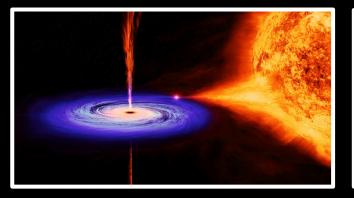




Netherlands Organisation for Scientific Research



# Outflows from X-ray Binaries


#### Nathalie Degenaar University of Amsterdam

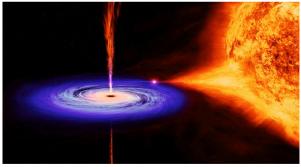


ESAC seminar

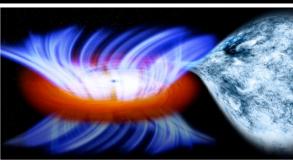
February 2019

### X-ray Binaries



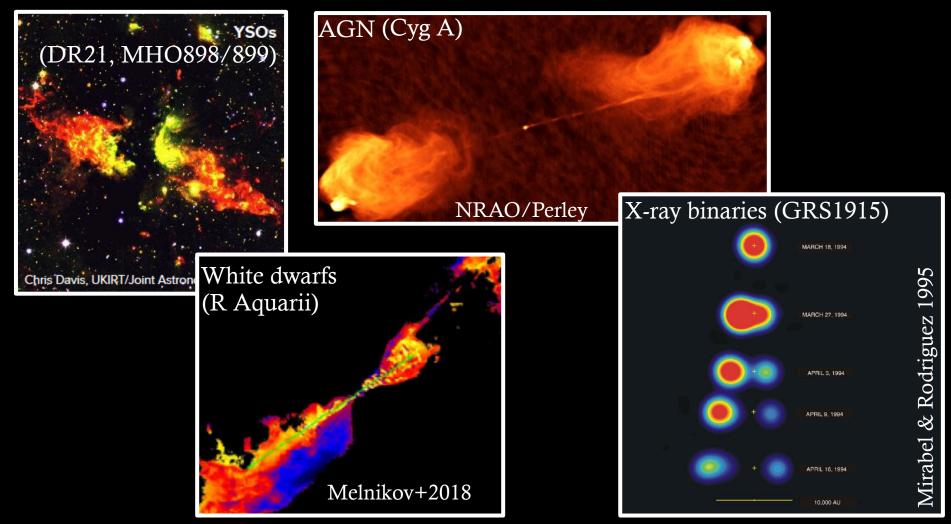



Low-mass X-ray binaries Roche-lobe overflow Accretion via disk ~200 sources ~50 black holes High-mass X-ray binaries Equatorial disk Be star (majority)


or wind supergiant companion ~200 sources few black holes

## X-ray Binary Outflows

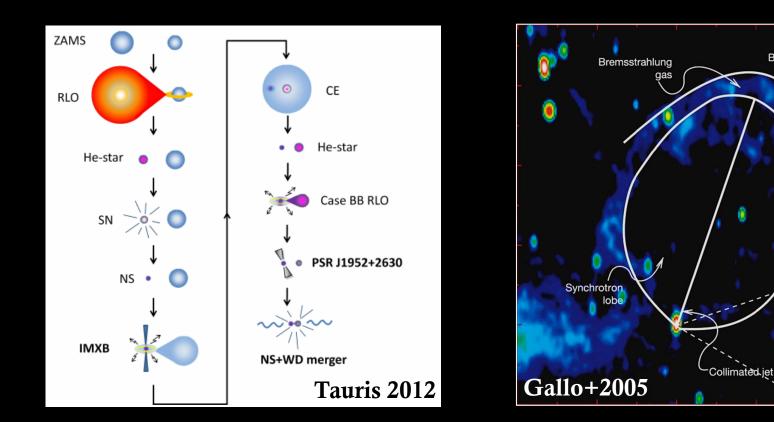
Intro: Connection accretion & outflows
Jets: new discoveries
Outflows @ extremes of accretion
Nebulae around X-ray binaries




How are outflows launched? How much mass is lost in outflows? How do outflows impact the environment?



#### Importance of Outflows


Integral part of accretion flows: Accretion physics



#### Importance of Outflows

Integral part of accretion flows: Accretion physics Non-conservative mass-transfer: Binary evolution Impact on environment: Feedback

Bow shock front

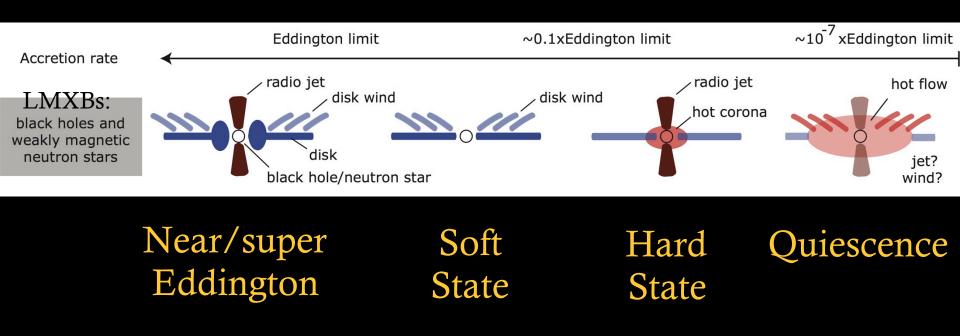


### Accretion and Outflows in X-ray Binaries

### X-ray Binaries

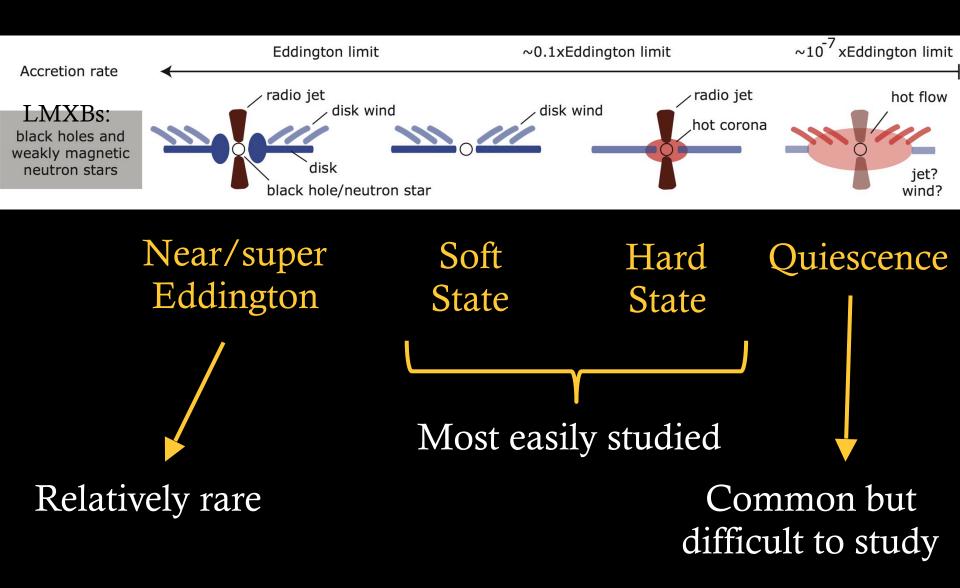







Low-mass X-ray binaries Roche-lobe overflow Accretion via disk High-mass X-ray binaries

