WHAT CAN CLUSTER GALAXIES CAN TELL US ABOUT THEIR HOST ENVIRONMENTS?

LYNDSAY OLD - RESEARCH FELLOW @ ESAC ESAC 17TH JANUARY 2019 IMAGE: MUSIC-PLACK (UAM, ULS, AIP)

Radek Wojtak, Gary Mamon, Frazer Pearce, Meghan Gray + <u>Galaxy Cluster Mass Reconstruction Project team</u> Michael Balogh, Howard Yee, Irene Pintos-Castro, Adam Muzzin, Greg Rudnick, Remco van der Burg + the <u>GOGREEN team</u>

Dark Matter
Intra Cluster Medium
Galaxies

GALAXY CLUSTER BASICS

NASA/ESA Hubble Frontier Field Abell 2744

GALAXY CLUSTER BASICS

• Optical & infrared: over densities, red sequence (e.g., Abell 1958, Gladders & Yee 2000)

• X-ray bright: $L_X \sim 10^{43}$ -10⁴⁵ erg s⁻¹

(e.g., Forman et al. 1972, Vikhlinin et al. 2009).

· Sunyaev-Zeldovich effect

(e.g., Sunyaev & Zeldovich 1972, Hasselfield et al. 2013).

• Gravitational lensing (e.g., Bartlemann et. al., 2010, Applegate et al. 2012).

Allen, Evrard & Mantz (2011), NASA/ESA: SDSS J1038+4849

eesa

Adapted from Allen et. al 2011

'Galaxy clusters could emerge as the most powerful cosmological probe if the masses of the clusters can be accurately measured'

- Cosmic Visions Report (2016)

Adapted from Allen et. al 2011

GALAXY CLUSTERS AS COSMOLOGY TOOLS 2018+

'GALAXY-BASED' CLUSTER MASS ESTIMATION

Any technique that uses galaxy properties as a mass proxy

e.g., positions, velocities, colours & luminosities

'GALAXY-BASED' CLUSTER MASS ESTIMATION

Any technique that uses galaxy properties as a mass proxy

e.g., positions, velocities, colours & luminosities

• Independent proxy to SZ, X-ray, lensing

- Relatively \$
- Critical for detecting lower mass clusters (bulk of mass function!)
- Extended galaxy distribution: clusters can be probed out to large radii
- 2-for-1: dynamical analysis provides information on virialisation state

→ First systematic, homogenous study of 25 cluster mass estimation techniques

GCMRP goals:

- 1. Scatter, bias and completeness
- 2. Impact of uncertainties on clustercosmology
- 3. Methods consistent?
- 4. Best application of techniques to upcoming data-sets

Co-authors: Radek Wojtak, Gary Mamon, Frazer Pearce, Meghan Gray, Ramin Skibba, Darren Croton, Alex Saro, Tiit Sepp, Cristobal Sifón, Elmo Tempel, Peter Behroozi, Reinaldo de Carvahlo, Andrea Biviano, Juan Muñoz-Cuartas, Eduardo Rozo, Eli Rykoff, Daniel Gifford, Anja von der Linden, Mike Merrifield, Volker Müller, Chris Power, Stuart Muldrew, Yang Wang, Richard Pearson & Trevor Ponman.

Step 1 = cluster finding \longrightarrow Step 2 = members \longrightarrow Step 3 = mass

