# A global view of the inner accretion and ejection flow around super massive black holes

Radiation-driven accretion disk winds in a physical context





Margherita Giustini and Daniel Proga

UNIV

A&A accepted, arXiv:1904.07341











# Outline



3

3.1

AGN: accretion/ejection around SMBHs

AGN winds: theories & observations

# A global scheme for accretion/ejection around SMBHs











Quiescent

LLAGN

Seyfert

QSO

Super-Eddington



## Accretion disk winds and geometrical effects



## Looking up at the night sky with optical light...



# Quasi Stellar Objects ~ Active Galactic Nuclei



 $L \approx 10^{10-15} L_{\odot} \neq \sum L_{stars}$ 

## **AGN:** mass accretion onto Super Massive Black Holes



## MASS ACCRETION ONTO SUPER MASSIVE BLACK HOLES

The most efficient mechanism for energy production

- Black Hole Mass:  $M_{BH} = 10^{6-10} M_{\odot}$ Accretion Luminosity:  $L_{acc} = \eta (M_{acc}) c^2$  $\sim 5.7 \left(\frac{\eta}{0.1}\right) \left(\frac{\dot{M}_{acc}}{1 M_{\odot} yr^{-1}}\right) \times 10^{45} \text{ erg s}^{-1}$
- Accretion Efficiency:  $\eta pprox 0.06 0.42$

COMPARE TO ~0.007 MAXIMUM FOR NUCLEAR FUSION!

## AGN: mass accretion onto Super Massive Black Holes



Eddington Luminosity:

$$L_{Edd} = \frac{4\pi G M_{BH} m_p c}{\sigma_T} \sim 1.3 \left(\frac{M_{BH}}{10^8 M_{\odot}}\right) \times 10^{46} \text{ erg s}^{-1}$$

- Eddington Ratio:  $\dot{m} = L/L_{Edd}$
- Gravitational Radius:  $r_g = GM_{BH}/c^2 \sim 1.5 \left(\frac{M_{BH}}{10^8 M_{\odot}}\right) \times 10^{13}$  cm

## The AGN phase is crucial to understand galaxy evolution

Ferrarese & Merritt 2000, Gebhardt et al. 2000





# A FEEDBACK MECHANISM BETWEEN THE CENTRAL SUPERMASSIVE BLACK HOLE AND THE HOST GALAXY

## **AGN Feedback**

## Kinetic feedback

#### Radio jet



"Radio mode" LLAGN ADAF-powered

## Radiative feedback

Luminosity



"QSO mode" Luminous AGN disk-powered

## Radiative + kinetic feedback

Luminosity + wind



? % of AGN how and how much?

## A feedback mechanism between the SMBH and the host galaxy



## **AGN Unified Geometrical Scenario**

#### **UNOBSTRUCTED OR OBSCURED VIEW**

#### OF THE CENTRAL ENGINE OF LUMINOUS AGN



#### "Central engine": accretion disk + upscattering corona

Plenty of gas and radiation around: lots of reprocessing

# SPECTRAL ENERGY DISTRIBUTION (SED)



## UV and X-rays probe the AGN innermost regions



MARGHERITA GIUSTINI – CAB JOURNAL CLUB – 29/05/2019

## The UV/X-ray SED of luminous AGN varies with mdot



High mdot: Strong UV flux, weak X-ray flux

**Low mdot:** Plenty of X-ray photons compared to the UV ones

Accretion disk temperature:  $T^4 \propto M_{BH} \dot{M}/R_{in}^3 \propto (\dot{m}/M_{BH}^2)(R_{in}/R_g)^{-3}$ 

## Blueshifted absorption lines in the UV spectra



NARROW/MINI-BROAD UV ABSORPTION LINES IN >50% OF AGN

## **UV Broad Absorption Lines**

#### THE MOST SPECTACULAR EXAMPLES: BAL QSOS



**OBSERVED IN 15-20% OF OPTICALLY SELECTED QSOS** 

LARGER INTRINSIC FRACTION (>30-40%)

Velocity up to 0.2c

## X-ray narrow absorption lines



#### X-RAY "WARM ABSORBER"

**OBSERVED IN >50% OF AGN** 

Velocity of 100-1000s km/s

## X-ray broad absorption lines



"ULTRA-FAST OUTFLOWS" ARE OBSERVED IN >30% OF LOCAL AGN

Tombesi et al. 2010

Large column densities >  $10^{23}$  cm<sup>-2</sup> of highly ionized iron

Velocity >10,000 km/s, up to ~0.4-0.5c

## The wind must overcome gravity to exist

#### The closest to the SMBH is the wind launching point, the fastest is its terminal velocity.

#### Thermal Pressure

![](_page_16_Picture_3.jpeg)

#### can launch low-velocity winds: X-ray warm absorber, UV NALs

e.g., Krolik & Kriss 2001; Dorodnitsyn et al. 2008

## Magnetic Field

![](_page_16_Picture_7.jpeg)