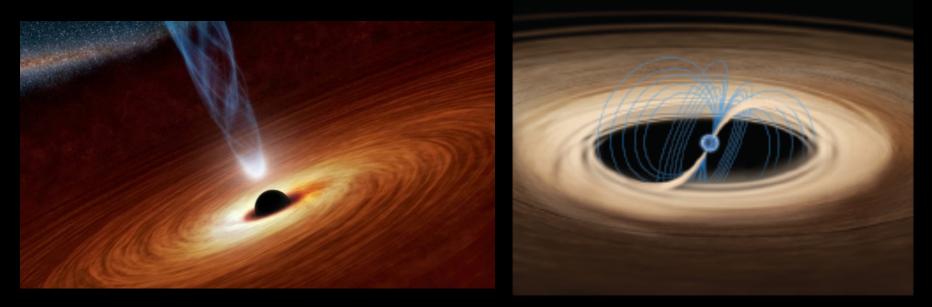
Equatorial disk Be star (majority) or wind supergiant companion


Some systems accrete continuously: persistent In many active accretion switches on/off: transients

### Accretion Regimes

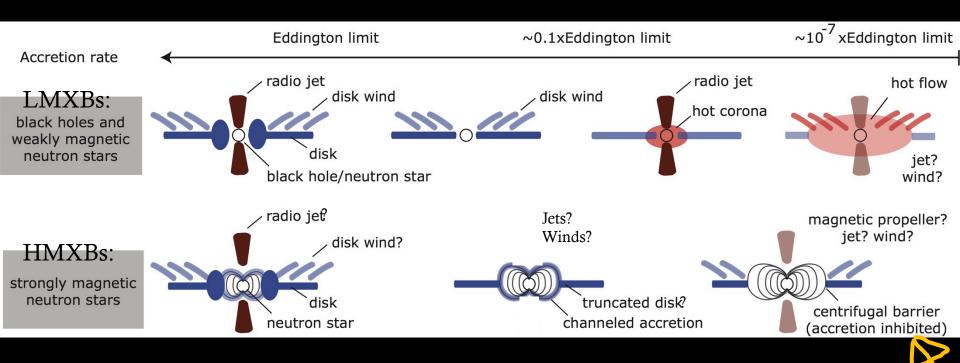


Wide range of accretion rates possible Accretion geometry + outflows change with accretion rate


### Accretion Regimes



### Black Holes versus Neutron Stars


#### Black hole

#### Neutron star



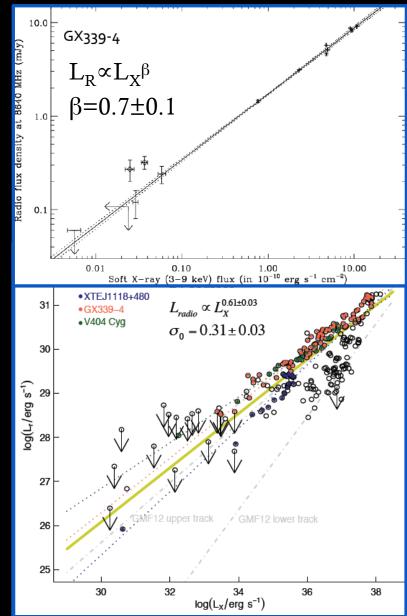
Many aspects of accretion are similar But: neutron stars have a solid surface + magnetic field Strong magnetic field can truncate the accretion flow

## Effect of Strong Magnetic Field



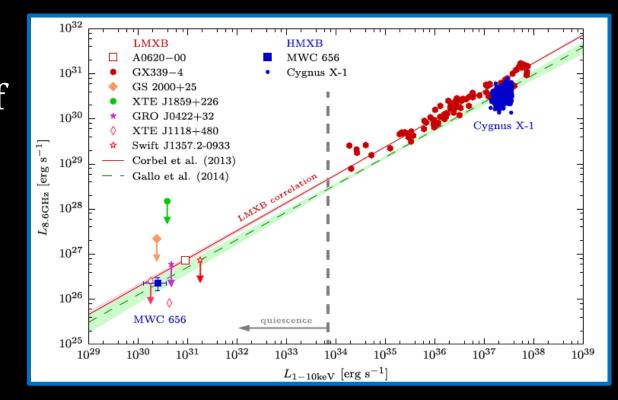
Neutron stars in X-ray binaries come in two classes: Weakly magnetic (B < 10<sup>9</sup> G), high spin (millisec) Strongly magnetic (B ~ 10<sup>12</sup>-10<sup>13</sup> G), slow spin (sec-min) A strong magnetic field changes the accretion geometry




## Jet-Accretion Link in Black Holes

Corbel+2003 Tight X-ray/radio correlation of a black hole X-ray binary (multiple outbursts)

#### Gallo+2014


Confirms relation for 24 black holes, broader Lx range "Universal Correlation"

See also Hannikainen+1998; Corbel+2000, 2008, 2013; Gallo+2003, 2012; Jonker+2010; Coriat+2011; Miller-Jones+2011



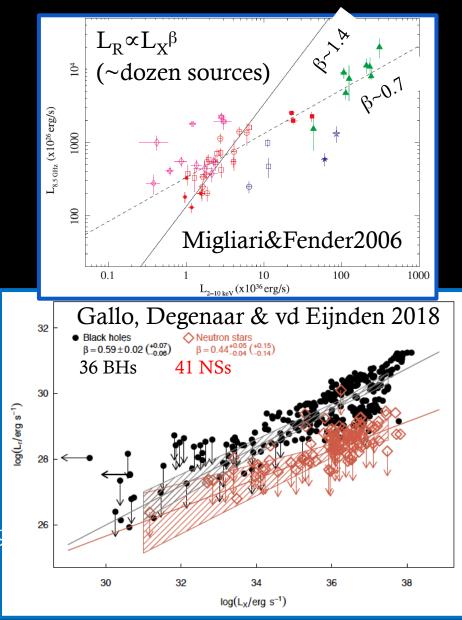
## Jet-Accretion Link in Black Holes

Ribo+2017 Radio detection of first black hole Be X-ray binary (MWC 656)