Method	Initial Galaxy Selection	Mass Estimation	Type of data required	Reference
PCN	Phase space	Richness	Spectroscopy	Pearson et al. (2015)
PFN*	FOF	Richness	Spectroscopy	Pearson et al. (2015)
NUM	Phase space	Richness	Spectroscopy	Mamon et al. (in prep.)
ESC	Phase space	Phase space	Spectroscopy	Gifford & Miller (2013)
MPO	Phase space	Phase space	Multi-band photometry, spectroscopy	Mamon et al. (2013)
MP1	Phase space	Phase space	Spectroscopy	Mamon et al. (2013)
RW	Phase space	Phase space	Spectroscopy	Wojtak et al. (2009)
TAR*	FOF	Phase space	Spectroscopy	Tempel et al. (2014)
PCO	Phase space	Radius	Spectroscopy	Pearson et al. (2015)
PFO*	FOF	Radius	Spectroscopy	Pearson et al. (2015)
PCR	Phase space	Radius	Spectroscopy	Pearson et al. (2015)
PFR*	FOF	Radius	Spectroscopy	Pearson et al. (2015)
MVM*	FOF	Abundance matching	Spectroscopy	Muñoz-Cuartas & Müller (2012)
AS1	Red Sequence	Velocity dispersion	Spectroscopy	Saro et al. (2013)
AS2	Red Sequence	Velocity dispersion	Spectroscopy	Saro et al. (2013)
AvL	Phase space	Velocity dispersion	Spectroscopy	von der Linden et al. (2007)
CLE	Phase space	Velocity dispersion	Spectroscopy	Mamon et al. (2013)
CLN	Phase space	Velocity dispersion	Spectroscopy	Mamon et al. (2013)
SG1	Phase space	Velocity dispersion	Spectroscopy	Sifón et al. (2013)
SG2	Phase space	Velocity dispersion	Spectroscopy	Sifón et al. (2013)
SG3	Phase space	Velocity dispersion	Spectroscopy	Lopes et al. (2009)
PCS	Phase space	Velocity dispersion	Spectroscopy	Pearson et al. (2015)
PFS*	FOF	Velocity dispersion	Spectroscopy	Pearson et al. (2015)

Step 2 = members

Method	Initial Galaxy Selection			
PCN	Phase space		Spectros Friends-Of-Friends	
PFN*	FOF	Richness	algorithm	
NUM	Phase space		Spectroscopy	
ESC	Phase space			
MPO	Phase space			
MP1	Phase space			
RW	Phase space	Phase space		
TAR*	FOF	Phase space	Phase space: within a	
PCO	Phase space		Specertain distance and velocity	
PFO*	FOF		Spectros from cluster centre	
PCR	Phase space		Spectroscopy	
PFR*	FOF			
MVM*	FOF			
AS1	Red Sequence			
AS2	Red Sequence			
AvL	Phase space			
CLE	Phase space	solocity dispersion	Red sequence: selecting	
CLN	Phase space	Velocity dispersion	galaxies of a certain colour	
SG1	Phase space		Spectros of a certain colour	
SG2	Phase space			
SG3	Phase space			
PCS	Phase space			
PFS*	FOF			

Step 3 = mass

Metho		Mass Estimation		
PCN PFN*		Richness Richness	Number of galaxies above a given	
NUM		Richness	luminosity threshold	
ESC		Phase space		
MPO	Phase space	Phase space		
MP1	Phase space	Phase space		
RW	Positions &	Phase space		
TAR*	velocities of	Phase space		
PCO PFO*	galaxies e.g.,	Radius Radius	RMS radius/ DM profi fitted to obtain radius.	
PCR	caustics	Radius	Spectroscop	
PFR*		Radius		
MVM		Abundance matching	Spectroscopy	
AS1		Velocity dispersion	Spectroscopy	
AS2		Velocity dispersion	Spectroscopy	
AvL		Velocity dispersion	Spectroscopy Matching using theoretical index et al. (2007)	
CLE		Velocity dispersion	Spectroscopy halo mass function	n & cluster
CLN	Phase space	Velocity dispersion	spectroscopy r-band luminosity	
SG1	\mathbf{N}	Velocity dispersion	Spectroscopy	Silon et al. (2013)
SG2	$M \propto \sigma^{s}$	Velocity dispersion		
SG3		Velocity dispersion		
PCS		Velocity dispersion		
PFS*		Velocity dispersion		

 We perform a likelihood fitting analysis assuming a model where there is a linear relationship between log M_{200,rec} and log M_{200,true} log and residual offsets in the recovered mass are drawn from a normal distribution.