#### can launch self-similar winds of any velocity

e.g., Königl & Kartje 1994; Fukumura et al. 2015

#### Radiation Pressure

#### can launch high-velocity winds through continuum and line opacity

e.g., Murray et al. 1995: Proga & Kallman 2004

![](_page_16_Picture_13.jpeg)

## The wind must overcome gravity to exist

#### The closest to the SMBH is the wind launching point, the fastest is its terminal velocity.

#### Thermal Pressure

![](_page_17_Picture_3.jpeg)

#### can launch low-velocity winds: X-ray warm absorber, UV NALs

e.g., Krolik & Kriss 2001; Dorodnitsyn et al. 2008

# Magnetic Field

#### can launch self-similar winds of any velocity

e.g., Königl & Kartje 1994; Fukumura et al. 2015

#### • Radiation Pressure

#### can launch high-velocity winds through continuum and line opacity

e.g., Murray et al. 1995: Proga & Kallman 2004

 $L_{Edd} = \frac{4\pi G M_{BH} m_p c}{4\pi G M_{BH} m_p c}$ 

## L > L<sub>Edd</sub>: Super-Eddington wind

## **Radiation-driven winds**

 $10^{4}$ If matter is partially ionized: AGN1  $10^{3}$ effective cross section >>  $\sigma_T$  $10^{2}$  $M(t \approx 10^{-6}, \xi)$  $10^{1}$ "Force Multiplier" M  $10^{0}$  $10^{-1}$ Line-driven wind  $10^{-2}$  $10^{-3}$ Dannen et al. 2019 at  $L < L_{Edd}$ 10 $10^{2}$  $10^{0}$  $10^{3}$  $10^{4}$  $10^{5}$  $10^{1}$ ξ

**Radiation Pressure** can launch high-velocity winds through continuum and line opacity

e.g., Murray et al. 1995: Proga & Kallman 2004

$$L_{Edd} = \frac{4\pi G M_{BH} m_p c}{\sigma_T}$$

## Line-driven accretion disk winds

If matter is partially ionized: effective cross section >>  $\sigma_T$ 

"Force Multiplier" M

Line-driven wind at L < L<sub>Edd</sub>

![](_page_19_Figure_4.jpeg)

Gallagher & Everett 2007

The relative X-ray/UV photon flux is crucial for LD to be efficient in AGN: the UV-absorbing atoms need to be "shielded" against the X-ray photons in order not to lose electrons and be able to become a wind.

## Line-driven accretion disk winds

![](_page_20_Figure_1.jpeg)

e.g., Murray et al. 1995: Proga et al. 2000; Proga & Kallman 2004; Risaliti & Elvis 2010

The relative X-ray/UV photon flux is crucial for LD to be efficient in AGN: the UV-absorbing atoms need to be "shielded" against the X-ray photons in order not to lose electrons and be able to become a wind.

![](_page_20_Figure_4.jpeg)

## Line-driven accretion disk winds

![](_page_21_Figure_1.jpeg)

e.g., Murray et al. 1995: Proga et al. 2000; Proga & Kallman 2004; Risaliti & Elvis 2010

![](_page_21_Figure_3.jpeg)

For high Eddington ratios and large black hole masses: an inner failed wind shields the farther out portion of the flow from the central X-ray radiation. Strong equatorial disk winds are launched.

## A global view of the inner accretion/ejection flow around SMBHs

![](_page_22_Figure_1.jpeg)

## Variations of SED with black hole mass

## Presence/absence of strong accretion disk winds

## A global view of the inner accretion/ejection flow around SMBHs

Very Low  $\dot{m} \ll 10^{-6}$ 

![](_page_23_Figure_2.jpeg)

## Logarithmically-scaled side view of the inner parsec of an AGN

![](_page_24_Figure_1.jpeg)

## A global view of the inner accretion/ejection flow around SMBHs

![](_page_25_Figure_1.jpeg)

MARGHERITA GIUSTINI - ESAC SEMINAR - 20/06/2019

in

## **Quiescent galactic nuclei**

VERY LOW  $\dot{m} \ll 10^{-6}$ 

![](_page_26_Picture_2.jpeg)

![](_page_26_Figure_3.jpeg)

Relativistic polar jet Non-radiative accretion flow  $[\eta \ll 0.1\%]$ 

Synchrotron from the jet

Bremsstrahlung + Compton from the accretion flow

Thermally/magnetically driven outer winds with v~100-1000 km/s No Line-Driven disk winds

## Low Luminosity AGN

Low  $\dot{m} \approx 10^{-4}$ 

![](_page_27_Picture_2.jpeg)

Very weak disk

Relativistic polar jet

Radiative cooling starts in the outer 1000s r<sub>g</sub>

 $\eta \sim 0.005 - 0.05$ 

Synchrotron from the jet

Bremsstrahlung + Compton from the hot accretion flow

Weak thermal emission from the outer disk

Thermally/magnetically driven outer winds with v~100-1000 km/s No Line-Driven disk winds