Consistent with Lx/Lr correlation of black hole lowmass X-ray binaries → Nature of donor star / transfer of matter does not matter for jet production

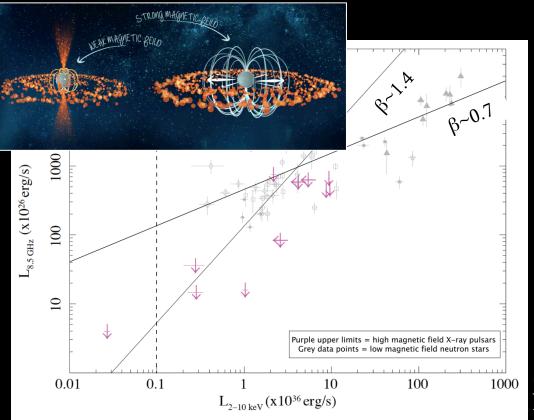
### Jet-Accretion in Neutron Stars


Fender & Kuulkers 2001 Neutron stars fainter in radio than black holes

Migliari & Fender 2006 Different couplings NSs?

Gallo+2018

Single coupling index NSs Coupling similar to BHs NSs factor 20 radio fainter


Also Fender+2003; Migliari+2003,2011,2012; Muno+2005; Tudose+2009; Miller-Jones+2009 Deller+2015; DeMartino+2015; Tetarenko+2017; Tudor+2017



## Effect of Strong Magnetic Field

Migliari+2012

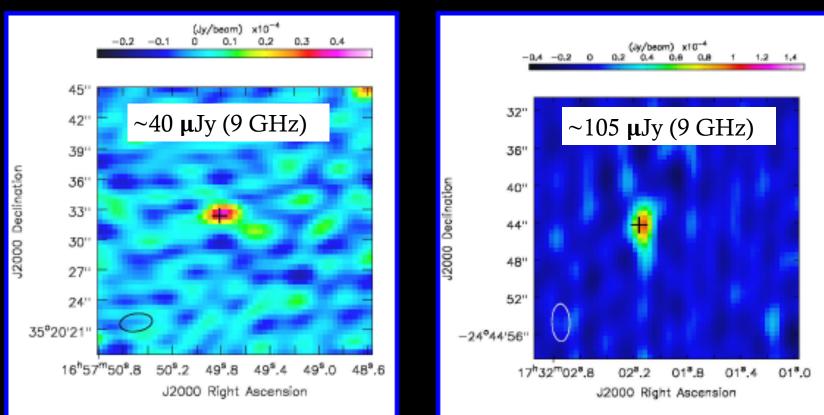
Compilation of new + old work: No radio detections of neutron stars in high-mass X-ray binaries



Observational paradigm Strong magnetic fields (B~10<sup>12</sup>-10<sup>13</sup> G) prevent jet formation

Supported by theory (Massi & Kaufman Bernadó 2008)

See also Fender & Hendry 2000; Migliari+2006


## Radio Detections High-B NSs

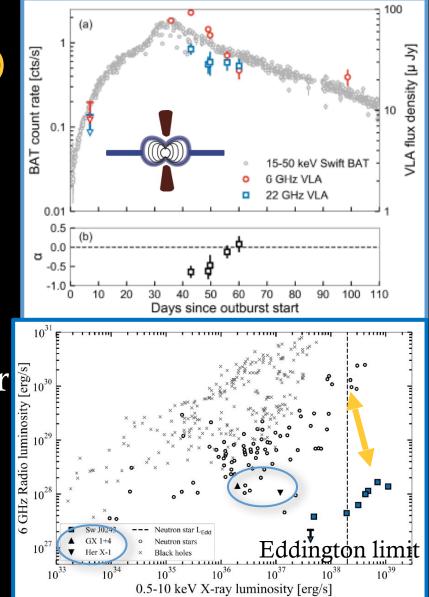
Van den Eijnden+2018 ab

Radio detections of 2 neutron stars with B~10<sup>11</sup>-10<sup>13</sup> G Single band/epoch: Possibly a jet, but not conclusive

Her X-1

GX 1+4

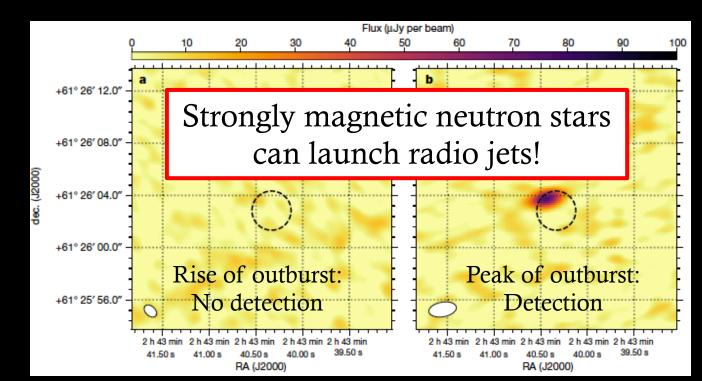



## Jet from a Magnetic Neutron Star

van den Eijnden+2018c (Nature)

 ♦ Unambiguous jet detection neutron star with a strong magnetic field (B~10<sup>12</sup> G)

- Much fainter in radio than other neutron stars at similar X-ray luminosity
- ♦ Effect magnetic field? Spin?


Inner disk radius at ~850 km

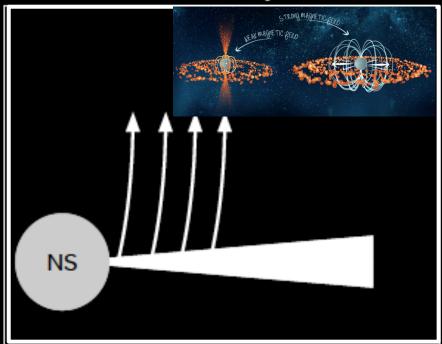


# Follow up

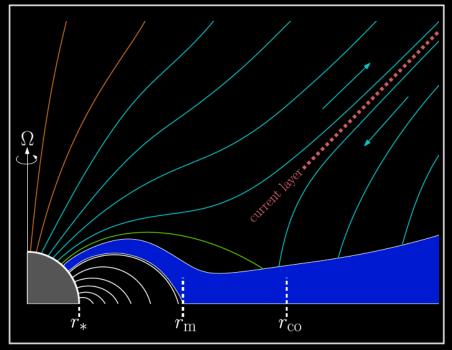
Van den Eijnden+ in prep.

