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NASA/ESA Hubble Frontier Field Abell 2744
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OBSERVING GALAXY CLUSTERS

 Allen, Evrard & Mantz (2011),  
NASA/ESA: SDSS J1038+4849

• Optical & infrared: over densities, red sequence  
(e.g., Abell 1958, Gladders & Yee 2000) 

• Sunyaev-Zeldovich effect 
(e.g., Sunyaev & Zeldovich 1972, Hasselfield et al. 2013).

• Gravitational lensing  
(e.g., Bartlemann et. al., 2010, Applegate et al. 2012).

• X-ray bright: LX~1043-1045 erg s-1  
(e.g., Forman et al. 1972,  Vikhlinin et al. 2009).
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‘Galaxy clusters could emerge as 
the most powerful cosmological 

probe if the masses of the clusters 
can be accurately measured’ 

- Cosmic Visions Report (2016)

Adapted from Allen et al. 2011

Adapted from Allen et. al 2011
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Any technique that uses galaxy 
properties as a mass proxy  

e.g., positions, velocities, colours & 
luminosities 



Any technique that uses galaxy 
properties as a mass proxy  

e.g., positions, velocities, colours & 
luminosities 

• Independent proxy to SZ, X-ray, lensing 

• Relatively $ 

• Critical for detecting lower mass 
clusters (bulk of mass function!) 

• Extended galaxy distribution: clusters 
can be probed out to large radii 

• 2-for-1: dynamical analysis provides 
information on virialisation state 

‘GALAXY-BASED’ CLUSTER MASS ESTIMATION



HOW WELL CAN WE MEASURE HOW MUCH CLUSTERS WEIGH?
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 σ method 1 
 σ method 2 
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THE GALAXY CLUSTER MASS RECONSTRUCTION PROJECT

→ First systematic, homogenous study of 25 
cluster mass estimation techniques 

GCMRP goals:  

1. Scatter, bias and completeness  

2. Impact of uncertainties on cluster-
cosmology 

3.  Methods consistent? 

4. Best application of techniques to 
upcoming data-sets
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Co-authors: Radek Wojtak, Gary Mamon, Frazer Pearce, Meghan Gray, Ramin Skibba, Darren Croton, Alex Saro, Tiit 
Sepp, Cristobal Sifón, Elmo Tempel, Peter Behroozi, Reinaldo de Carvahlo, Andrea Biviano, Juan Muñoz-Cuartas, 
Eduardo Rozo, Eli Rykoff, Daniel Gifford, Anja von der Linden, Mike Merrifield, Volker Müller, Chris Power, Stuart 

Muldrew, Yang Wang, Richard Pearson & Trevor Ponman.

→ First systematic, homogenous study of 25 
cluster mass estimation techniques 

GCMRP goals:  

1. Scatter, bias and completeness  

2. Impact of uncertainties on cluster-
cosmology 

3.  Methods consistent? 

4. Best application of techniques to 
upcoming data-sets
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D. Croton, R. Skibba

Add galaxies -
SAM & HOD 

models
DM only

577 clusters with log M200c > 14 Msolar
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3 mock group/
cluster catalogues

THE GALAXY CLUSTER MASS RECONSTRUCTION PROJECT



Add galaxies -
SAM & HOD 

models
3 mock group/

cluster catalogues
DM only

For the 968 systems: 
• M200c 
• Velocity dispersion 
• Radius 
• Galaxy membership

Blind test at 3 
day workshop: 

give participants 
galaxy catalogues 

Participants return 
membership & 

cluster parameters 

THE GALAXY CLUSTER MASS RECONSTRUCTION PROJECT



Step 1 = cluster finding Step 3 = mass Step 2 = members 

THE MASS MEASUREMENT TECHNIQUES



Phase space: within a 
certain distance and velocity 

from cluster centre

Red sequence: selecting 
galaxies of a certain colour 

Friends-Of-Friends 
algorithm

Step 2 = members 

THE MASS MEASUREMENT TECHNIQUES



Matching using theoretical 
halo mass function & cluster 
r-band luminosity function 

Number of galaxies above a given 
luminosity threshold 

RMS radius/ DM profile 
fitted to obtain radius.

