The ultra-low surface brightness Universe with HST and future space telescopes

Alejandro S. Borlaff

ESAC Seminar – 31 Jan 2019
PAndAS survey

[Fe/H] ~ -2.3
[Fe/H] ~ -1.4
[Fe/H] ~ -0.7

Nicolas et al. (2013)
H-alpha emission filaments around M31

Sivan 2 nebula

MDW Sky Survey (cc: Mittelman, di Cicco, & Walker)
Galaxy structure – Surface brightness profiles
Trujillo & Fliri (2016)
Ultra-deep imaging of UGC00180
Galaxy structure – Surface brightness profiles
Trujillo & Fliri (2016)
Ultra-deep imaging of UGC00180
Malin & Carter (1980) – Detection of shells on NGC1344

Three hypothesis:
1) Explosive event that displaced stars to the outskirts
2) Powerful shockwave that propagated star formation to the outskirts
3) Remnants from an ancient merger (discarded!)

Reason: The central regions of NGC1344 did not appear to be disturbed.
Malin & Carter (1980) – Detection of shells on NGC1344

Three hypothesis:
1) Explosive event that displaced stars to the outskirts
2) Powerful shockwave that propagated star formation to the outskirts
3) Remnants from an ancient merger (discarded!)

Reason: The central regions of NGC1344 did not appear to be disturbed.
Malin & Carter (1980) – Detection of shells on NGC1344

NGC 474 (CFHT)
Simulations: 50% of galaxies would show at least a tidal structure at $\mu_{\lim} \sim 30$ mag arcsec$^{-2}$ (Bullock & Johnston 2005; Johnston et al. 2008).
Stephan’s Quintet and NGC7331 Deer Lick Group (SDSS)

Surface brightness magnitude limit (g-band) 26.5 mag arcsec$^{-2}$
Stephan’s Quintet and NGC7331 Deer Lick Group (CFHT)

Duc, Cuillandre & Renaud (2018)

Surface brightness magnitude limit (u, g, r bands)
29.0, 28.6, and 27.6 mag arcsec$^{-2}$
Three main reasons to study the low Surface brightness Universe

1) Dim structures in the near Universe
 Dust filaments, ultra diffuse galaxies, tidal tails, stellar halos

2) Not-so-dim structures at high-z: Cosmological dimming
 Evolution of galactic discs and stellar haloes

3) “Because it is there”: New classes of objects & structures
Cosmological dimming greatly reduces the observed flux with increasing redshift:

At $z=0.6$, (6.3 Gyr ago) we need to reduce the noise by a factor $\sim 6 - 7$ in intensity. This is 2 magnitudes deeper to detect the same structure!
How the different profiles form? When? Do they evolve?

We need to look beyond $z \approx 0.6$:

Observational challenges:
1) Wider: There are a limited amount of cosmological field observations.
2) Redder: At higher redshifts we need infrared observations.
3) Sharper: We need increasingly angular resolution.
4) Deeper: The cosmological dimming reduces vastly the observed flux.
Three main reasons to study the low Surface brightness Universe

1) Dim structures in the near Universe
 Dust filaments, ultra diffuse galaxies, tidal tails, stellar halos

2) Not-so-dim structures at high-z: Cosmological dimming
 Formation of galactic discs and stellar haloes

3) “Because it is there”: New classes of objects & structures
[...] galaxies are like icebergs and what is seen above the sky background may be no reliable measure of what lies underneath.

M. Disney (1976)
How galactic discs evolve with time? The Hubble Ultra Deep Field

The deepest image of the Universe ever done

F105W HST WFC3/IR
\(\mu_{\text{lim}} = 33 \text{ mag arcsec}^{-2} \)
(3\(\sigma \) in 10x10 arcsec\(^2\) boxes)

Multi-wavelength ancillary data.
(VLA, ALMA, MUSE, Spitzer, HST/ACS, HST/UVIS Chandra, XMM-Newton...)

Main objective:
Detect galaxies at \(z \sim 8 - 10 \).