Radio spectral index for GX 1+4: consistent with jet Sample of 12 <u>persistent</u> neutron stars with B~10<sup>11</sup>-10<sup>13</sup> G Unbiased (no distance/Lx selection): ~6 radio detections (likely jet detections: Vela X-1, 4U 1700-37, IGR J16318-4848)




van den Eijnden+2018c (detection of transient radio jet in Swift J0243)

#### Impact: New Views Jets & Accretion


- ◊ Very different accretion geometry (location inner disk)
- ◇ Test effect of spin on jet dependance: range ~1-1000 s
- ♦ Revise/expand jet models

## Impact: Jet Launching

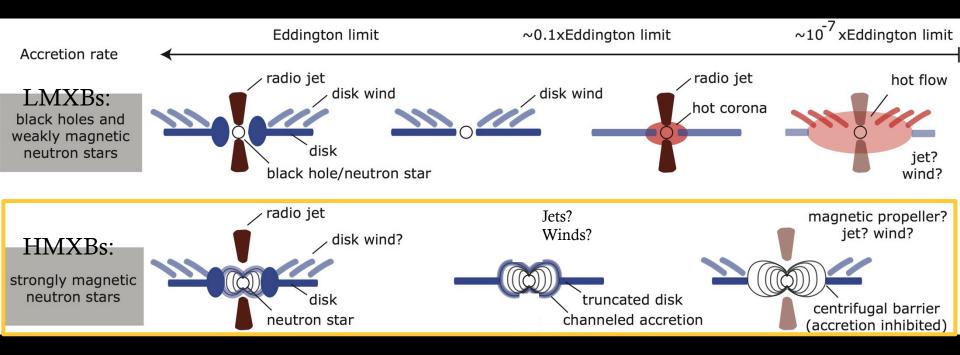
Blandford-Payne (1982)



Parfrey et al. (2016): alternative mechanism

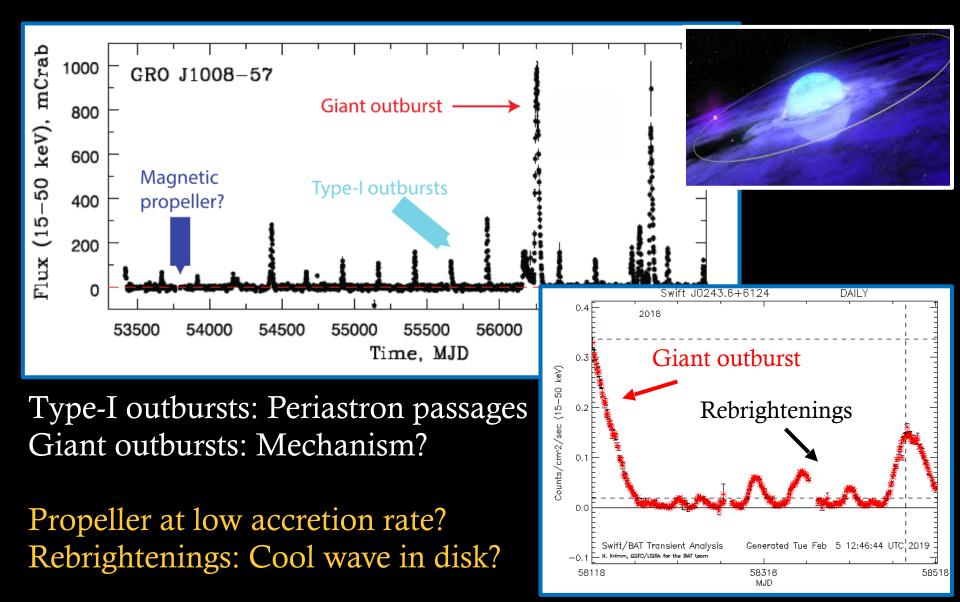


Massi & Kaufman Bernadó (2008) Jets cannot form if neutron star has B>10<sup>10</sup> G (inner disk missing) Parfrey+2016 Jets can form, but... jet power  $\sim \mu^{6/7}$  spin<sup>2</sup> (expect weaker jets)


#### Impact: New Views Jets & Accretion

- ◊ Very different accretion geometry (location inner disk)
- ◇ Test effect of spin on jet dependance: range ~1-1000 s
- ♦ Revise/expand jet models



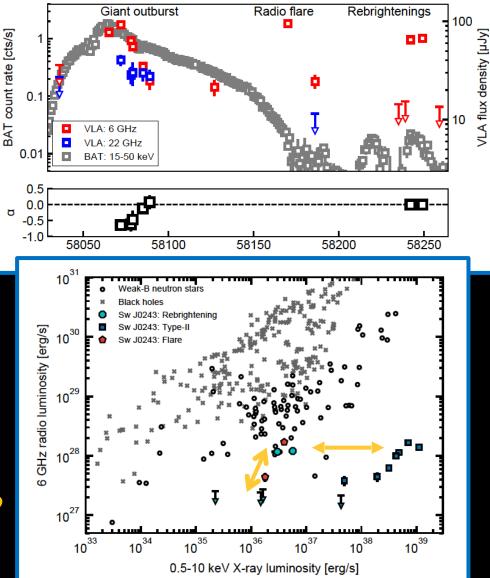

◇ New way to probe magnetic accretion
 Accretion morphology in high-mass X-ray binaries?
 → Can be tested through jets