M / �3

Positions & 
velocities of 
galaxies e.g., 
caustics

Step 3 = mass 

THE MASS MEASUREMENT TECHNIQUES



GCMRP MASS RECONSTRUCTION ANALYSIS

• We perform a likelihood fitting analysis assuming a model where there is a linear relationship 
between log M200,rec and log M200,true log and residual offsets in the recovered mass are drawn from a 
normal distribution. 

• We use the parallel-tempered MCMC sampler 
emcee (Foreman & Mackay 2013) to efficiently 
sample the parameter space 

• RMS: encompasses both scatter and bias and, 
hence, delivers the overall uncertainty 

• Scatter in the recovered mass, σMRec , delivers a 
measure of the intrinsic scatter 

• Bias (at pivot mass)



GCMRP: HIGHLIGHTS



GCMRP: HIGHLIGHTS

• RMS in mass is higher than expected, 
factor of ~2-12, & mass dependant! 

• Many methods overestimate high mass 
clusters - severe implications due to 
steeply falling cluster mass function 

• We see a mass bias (overestimation) for 
dynamically disturbed clusters
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GCMRP: HIGHLIGHTS

• RMS in mass is higher than expected, 
factor of ~2-12, & mass dependant! 

• Many methods overestimate high mass 
clusters - severe implications due to 
steeply falling cluster mass function 

• We see a mass bias (overestimation) for 
dynamically disturbed clusters

<log (M200c/Msolar)> - Measured mean mass
Old et al. 2014, Old et al. 2015 (1403.4610, 1502.07347)
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• RMS in mass is higher than expected, 
factor of ~2-12, & mass dependant! 

• Many methods overestimate high mass 
clusters - severe implications due to 
steeply falling cluster mass function 

• We see a mass bias (overestimation) for 
dynamically disturbed clusters

Old et al. 2014, Old et al. 2015 (1403.4610, 1502.07347)

Cluster mass

Number of 
clusters per 
unit volume
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• RMS in mass is higher than expected, 
factor of ~2-12, & mass dependant! 

• Many methods overestimate high mass 
clusters - severe implications due to 
steeply falling cluster mass function 

• We see a mass bias (overestimation) for 
dynamically disturbed clusters

Owers et al., 2011, Abell 2744

GCMRP: HIGHLIGHTS



• RMS in mass is higher than expected, 
factor of ~2-12, & mass dependant! 

• Many methods overestimate high mass 
clusters - severe implications due to 
steeply falling cluster mass function 

• We see a mass bias (overestimation) for 
dynamically disturbed clusters

Old et al. 2017 (1709.10108)

Agreement with Biviano et al. 2006

GCMRP: HIGHLIGHTS



• RMS in mass is higher than expected, 
factor of ~2-12, & mass dependant! 

• Many methods overestimate high mass 
clusters - severe implications due to 
steeply falling cluster mass function 

• We see a mass bias (overestimation) for 
dynamically disturbed clusters

% change in cosmological model parameters due 
to dynamically disturbed clusters 

Bias in mass (dex)
Old et al. 2017 (1709.10108)
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• Contamination and incompleteness give rise 
to overestimation & underestimation of 
measured masses respectively 

• Kinematic methods more sensitive to 
incompleteness 

• Mrec − Mtrue relation flatters due to a mass-
dependent selection of cluster members & 
mass-dependent response of estimators to 
imperfect membership. 

• Flattening results in suppression in mass 
function at low masses & amplification at 
high masses… Ωm biased down by ∼10% 
and σ8 biased up by ∼ 7% 

Wojtak et al. 2018 (1806.03199)
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GCMRP: FUTURE

• Contamination and incompleteness give rise 
to overestimation & underestimation of 
measured masses respectively 

• Kinematic methods more sensitive to 
incompleteness 

• Mrec − Mtrue relation flattens due to a mass-
dependent selection of cluster members & 
mass-dependent response of estimators to 
imperfect membership. 

