

Micro-Imaging Dust Analysis System

Cometary dust at the nanometre scale Results from the MIDAS atomic force microscope on Rosetta

Mark S. Bentley

What is MIDAS?

- MIDAS consists of:

- dust collection and handling system
- Atomic Force Microscope (AFM)

- Why AFM?

- analysis of particles < diffraction limit
- no sample preparation required
 - but strong limitations on sample size
- relatively robust
- Dust collected during passive exposures
 - collection and scanning and mutually exclusive
- Data are nm-resolution 3D topographic images
 - other modes: phase imaging, magnetic force microscopy

- A sharp (~10 nm) tip is mounted on an oscillating cantilever
- Various forces act on the tip as it moves towards the sample
- Cantilever frequency / amplitude responds to these forces
- The tip is rastered over the sample to build a 3D image

Science with MIDAS

1.4 x 2.4 mm61 available3 calibration

The instrument

Total mass: 8180 g, Peak power: 18.3 W

The instrument

Cantilevers

50 µm

Wet 0.8 Torr

wheatstone brug

The instrument

Approach stage

AFM invented – 1986 Atomic resolution – 1987 1st commercial AFM – 1989

Micro-fabricated tips – 1991 Tapping mode commercialised – 1993 Phase imaging – 1999

Theory ~ 2000 Phoenix Mars AFM launched – 2007 Phoenix operations – 2009

History of MIDAS and AFM

1994 – MIDAS conceived 1995 – Proposal submitted

2001 – FM delivery 2003 – Refurbishment in Kourou 2004 – Launch and commissioning

2014 – Re-commissioning, pre-scans 2015 – Prime mission 2016 – Extended mission

Expectations and scan strategy

Cumulative dust flux at 1.3 AU, fluffy particles Based on data from Fulle et al. (2010)

Expectations and scan strategy

64 x 64

256 x 256

128 x 128

512 x 512

Expectations and scan strategy

Exposed target coverage

Please wait...

- First exposure of 4 days in mid September 2014

- no obvious new particles
- contamination is clear (but also useful for image registration)
 - before and after scans critical!

First contact

SCAN_MD_M009_S027_2014-11-05T173245Z_TGT10

318 nm 11 µm -4 -0 10 µm 10 µm

SCAN_MD_M009_S028_2014-11-14T120039Z_TGT10

First contact

SCAN_MD_M009_S027_2014-11-05T173245Z_TGT10

SCAN_MD_M009_S028_2014-11-14T120039Z_TGT10

First contact

SCAN_MD_M009_S028_2014-11-14T120039Z_TGT10

Measuring mass and temperature

Large vs. small, single vs. aggregate

The learning curve

Aggregates of aggregates

Comparing to....

BCCA, 1024 monomers

Int. Microbiol.

Aggregates of aggregates

"Frozen fractals..."

Mannel, T. *et al.* 2016. "Fractal Cometary Dust – a Window into the Early Solar System." Monthly Notices of the Royal Astronomical Society 462 (Suppl 1): S304–11. doi:10.1093/mnras/stw2898.

Fluffy, fractal, particles

Single fractal particle

$$D_f \approx 1.7 \pm 0.2$$

Size ~40 μm

Population of fluffy particles $D_f \approx 1.78$ (inferred) Sizes up to 2.5 mm

Fractal dust in μm to mm sizes

February 2016 outburst

Flight Spare tip wear

Contaminated

Unused

Blunt

5 2.5 2.0 E 1.5 0.5 0.0 3.5

3.0

2.0

1.0

0.5

0.0

\$ 2.5

Ē 1.5

X (microns)

X (microns)

Tip contamination science

0.02 20 22 20 22 20 22 X (microns)

X (microns)

Smallest building blocks (?)

Smallest blocks: 28 ± 4 nm

Impact experiments

Courtesy of Lucas Ellerbroek

Impact experiments

Impact experiments

Ellerbroek et al., MNRAS469,S204–S216 (2017)

The "big" picture

- Very few "small" (sub-µm) particles close to the nucleus
- Aggregates "all the way down"
 - as far as we can see...
- Grains are typically elongated by a factor of ~few
- Particles have a low profile
 - grains re-arranged on impact?
- Particles easily disrupted and stick to tip
 - low tensile strength and/or organic coating?

Science - "To Do"

<u>Analysis</u>

Calibration & deconvolution Morphological description (shape, size, roughness, fractal dimension etc.)

Modelling

Aggregate impact Tensile strength Heat flow Gas permeability

Experiments

Aggregate impact Tip magnetisation Applied tip/sample force

Vital stats and thanks!

MIDAS

Micro-Imaging Dust Analysis System

> 8 exposed targets

- > 1047 scans (863 scientific scans & 184 calibration scans)
- > 100s of dust grains scanned
- > 16 tips used (out of 16)
- > 207 days spent exposing targets
- > 382 days spent scanning targets
- > 56 212 480 'touches' of the sample
- or target during image scans
- > 9 620 392 packets of science and housekeeping data

Thanks to ESA ESTEC/ESAC/RMOC and the entire MIDAS team, past and present!

Based on numbers available 6 August 2014 – 15 September 2016