## Impact: Magnetic Accretion

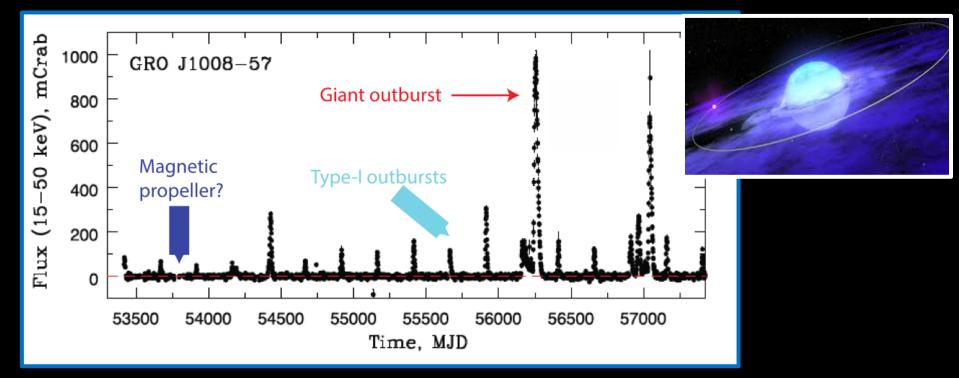


 Open questions on accretion in HMXBs: Are jets and winds produced? When? At low accretion rate: magnetic propeller?
 Accretion morphology during different types of activity?
 → Jets can be a new probe of magnetic accretion

## Accretion in Be X-Ray Binaries




## Jet During Rebrightenings


van den Eijnden+2019 Jet switches on during rebrightenings after a giant outburst

Similar radio brightness despite factor >100 lower X-ray luminosity

Jet switches on abruptly: Magnetic field interaction?



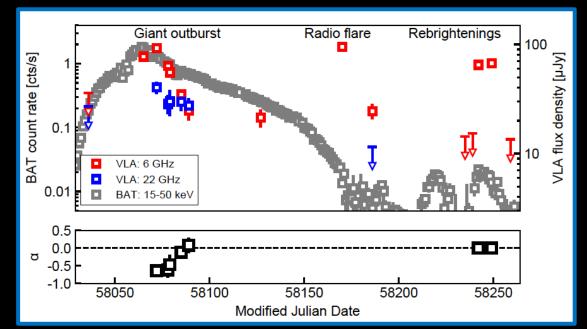
### Jets as Probes of Accretion

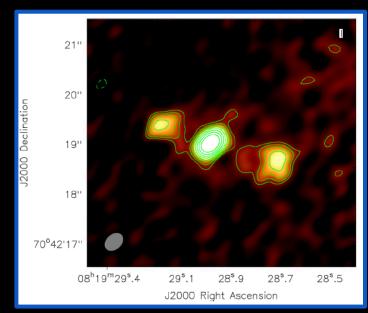


Established: radio jet in giant outbursts + rebrightenings Planned: more dense monitoring jet turn on/off Planned: radio jets in type-I outbursts + propeller regime? Conditions for jet launching, accretion morphology

#### Impact: New Views Jets & Accretion

- ◊ Very different accretion geometry (location inner disk)
- ◇ Test effect of spin on jet dependance: range ~1-1000 s
- ♦ Revise/expand jet models

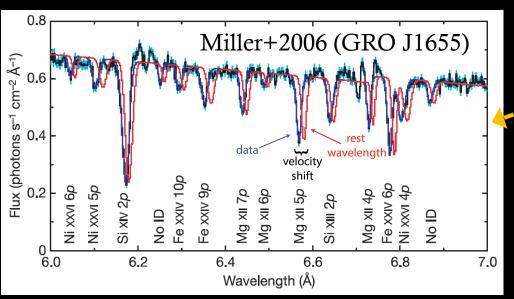


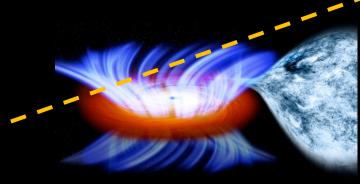


- New way to probe magnetic accretion
   Accretion morphology in high-mass X-ray binaries?
   Can be tested through jets
- New way to probe jets at super-Eddington accretion
   Giant outbursts reach super-Eddington rates (ULX)

## Impact: Jets @ Super-Eddington

#### Cseh+2014, 2015

Radio jet ejections from ultraluminous X-ray sources (ULXs) What about a steady jet? See also Soria+2010; Grise+2011




Giant outbursts of Be X-ray binaries: Test jet production in super-Eddington accretion regime

## Disk Winds

## Observing Disk Winds





#### Mass content wind Launching mechanism

Observables line species line shift line width line depth



Physical information velocity of the plasma ionization state (column) density launch radius

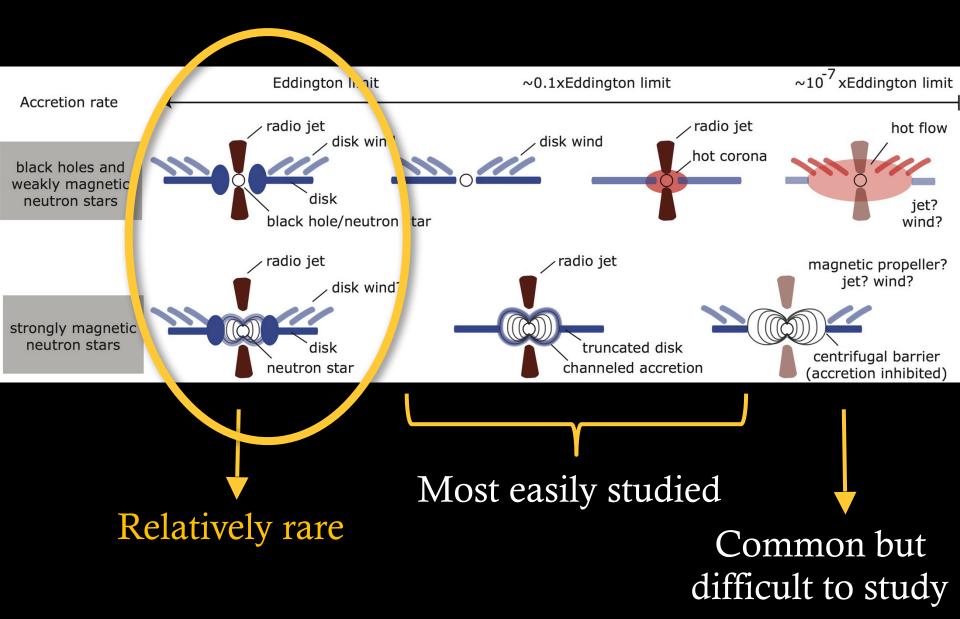
#### Current Status Disk Winds

Diaz Trigo & Boirin 2016 (review) Ionized emission/absorption in 19 sources (8 black holes) Since then 5 more (4 neutron stars, 1 black hole)