HUDF12 – Koekemoer+ 2012
XDF - Illingworth+2013
Real surface brightness profile

Observed surface brightness profile
(with gradient contamination)
Sky noise limit
Sky oversubtraction is a common issue in most surveys.
The Hubble Ultra Deep Field - XDF (2014)

Dithering pattern:
1) < 0.05 arcsec
2) ~ 1-3 arcsec

Most images were taken with the same position angle.

Sub-optimal observing strategy for low-surface brightness structures
1) Cosmetic defects
2) Systematic gradients
3) Flat field residuals

Solution: Removal of residual gradients by 2D fitting and subtraction.
Dithering pattern:
1) < 0.05 arcsec
2) ~ 1-3 arcsec

Most images were taken with the same position angle.

Sub-optimal observing strategy for low-surface brightness structures:
1) Cosmetic defects
2) Systematic gradients
3) Flat field residuals

Solution: Removal of residual gradients by 2D fitting and subtraction.
Looking for the missing light of the HUDF

Fact: There was no current reduction available for WFC3/HUDF data dedicated to the low-surface brightness features of the largest objects.

How can we improve the reduction? Key points:

1) Flat fielding
2) Sky correction
3) Persistence
STS-125 (14/04/2009)

Astronaut Andrew Festel on EVA while installing WFC3 on the Hubble Space Telescope
The flat fields of HST/WFC3 are a combination of several solutions:
1) Ground-flat fields (LP flats) calculated before launch in a simulator (CASTLE) +
2) Second order correction calculated as a combination of images from all filters (delta sky flats, Pirzkal et al 2011).

Main problems:
1) Second order correction
2) No variation (grey flats)
Vacuum – $(10^{-11}$ atm): Outgassing of molecules + deposit

Atmospheric aerosol particles: Responsible for the appearance of the WFC3/IR blobs

O - Atomic oxygen: Produced by UV radiation. Cause degradation of internal and external surfaces. (Neutral particles in space also cause drag forces and altitude loss)

UV radiation: Damages polymers and darkens materials

Ionizing radiation: Cosmic rays (GC or solar), solar proton events and radiation belts

WFC3/IR Snowballs: Transient emission in WFC3/IR images – Area = 40 pixels2. Possibly caused by alpha decay of Th232 or U238 present in orbit at ~1 ppm.

Plasma (Charged ions + free electrons): Cause parasitic negative charge of surfaces.

Flat fielding – Why time dependent?
Flat fielding – Why time dependent?

Space is a hard place to live: Micrometeoroids & space debris (Kearsley et al. 2017)

Fig. 1. The WFPC2 radiator shield wrapped in Llumalloy sheeting at the Johnson Space Center (NASA-JSC), locations of the large craters indicated by arrows.
In-flight calibration of HST – Sky flat-fielding

Our approach:

1) Identify valid sky-flat images (GOODS-N, GOODS-S, AEGIS, COSMOS, ...)

2) Visual classification of images for sky-flat (+2000 images per filter) and masking of sources (GNU/Noisechisel).

3) Normalization + combination via robust statistics (bootstrapping + MonteCarlo simulations).

Hard computational effort.
In-flight calibration of HST – Sky flat-fielding

Our approach:

1) Identify valid sky-flat images (GOODS-N, GOODS-S, AEGIS, COSMOS, ...)

2) Visual classification of images for sky-flat (+2000 images per filter) and masking of sources (GNU/Noisechisel).

3) Normalization + combination via robust statistics (bootstrapping + MonteCarlo simulations).

Hard computational effort.
In-flight calibration of HST – Sky flat-fielding

Our approach:

1) Identify valid sky-flat images (GOODS-N, GOODS-S, AEGIS, COSMOS, ...)

2) Visual classification of images for sky-flat (+2000 images per filter) and masking of sources (GNU/Noisechisel).

3) Normalization + combination via robust statistics (bootstrap + MonteCarlo simulations).

Hard computational effort.
Sky subtraction
Sigma clipping methods fail dealing with low-surface brightness biases (extended haloes, MW dust). **We need robust sky-measures**

Test: Benchmark of different masking methods using simulated observations

Illustris simulation

Noised simulation

![HUDF Image](image1.png)

![Noised Image](image2.png)
Sky subtraction
Sigma clipping methods fail dealing with low-surface brightness biases (extended haloes, MW dust). We need robust sky-measures.

