18b

Ionization isn't linear with flux - this could be an indication of a recombination delay

Recombination time is a density dependent effect, so if we can measure this, we get a lot more information about the UFO

COMBINING UFOS AND REFLECTION

- Very few combined measurements of UFOs and reflection
- Potentially a very effective way of mapping UFO structure

Fe XXV UFO absorption line

Depending on the UFO geometry, we should see some viewing-angle dependence...

Taking values from literature...

MP+18, submitted

Inclination of the inner accretion disk, taken from relativistic reflection

MP+18, submitted

Simple wind model, predicting observed velocity from viewing angle, gives a reasonable description of the points

Assumes all winds are basically identical. Probably wrong.

TO-DO

- Much more simultaneous spectral fitting
- Larger sample, with consistent models
- More accurate predictions of velocity from simulations/ physical models
- Track other properties of the wind with viewing angle
- Compare other properties of AGN with UFO velocity

SUMMARY

- Relativistic spectroscopy of black holes gives a powerful tool for studying their growth, fundamental physics, and the impact of black holes on cosmology
- Combining reflection from the inner disk with ultra-fast outflows opens up an exciting new area of study, allowing us to map black hole winds