| Source          | $\mathbf{P}_{\mathrm{orb}}$ | $N_{\rm H}^{\rm Gal}$ | NS | Dip | s i ( |                 | -     | şξ       |          | References on the warm absorbers                        |                    |
|-----------------|-----------------------------|-----------------------|----|-----|-------|-----------------|-------|----------|----------|---------------------------------------------------------|--------------------|
|                 | 1                           | 10 <sup>21</sup> cm   | -2 |     |       |                 | < 3   | $\geq 3$ | }        |                                                         |                    |
| XB 1916-053     | 0.83 h                      | 2.3                   | NS | D   |       |                 | х     | х        | atm      | Boirin04, Juett06, Díaz Trigo06, Iaria06, Zhang14       |                    |
| 1A 1744-361     | 1.62 h                      | 3.1                   | NS | D   |       |                 |       | х        | atm      | Gavriil12                                               |                    |
| 4U 1323-62      | 2.93 h                      | 12                    | NS | D   |       |                 |       | х        | no grat. | Boirin05, Church05, Bałucińska-Church09                 |                    |
| EXO 0748-676    | 3.82 h                      | 1.0                   | NS | D   |       |                 | х     | х        | atm      | Díaz Trigo06, van Peet09, Ponti14                       |                    |
| XB 1254-690     | 3.93 h                      | 2.0                   | NS | D   |       |                 |       | х        | atm      | Boirin03, Díaz Trigo06/09, Iaria07                      |                    |
| MXB 1658-298    | 7.11 h                      | 1.9                   | NS | D   |       |                 | х     | х        | atm      | Sidoli01, Díaz Trigo06                                  |                    |
| XTE J1650-500   | 7.63 h                      | 4.2                   |    |     | >     | 50              | $?^a$ | $?^{b}$  | ?°       | Miller02/04                                             |                    |
| AX J1745.6-2901 | 8.4 h                       | 12                    | NS | D   |       |                 |       | х        | no grat. | Hyodo09, Ponti15                                        |                    |
| MAXI J1305-704  | 9.74 h <sup>d</sup>         | 1.9                   |    | D   |       |                 | х     |          | in       | Shidatsu13, Miller14                                    |                    |
| X 1624-490      | 20.89 h                     | 20                    | NS | D   |       |                 |       | х        | atm      | Parmar02, Díaz Trigo06, Iaria07b, Xiang09               |                    |
| IGR J17480-2446 | 21.27 h <sup>c</sup>        | 6.5                   | NS | D   |       |                 |       | х        | out      | Miller11                                                | _                  |
| GX 339-4        | 1.76 d                      | 3.6                   |    |     | >     | 45 <sup>f</sup> | х     |          | 29       | Miller04, Juett06                                       | Degenaar+2015;     |
| GRO J1655-40    | 2.62 d                      | 5.2                   |    | D   |       |                 |       | х        | out      | Ueda98, Yamaoka01, Miller06b/08, Netzer06, Sala07, Díaz |                    |
|                 |                             |                       |    |     |       |                 |       |          |          | Trigo07, Kallman09, Luketic10, Neilsen12                | King+2016;         |
| CirX-1          | 16.6 d                      | 16                    | NS | D   |       |                 | х     | х        | out      | Brandt00, Schulz02, , D'Aí07, Iaria08, Schulz08         |                    |
| GX 13+1         | 24.06 d                     | 13                    | NS | D   |       |                 |       | х        | out      | Ueda01/04, Sidoli02, Díaz Trigo12, Madej14, D'Ai14      | Miller+2016;       |
| GRS 1915+105    | 33.5 d                      | 13                    |    | D   |       |                 |       | х        | out      | Kotani00, Lee02, Martocchia06, Ueda09/10,               |                    |
|                 | -                           |                       |    |     |       |                 |       |          |          | Neilsen09/11/12                                         | van den Eijnden+20 |
| IGR J17091-3624 | $>4 d^h$                    | 5.4                   |    |     | >     | 53'             |       | х        | out      | King12                                                  |                    |
| 4U 1630-47      |                             | 17                    |    | D   |       |                 |       | х        | out      | Kubota07, Díaz Trigo13/14, King13/14, Neilsen14         | Raman+2018         |
| H 1743-322      |                             | 6.9                   |    | D   |       |                 |       | X        | out      | Miller06a                                               |                    |

#### Current Status Disk Winds

Diaz Trigo & Boirin 2016 (review) Ionized emission/absorption in 19 sources (8 black holes) Since then 5 more (4 neutron stars, 1 black hole)


| Source           | Porb                 | $N_{\rm H}^{\rm Gal}$<br>$10^{21}$ cm <sup>-</sup> |    | Dip | s i (°)   | $\frac{10}{3}$ | $g\xi$<br> >; | Flow<br>3 |
|------------------|----------------------|----------------------------------------------------|----|-----|-----------|----------------|---------------|-----------|
|                  |                      |                                                    |    | _   |           |                | _             |           |
| XB 1916-053      | 0.83 h               | 2.3                                                | NS | D   |           | х              | х             | atm       |
| 1A 1744–361      | 1.62 h               | 3.1                                                | NS | D   |           |                | х             | atm       |
| 4U 1323-62       | 2.93 h               | 12                                                 | NS | D   |           |                | х             | no grat.  |
| EXO 0748-676     | 3.82 h               | 1.0                                                | NS | D   |           | х              | х             | atm       |
| XB 1254-690      | 3.93 h               | 2.0                                                | NS | D   |           |                | х             | atm       |
| MXB 1658-298     | 7.11 h               | 1.9                                                | NS | D   |           | х              | х             | atm       |
| XTE J1650-500    | 7.63 h               | 4.2                                                |    |     | > 50      | $?^{a}$        | $?^{b}$       | ?°        |
| AX J1745.6-2901  | 8.4 h                | 12                                                 | NS | D   |           |                | х             | no grat.  |
| MAXI J1305-704   | 9.74 h <sup>d</sup>  | 1.9                                                |    | D   |           | х              |               | in        |
| X 1624-490       | 20.89 h              | 20                                                 | NS | D   |           |                | х             | atm       |
| IGR J17480-2446  | 21.27 h <sup>c</sup> | 6.5                                                | NS | D   |           |                | х             | out       |
| GX 339-4         | 1.76 d               | 3.6                                                |    |     | $>45^{f}$ | x              |               | 29        |
| GRO J1655-40     | 2.62 d               | 5.2                                                |    | D   | - 10      |                | х             | out       |
| 010010000 10     | 2102 4               | 27122                                              |    | 2   |           |                |               | 0.00      |
| CirX-1           | 16.6 d               | 16                                                 | NS | D   |           | x              | х             | out       |
| GX 13+1          | 24.06 d              | 13                                                 | NS | D   |           |                | х             | out       |
| GRS 1915+105     | 33.5 d               | 13                                                 |    | D   |           |                | x             | out       |
| 0100 17 10 1 100 | 0010 0               | 10                                                 |    |     |           |                |               | 0.00      |
| IGR J17091-3624  | $>4 d^h$             | 5.4                                                |    |     | > 534     |                | х             | out       |
| 4U 1630-47       |                      | 17                                                 |    | D   |           |                | x             | out       |
| H 1743-322       |                      | 6.9                                                |    | D   |           |                | x             | out       |
| n 1745-522       |                      | 0.9                                                |    | D   |           |                | X             | out       |