• Flattening results in suppression in mass 
function at low masses & amplification at 
high masses… Ωm biased down by ∼10% 
and σ8 biased up by ∼ 7% 

Wojtak et al. 2018 (1806.03199)

Data set still unblinded — available for testing new cluster mass estimation techniques!



GALAXY CLUSTER COSMOLOGY → GALAXY EVOLUTION



 GALAXY EVOLUTION IN & OUT OF CLUSTERS

Environment ClusterField

Ellipticals

Spirals, Irregulars
Fraction of galaxy 

population

At low redshift
Dressler 1980

See also: Oemler 1974, Balogh et al. 
20014, Hogg et al. 2004, Blanton et al. 2005



Planck clusters, z~0.6, ~ Universe was ~8 Gyr old : van der Burg et al. 2018

At intermediate redshifts

 GALAXY EVOLUTION IN & OUT OF CLUSTERS



Illustrated by Aeree Chung

WHAT PROCESSES GOVERN THE LIFE & DEATH OF GALAXIES?



Illustrated by Aeree Chung

These mechanisms act on different timescales & are location dependent!

WHAT PROCESSES GOVERN THE LIFE & DEATH OF GALAXIES?



WHAT ABOUT AT HIGHER REDSHIFTS?

• At z > 1, Universe was ~eight times denser. Expect that gas accretion rates, star-formation rates 
(SFRs) were much higher than the present day. 

• Properties of typical galaxies in z > 1 clusters are almost completely unknown! 

Present day z > 1.0

Environment

Fraction of galaxy 
population

EllipticalsSpirals, Irregulars

?



THE GOGREEN SURVEY

Gemini Observations of Galaxies in Rich Early ENvironments survey (GOGREEN) 

~440 hrs Gemini MOS of galaxies in 21 groups + clusters at 1 < z < 1.5 (PI: Balogh, GCLASS, SpARCS) 

Balogh et al. 2018



SpARCS1616, z~1.15

→ Deep imaging multi-band imaging: Subaru, VIMOS, CFHT, MMT, Magellan, HAWK-I, HST 

THE GOGREEN SURVEY



SpARCS1616, z~1.15
• How is Star Formation (SF) 

distributed in these clusters? 

• Is there difference in SF between 
cluster and field? 

• Is there a difference in SF properties 
at z=0 & z=1? 

→ Deep imaging multi-band imaging: Subaru, VIMOS, CFHT, MMT, Magellan, HAWK-I, HST 

THE GOGREEN SURVEY



E.g., using [OII] 

emission as SFR proxy

• How is Star Formation (SF) 
distributed in these clusters? 

• Is there difference in SF between 
cluster and field? 

• Is there a difference in SF properties 
at z=0 & z=1? 

→ Deep imaging multi-band imaging: Subaru, VIMOS, CFHT (PI: Old), MMT, Magellan, HAWK-I 

THE GOGREEN SURVEY



THE GOGREEN SURVEY - SPECIFIC SFR

Following Gilbank et al., 2010: empirically corrected SFR from [OII] luminosity 



Following Gilbank et al., 2010: empirically corrected SFR from [OII] luminosity 
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Following Gilbank et al., 2010: empirically corrected SFR from [OII] luminosity 

Completeness limits & 
flux calibration!

THE GOGREEN SURVEY - SPECIFIC SFR



THE GOGREEN SURVEY - FUTURE

→ Watch out for the following GOGREEN 

early science results! 

I. Buildup of the red sequence in massive clusters (J. 
Chan, UC Riverside) 

II. Environment-dependent ages of quiescent galaxies at 
1<z<1.5  (K. Webb, U. Waterloo) 

III. The environmental dependence of the star forming 
main sequence at 1<z<1.5 (L. Old) 

IV. The quiescent galaxy population of 1<z<1.5 
groups (A. Reeves, U. Waterloo)  

V. First Data Release (M. Balogh, U. Waterloo) 

VI. + HST morphology! Thanks Gemini!