## Seyfert/mini-BAL QSO

![](_page_28_Figure_1.jpeg)

Moderate/transient jet

Radiative cooling is efficient

Outer thin disk and inner hot corona

Thermal emission from the disk

Compton up-scattering

in the corona

Line-Driven disk winds can be launched

## Seyfert/mini-BAL QSO

![](_page_29_Figure_1.jpeg)

## QSO/BAL QSO

High  $\dot{m} \gtrsim 0.25$ 

![](_page_30_Figure_2.jpeg)

Moderate/transient jet

Radiative cooling is efficient

![](_page_30_Figure_5.jpeg)

Strong thermal disk emission

Weak, steep coronal emission

Thin disk down to ISCO, inner compact corona

LD disk winds dominate the ejection flow

## super-Eddington

![](_page_31_Figure_1.jpeg)

Super-Eddington winds

The inner disk puffs up under the strong radiation pressure

The innermost corona is very compact and (relatively)cold

Polar and equatorial outflow, almost 4pi sr

## A global view of the inner accretion/ejection flow around SMBHs

| <i>ṁ</i> range                                                                        | Accretion/ejection flow                                                                                                  | Feedback                   | Examples                                     |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------|
| (1)                                                                                   | (2)                                                                                                                      | (3)                        | (4)                                          |
| very low $\dot{m} \approx 10^{-8}$                                                    | non radiative hot accretion flow                                                                                         | L                          | Quiescent/inactive,                          |
| (≪ 10 <sup>-6</sup> )                                                                 | relativistic polar jet                                                                                                   | Lkin                       | Sgr A*                                       |
| $low \ \dot{m} \approx 10^{-4} \\ (10^{-6} \le \dot{m} \le 10^{-3})$                  | outer cold disk at $\approx 1000 \text{ s } R_g$ , inner hot flow relativistic polar jet                                 | $L_{kin} \gg L_{rad}$      | LLAGN<br>M81*, M87                           |
| moderate $\dot{m} \approx 10^{-2}$<br>$(10^{-3} \leq \dot{m} \leq 10^{-1})$           | outer cold disk at $\approx 10$ s $R_g$ , extended hot corona<br>weak/moderate LD wind depending on small/large $M_{BH}$ | $L_{kin} \ll L_{rad}$      | Seyfert/mini-BAL QSO<br>NGC 5548/PG 1126-041 |
| $\begin{array}{l} high \ \dot{m} \gtrsim 0.25 \\ (0.1 \le \dot{m} \le 1) \end{array}$ | cold accretion disk down to ISCO, compact hot corona moderate/strong LD wind depending on small/large $M_{BH}$           | $L_{kin} < L_{rad}$        | NLS1/BAL QSO<br>I Zw 1/PDS 456               |
| very high ṁ ≫ 1<br>(1 ≲ ṁ ≲ 100)                                                      | outer thin disk, inner slim disk, very compact hot corona strong outflows, both polar and equatorial                     | $L_{kin} \lesssim L_{rad}$ | Super-Eddington<br>RX J0439.6-531            |

**Notes.** (1) Nomenclature for the Eddington ratio ranges used in this work, with an indicative order of magnitude, and an indicative range of values in parenthesis. (2) Accretion/ejection flow main physical characteristics. (3) Type of energy feedback between the AGN and the environment: kin = kinetic, rad = radiative. (4) Classes of objects/individual examples of well studied local AGN.

![](_page_32_Picture_3.jpeg)

## Line of sight and geometrical effects

![](_page_33_Figure_1.jpeg)

## Important geometrical effects in the Seyfert/QSO regime

![](_page_34_Figure_1.jpeg)

## The present and the future

![](_page_35_Figure_1.jpeg)

## The present and the future

![](_page_36_Figure_1.jpeg)

## The present and the future

![](_page_37_Figure_1.jpeg)

## Mass outflow rate and kinetic efficiency

kinetic efficiency

$$\varepsilon_{w} \propto \frac{\dot{M}_{out} v_{out}^{2}}{L_{acc}}$$

mass outflow rate

 $M_{out} \propto A(r)\rho(r)\upsilon_{out}(r)$ 

Assuming spherical symmetry, isotropy, constant velocity:

$$\dot{M}_{out} = 4\pi m_H n r^2 \upsilon_{out} C_f F_V$$

Assuming photoionization equilibrium, and the absorber as a thin shell:

$$\dot{M}_{out} = 4\pi m_H \frac{L_{ion}}{\xi} \upsilon_{out} C_f F_V$$

$$M_{out} \approx M_{acc}$$
  
 $\varepsilon_w \approx \text{ up to a few \%}$ 

For the highly ionized, high velocity phases.

BUT All the assumptions are highly uncertain!

## PDS 456 as seen by ATHENA

![](_page_39_Figure_1.jpeg)

## Realistic mass outflow rate measurements will be possible!