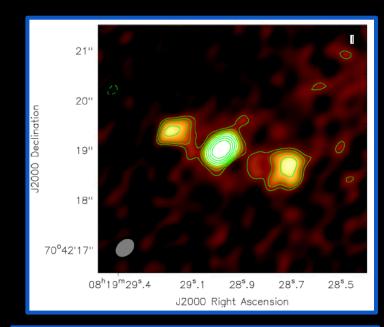
Velocities: ~200-3000 km/s Extreme cases: ~ 0.04 c

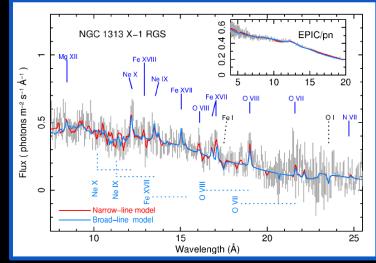
Mass loss rate wind: ~0.01 – 1x inferred accretion rate Significant mass loss!

### Winds @ Extreme Accretion

#### Accretion Regimes



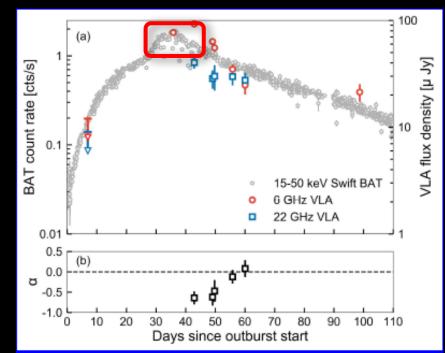

### Outflows Super-Eddington Regime


#### Cseh+2014, 2015

Radio jet ejections from ultraluminous X-ray sources (ULXs) See also Soria+2010; Grise+2011

#### Pinto+2016, 2017

Wind outflows detected for several <u>other</u> ULXs: v~0.1-0.3c See also Walton+2017; Kosec+2018



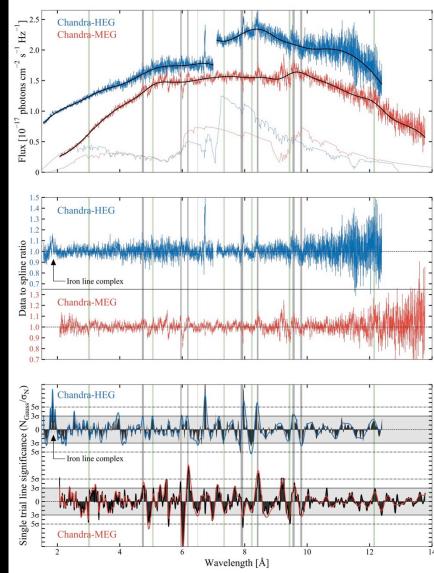



#### Outflows Super-Eddington Regime

van den Eijnden+2018c Jet detection from Galactic super-Eddington neutron star

van den Eijnden+ submitted Chandra/HETG at peak of outburst (L<sub>X</sub>>10<sup>39</sup> erg/s)




## Super-Eddington Jet + Wind

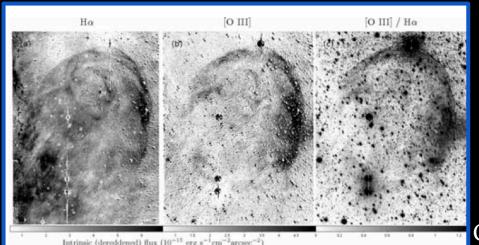
van den Eijnden+2018c Jet detection from Galactic super-Eddington neutron star

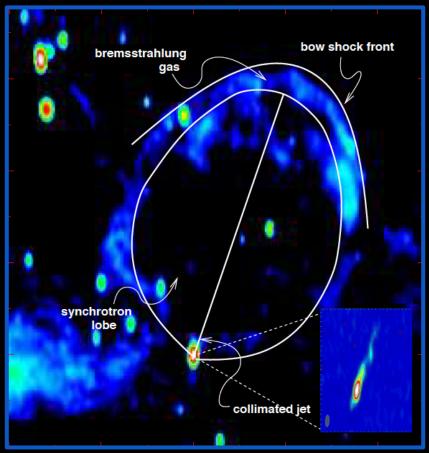
van den Eijnden+ submitted Chandra/HETG at peak of outburst (L<sub>X</sub>>10<sup>39</sup> erg/s)