- We use the parallel-tempered MCMC sampler emcee (Foreman & Mackay 2013) to efficiently sample the parameter space
- RMS: encompasses both scatter and bias and, hence, delivers the overall uncertainty
- Scatter in the recovered mass, σ_{MRec} , delivers a measure of the intrinsic scatter
- Bias (at pivot mass)

Old et al. 2014, Old et al. 2015 (1403.4610, 1502.07347)

- RMS in mass is higher than expected, factor of ~2-12, & mass dependent!
- Many methods overestimate high mass clusters - severe implications due to steeply falling cluster mass function

Number of clusters per unit volume

Cluster mass

Old et al. 2014, Old et al. 2015 (1403.4610, 1502.07347)

- RMS in mass is higher than expected, factor of ~2-12, & mass dependent!
- Many methods overestimate high mass clusters - severe implications due to steeply falling cluster mass function
- We see a mass bias (overestimation) for dynamically disturbed clusters

Owers et al., 2011, Abell 2744

- RMS in mass is higher than expected, factor of ~2-12, & mass dependent!
- Many methods overestimate high mass clusters - severe implications due to steeply falling cluster mass function
- We see a mass bias (overestimation) for dynamically disturbed clusters

Old et al. 2017 (1709.10108)

- RMS in mass is higher than expected, factor of ~2-12, & mass dependent!
- Many methods overestimate high mass clusters - severe implications due to steeply falling cluster mass function
- We see a mass bias (overestimation) for dynamically disturbed clusters

- Contamination and incompleteness give rise to overestimation & underestimation of measured masses respectively
- Kinematic methods more sensitive to incompleteness

Wojtak et al. 2018 (1806.03199)

- Contamination and incompleteness give rise to overestimation & underestimation of measured masses respectively
- Kinematic methods more sensitive to incompleteness
- M_{rec} M_{true} relation flattens due to a massdependent selection of cluster members & mass-dependent response of estimators to imperfect membership.
- Flattening results in suppression in mass function at low masses & amplification at high masses ... Ω_m biased down by ~10% and σ_8 biased up by ~ 7%

Wojtak et al. 2018 (1806.03199)

Data set still unblinded — available for testing new cluster mass estimation techniques!

- Contamination and incompleteness give rise to overestimation & underestimation of measured masses respectively
- Kinematic methods more sensitive to incompleteness
- M_{rec} M_{true} relation flattens due to a massdependent selection of cluster members & mass-dependent response of estimators to imperfect membership.
- Flattening results in suppression in mass function at low masses & amplification at high masses... Ω_m biased down by ~10% and σ_8 biased up by ~ 7%

Wojtak et al. 2018 (1806.03199)

GALAXY EVOLUTION IN & OUT OF CLUSTERS

At intermediate redshifts

Planck clusters, z~0.6, ~ Universe was ~8 Gyr old : van der Burg et al. 2018

These mechanisms act on different timescales & are location dependent!

- At z > 1, Universe was ~eight times denser. Expect that gas accretion rates, star-formation rates (SFRs) were much higher than the present day.
- Properties of typical galaxies in z > 1 clusters are almost completely unknown!

Gemini Observations of Galaxies in Rich Early ENvironments survey (GOGREEN)

~440 hrs Gemini MOS of galaxies in 21 groups + clusters at 1 < z < 1.5 (PI: Balogh, GCLASS, SpARCS)

→ Deep imaging multi-band imaging: Subaru, VIMOS, CFHT, MMT, Magellan, HAWK-I, HST

→ Deep imaging multi-band imaging: Subaru, VIMOS, CFHT, MMT, Magellan, HAWK-I, HST

- How is Star Formation (SF) distributed in these clusters?
- Is there difference in SF between cluster and field?
- Is there a difference in SF properties at z=0 & z=1?

→ Deep imaging multi-band imaging: Subaru, VIMOS, CFHT (PI: Old), MMT, Magellan, HAWK-I

THE GOGREEN SURVEY – SPECIFIC SFR

THE GOGREEN SURVEY – SPECIFIC SFR

THE GOGREEN SURVEY – SPECIFIC SFR

esa

→ Watch out for the following GOGREEN early science results!

- I. Buildup of the red sequence in massive clusters (J. Chan, UC Riverside)
- II. Environment-dependent ages of quiescent galaxies at 1<z<1.5 (K. Webb, U. Waterloo)
- III. The environmental dependence of the star forming main sequence at 1<z<1.5 (L. Old)
- IV. The quiescent galaxy population of 1<z<1.5 groups (A. Reeves, U. Waterloo)
- V. First Data Release (M. Balogh, U. Waterloo)

VI. + HST morphology!

Thanks Gemini!