Test: Benchmark of different masking methods using simulated observations.
Sky substraction
Sigma clipping methods fail dealing with low-surface brightness biases (extended haloes, MW dust). We need robust sky-measures
Test: Benchmark of different masking methods using simulated observations

Illustris simulation

HUDF

GnuAstro/Noisechisel mask
Sky subtraction

Sigma clipping methods fail dealing with low-surface brightness biases (extended haloes, MW dust). **We need robust sky-measures**

Test: Benchmark of different masking methods using simulated observations
MULTIACCUM: WFC3 default mode of observation. Multiple non-destructive readouts of each single exposure. Cosmic ray rejection and time dependent sky background.

Exposure time (single flt.fits after calibration)
Persistence
Temporary increase in dark current after illumination. Afterglow

Typical from IR detectors
Can last hours or several days
Depends on:
- Time since the exposure
- Saturation level
- Time the charge sat on the detector
- Time since last exposure
- CCD type […]

Problem: HUDF/F160W is strongly affected by persistence.

Currently for HST: Model with only one image from the last 16 hours.
Problem 1: HUDF exposures are strongly affected by persistence.

Problem 2: Each image is affected by ALL exposures taken in the previous ~96h.

One example: Combined contamination of one F105W exposure of the HUDF.
Persistence
8 hours before the observations (included in persistence calculations)

Calibration lamp contamination
Persistence

20 hours before the observations: (NOT included in persistence calculations)
Persistence – which pixels can I trust?

Solution: Increase the lookback time to create better persistence models.
Persistence

Temporary increase in dark current after illumination. Afterglow

Official HST persistence models

Improved HST persistence models
Results
Our mosaics successfully recover the outskirts of the extended galaxies in the HUDF XDF (Illingworth et al. 2013) and ABYSS (Borlaff et al. 2019).
Results

The new mosaics (ABYSS) recover up to ~ 1.5 mag arcsec$^{-2}$ in the outskirts of the largest galaxies, increasing their size.
Results
Conclusions

1) We have created a new set of flat-fields dedicated to the WFC3/IR HUDF

2) Improved sky-background subtraction: GnuAstro/NoiseChisel

3) New persistence models: from 16h to 96h before each exposure
Results

Taking into account systematic errors, the ABYSS HUDF is now the deepest version of the Hubble Ultra Deep Field

These methods are applicable directly to EUCLID, JWST and beyond

Paper published (23/01/19):
A&A: bit.ly/2FXerSg
ArXiv: arxiv.org/abs/1810.00002

Images publicly available at:
www.iac.es/proyecto/abyss

Contact: asborlaff@gmail.com
Future missions – How is the ideal LSB telescope?

1) Wider: Large FOV and wide survey area to avoid sky over-subtraction
2) Redder: Higher z require infrared observations – NIR detectors
3) Sharper: We need increasingly angular resolution – Space-based
4) Deeper: SDSS is at the very edge of the LSB Universe

1) FOV = 0.53 deg²
Wide Survey=15,000 deg², Deep Survey=40 deg²
2) VIS (R+I+Z) and NISP (Y, J and H)
3) FWHM_{VIS} = 0.2", FWHM_{NISP} = 0.3"
4) ~ 2 magnitudes deeper than SDSS
Galaxy structure – Surface brightness profiles
Trujillo & Fliri (2016)
Ultra-deep imaging of UGC00180

SDSS limit
ESA/Euclid limit (estimated)
Future missions – How is the ideal LSB telescope?

1) **Wider**: Large FOV and wide survey area to avoid sky over-subtraction
2) **Redder**: Higher z require infrared observations – NIR detectors
3) **Sharper**: We need increasingly angular resolution – Space-based
4) **Deeper**: SDSS is at the very edge of the LSB Universe

Project proposed for CNES Fellowships
(Pierre-Alain Duc / ObAS)

Low surface brightness pipeline for ESA/Euclid:
- In-flight calibration (sky flat-fields pipeline)
- HST + Simulated data until launch in 2022