Ionized absorption lines: possible outflow of v~0.2c

Jet + disk wind detection in super-Eddington regime




Impact of Outflows on the Environment of X-ray Binaries


## Nebulae Around X-ray Binaries

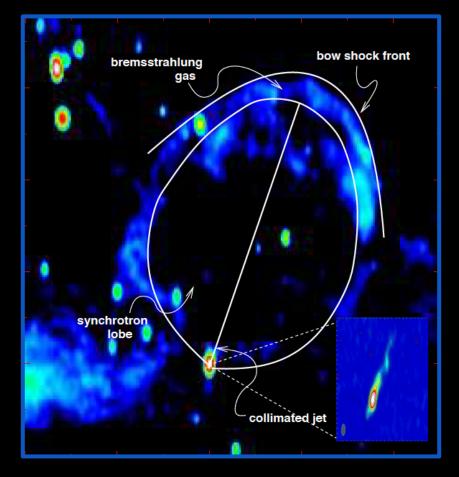
#### Gallo+2005

Nebula around black hole Cyg X-1 (radio): Interaction of strong jet with ISM

#### Russell+2007 Associated optical nebula



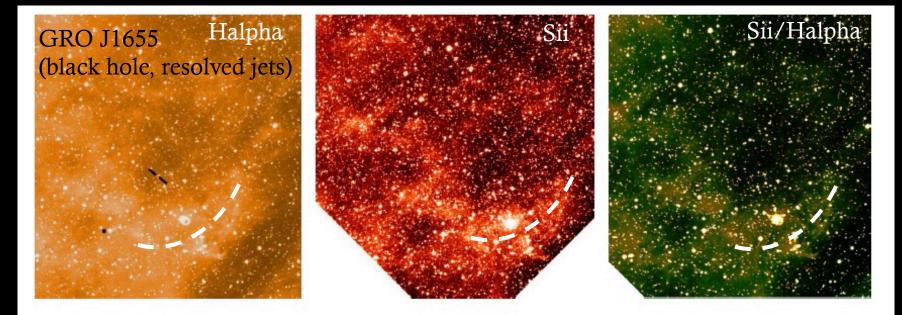



#### 1.4 GHz radio image

Optical images narrow filters

## Impact of X-ray Binary Outflows

Mirabel & Rodríguez 1999 Fender+2005 Shock fronts may serve as acceleration sides to produce high-energy cosmic rays


Justham & Strawinsky 2012 Feedback of X-ray binaries may rival that of supernova explosions

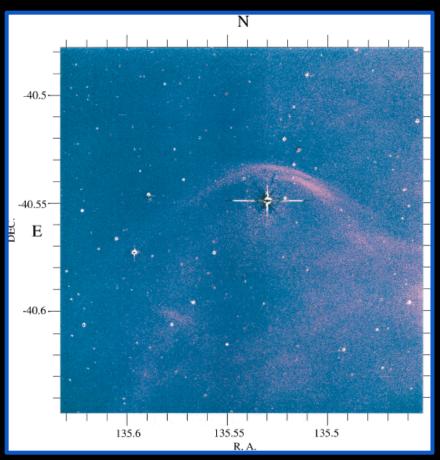


How common are these nebula? Are all X-ray binaries an important source of feedback?

### Nebulae Around X-ray Binaries

Russell+2006; Tudose+2006 Searched (black hole) low-mass X-ray binaries strong jets Few other candidate nebulae (radio or optical)



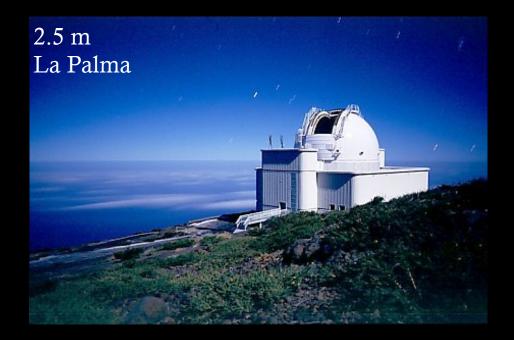

What about the feedback potential of disk winds? Less powerful but larger subtended angle

### Nebulae Around X-ray Binaries

Kaper+1997 Bow-shock nebula highmass X-ray binary Vela X-1

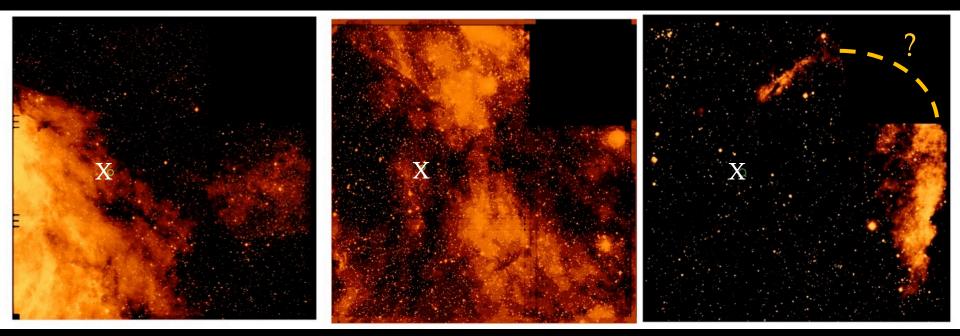
High proper motion, wind of massive companion interacts with ISM

It also has a radio jet... Role in nebula production?




R-band corrected H-alpha image (10'x10')

## An Unbiased Pilot Study

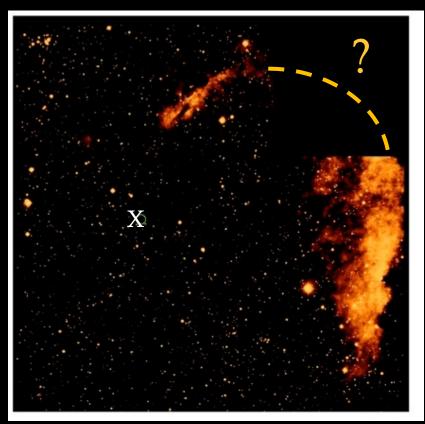

September 2018: INT/WFC narrow-band images of 19 X-ray binaries Various outflows, various companion types

~ 34'x34' field of view ~1 hr integration times 5 observing nights total (bright nights)



### Find the Nebula

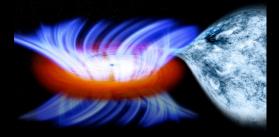
H-alpha images: Quick-look results (Maria Georganti) Not easy to find! Only one suggestive case jumping out But... plenty of things to explore for image processing




GX 17+1 Bright persistent neutron star near Eddington, jet+wind Swift J0243

Transient magnetic NS, super-Eddington wind+jet Cyg X-3 Bright persistent black hole, massive companion, jet

## To Be Continued


- ♦ Are X-ray binaries overall important for feedback?
- Unbiased/complete search for nebula warranted
- <u>Not</u> finding many nebula =
   important result too



Probe the feedback of different outflows (jets, disk winds) and different types of systems (LMXBs, HMXBs)



## To Take Away



- Accretion is universally linked to jets and winds
   X-ray binaries: study (dynamic) outflows
- Open questions about X-ray binary outflows Launch mechanism, mass loss, kinetic power
- Mass loss and power of outflows important for Regulating accretion, binary evolution, feedback
- New ways to probe jets and accretion Jets from strongly magnetic neutron stars





Netherlands Organisation for Scientific Research



# July 1-3, 2019: From Winds to Jets

A dedicated conference on the important role of outflows in compact binary systems Abstract deadline: March 15 www.outflows2019.com SOC & LOC: Nathalie Degenaar, Thomas Russell Juan Hernández Santisteban, Jakob van den Eijnden